E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Recent Advances in Fusarium Research"

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Mycotoxins".

Deadline for manuscript submissions: 30 June 2019

Special Issue Editor

Guest Editor
Dr. Antonio Moretti

Institute of Sciences of Food Production – Research National Council (ISPA-CNR), Via Amendola 122-0, I-70126 Bari, Italy
Website | E-Mail
Interests: plant pathology; mycology; fungal genetics; mycotoxicology

Special Issue Information

Dear Colleagues,

This “Fusarium” Special Issue of Toxins aims to collect some of most updated works on Fusarium where experts on mycology, genetics, plant pathology, chemistry and toxicology can contribute to increase knowledge on this fungal genus. Fusarium includes many of the most plant pathogenic species worldwide that produce a wide range of mycotoxins. The mycotoxins, beside exerting a variety of toxic activities toward mammals, can often be toxic for the plants. Moreover, the genus encompasses many other species that can have a dangerous profile of mycotoxins although not pathogens on the plants; they colonize several other kinds of environment; finally, they can be pathogens to human and animals. Several research groups worldwide devote tremendous efforts for selecting tools aiming to reduce Fusarium mycotoxin damages both in the field and as natural contaminants of agro-food products. The use of prediction models for Fusarium mycotoxins in the field; early chemical or genetic analyses for the identification of the different Fusarium species and related mycotoxins in the crops; alternative agronomic pathways; application of fungicides or biological control agents; and the use of bacteria and their enzymes for mycotoxin degradation in food/feed commodities, are all well-studied research topics at global level. However, many research areas remain undiscovered. In addition, major evidence does exist that the current climatic changes are influencing the contamination of Fusarium mycotoxins in new geographical areas and causing the occurrence of new emerging toxins. On the other hand, the complexity and the great biodiversity of the Fusarium species, a genus in continuous taxonomic revisiting, require more sophisticated and advanced analyses to generate and analyze more widely the Fusarium species genomes and metabolic profiles, respectively, since the poly-omic approach is a powerful tool for unraveling the genetic and mycotoxin profile variability of this intriguing fungal genus.

Dr. Antonio Moretti
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • analytical methods
  • biodiversity
  • DNA-based detection methods
  • Fusarium mycotoxins
  • genomics
  • metabolomics
  • pathogenicity

Published Papers (10 papers)

View options order results:
result details:
Displaying articles 1-10
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Diverse Components of Resistance to Fusarium verticillioides Infection and Fumonisin Contamination in Four Maize Recombinant Inbred Families
Received: 29 November 2018 / Revised: 8 January 2019 / Accepted: 22 January 2019 / Published: 1 February 2019
PDF Full-text (1036 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The fungus Fusarium verticillioides can infect maize ears, causing Fusarium ear rot (FER) and contaminating the grain with fumonisins (FUM), which are harmful to humans and animals. Breeding for resistance to FER and FUM and post-harvest sorting of grain are two strategies for [...] Read more.
The fungus Fusarium verticillioides can infect maize ears, causing Fusarium ear rot (FER) and contaminating the grain with fumonisins (FUM), which are harmful to humans and animals. Breeding for resistance to FER and FUM and post-harvest sorting of grain are two strategies for reducing FUM in the food system. Kernel and cob tissues have been previously associated with differential FER and FUM. Four recombinant inbred line families from the maize nested associated mapping population were grown and inoculated with F. verticillioides across four environments, and we evaluated the kernels for external and internal infection severity as well as FUM contamination. We also employed publicly available phenotypes on innate ear morphology to explore genetic relationships between ear architecture and resistance to FER and FUM. The four families revealed wide variation in external symptomatology at the phenotypic level. Kernel bulk density under inoculation was an accurate indicator of FUM levels. Genotypes with lower kernel density—under both inoculated and uninoculated conditions—and larger cobs were more susceptible to infection and FUM contamination. Quantitative trait locus (QTL) intervals could be classified as putatively resistance-specific and putatively shared for ear and resistance traits. Both types of QTL mapped in this study had substantial overlap with previously reported loci for resistance to FER and FUM. Ear morphology may be a component of resistance to F. verticillioides infection and FUM accumulation. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Figures

Graphical abstract

Open AccessArticle Functional Analysis of FgNahG Clarifies the Contribution of Salicylic Acid to Wheat (Triticum aestivum) Resistance against Fusarium Head Blight
Received: 9 December 2018 / Revised: 20 December 2018 / Accepted: 11 January 2019 / Published: 22 January 2019
PDF Full-text (4265 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Salicylic acid (SA) is a key defense hormone associated with wheat resistance against Fusarium head blight, which is a severe disease mainly caused by Fusarium graminearum. Although F. graminearum can metabolize SA, it remains unclear how this metabolic activity affects the wheat– [...] Read more.
Salicylic acid (SA) is a key defense hormone associated with wheat resistance against Fusarium head blight, which is a severe disease mainly caused by Fusarium graminearum. Although F. graminearum can metabolize SA, it remains unclear how this metabolic activity affects the wheat–F. graminearum interaction. In this study, we identified a salicylate hydroxylase gene (FG05_08116; FgNahG) in F. graminearum. This gene encodes a protein that catalyzes the conversion of SA to catechol. Additionally, FgNahG was widely distributed within hyphae. Disrupting the FgNahG gene (ΔFgNahG) led to enhanced sensitivity to SA, increased accumulation of SA in wheat spikes during the early infection stage and inhibited development of head blight symptoms. However, FgNahG did not affect mycotoxin production. Re-introducing a functional FgNahG gene into the ΔFgNahG mutant recovered the wild-type phenotype. Moreover, the expression of FgNahG in transgenic Arabidopsis thaliana decreased the SA concentration and the resistance of leaves to F. graminearum. These results indicate that the endogenous SA in wheat influences the resistance against F. graminearum. Furthermore, the capacity to metabolize SA is an important factor affecting the ability of F. graminearum to infect wheat plants. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Figures

Figure 1

Open AccessArticle Transfer of Deoxynivalenol (DON) through Placenta, Colostrum and Milk from Sows to Their Offspring during Late Gestation and Lactation
Toxins 2018, 10(12), 517; https://doi.org/10.3390/toxins10120517
Received: 16 November 2018 / Revised: 28 November 2018 / Accepted: 1 December 2018 / Published: 4 December 2018
PDF Full-text (2030 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Deoxynivalenol (DON) contamination of feed may result in reduced growth, feed refusal, immunosuppression, and health problems in swine. Piglets can be exposed to DON via placenta before birth and via milk during lactation. The extent of early-life exposure of piglets to DON is, [...] Read more.
Deoxynivalenol (DON) contamination of feed may result in reduced growth, feed refusal, immunosuppression, and health problems in swine. Piglets can be exposed to DON via placenta before birth and via milk during lactation. The extent of early-life exposure of piglets to DON is, however, not fully known. This study was therefore aimed at investigating DON uptake in sows fed with naturally contaminated diets, DON transfer across placenta during late gestation, and transfer of DON to piglets via colostrum and milk. Forty-four crossbred sows were evaluated from day 93 ± 1 of gestation until weaning of piglets and fed with feed made from naturally DON-contaminated oats at three concentration levels: (1) control (DON < 0.2 mg/kg), (2) DON level 1 (1.4 mg DON/kg), and (3) DON level 2 (1.7 mg DON/kg). The transfer of DON to the piglets was evaluated in 15 sows, with repeated sampling of blood and milk from the sows and blood samples from five piglets of each litter. The piglet/sow plasma DON ratio and milk/plasma (M/P) DON ratio in sows were calculated to estimate the degree of transfer. Piglet/sow plasma ratios were 2.14 at birth, 2.30 within 12–36 h after parturition, 0.08 on day 7, 0.16 on day 21, and 0.20 at weaning. M/P ratios were 0.92, 1.11, 0.94, 1.21, and 0.90, respectively. The results indicate that DON is efficiently transferred across placenta and into milk. However, the low piglet/sow plasma ratios at mid-lactation to weaning indicate that the piglets were most strongly exposed to DON in early life, despite the high M/P ratios and efficient secretion of DON in milk throughout the entire lactation. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Figures

Figure 1

Open AccessArticle Trichothecene Genotypes of Fusarium graminearum Populations Isolated from Winter Wheat Crops in Serbia
Toxins 2018, 10(11), 460; https://doi.org/10.3390/toxins10110460
Received: 18 October 2018 / Revised: 2 November 2018 / Accepted: 5 November 2018 / Published: 8 November 2018
Cited by 1 | PDF Full-text (1715 KB) | HTML Full-text | XML Full-text
Abstract
Fusarium graminearum as the main causal agent of Fusarium head blight (FHB) and its ability to produce trichothecenes was investigated by molecular techniques. A total of 37 strains isolated from the wheat, harvested in Serbia in 2005, 2008 and 2015, and previously designated [...] Read more.
Fusarium graminearum as the main causal agent of Fusarium head blight (FHB) and its ability to produce trichothecenes was investigated by molecular techniques. A total of 37 strains isolated from the wheat, harvested in Serbia in 2005, 2008 and 2015, and previously designated by morphological observation as F. graminearum, were used for trichothecene genotypes characterization. The strains were identified using the species-specific primer set FG16R/FG16F while genotypic characterization was done using specific TRI13 and TRI3 sequences of the trichothecene gene clusters. The PCR assays identified all strains as species of F. graminearum sensu stricto with the DON/15-ADON genotype. The quantification of the mycotoxin (DON) was performed using the biochemical assay. The high levels of DON (>20,000 µg kg−1) were recorded in all of the strains from 2005, four strains from 2008 and two strains from 2015. Weather data of the investigated seasons, showed that the optimal temperature, frequent rains and high relative humidity (RH) was very favourable for the development of F. graminearum, affecting the DON biosynthesis. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Figures

Figure 1

Open AccessArticle Species Composition and Trichothecene Genotype Profiling of Fusarium Field Isolates Recovered from Wheat in Poland
Received: 17 July 2018 / Revised: 29 July 2018 / Accepted: 7 August 2018 / Published: 10 August 2018
Cited by 3 | PDF Full-text (1020 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Fusarium head blight (FHB) of cereals is the major head disease negatively affecting grain production worldwide. In 2016 and 2017, serious outbreaks of FHB occurred in wheat crops in Poland. In this study, we characterized the diversity of Fusaria responsible for these epidemics [...] Read more.
Fusarium head blight (FHB) of cereals is the major head disease negatively affecting grain production worldwide. In 2016 and 2017, serious outbreaks of FHB occurred in wheat crops in Poland. In this study, we characterized the diversity of Fusaria responsible for these epidemics using TaqMan assays. From a panel of 463 field isolates collected from wheat, four Fusarium species were identified. The predominant species were F. graminearum s.s. (81%) and, to a lesser extent, F. avenaceum (15%). The emergence of the 15ADON genotype was found ranging from 83% to 87% of the total trichothecene genotypes isolated in 2016 and 2017, respectively. Our results indicate two dramatic shifts within fungal field populations in Poland. The first shift is associated with the displacement of F. culmorum by F. graminearum s.s. The second shift resulted from a loss of nivalenol genotypes. We suggest that an emerging prevalence of F. graminearum s.s. may be linked to boosted maize production, which has increased substantially over the last decade in Poland. To detect variation within Tri core clusters, we compared sequence data from randomly selected field isolates with a panel of strains from geographically diverse origins. We found that the newly emerged 15ADON genotypes do not exhibit a specific pattern of polymorphism enabling their clear differentiation from the other European strains. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Figures

Figure 1

Open AccessArticle Development of a Highly Sensitive FcMito qPCR Assay for the Quantification of the Toxigenic Fungal Plant Pathogen Fusarium culmorum
Received: 26 April 2018 / Revised: 15 May 2018 / Accepted: 18 May 2018 / Published: 21 May 2018
Cited by 2 | PDF Full-text (272 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Fusarium culmorum is a ubiquitous, soil-borne fungus (ascomycete) causing foot and root rot and Fusarium head blight on cereals. It is responsible for yield and quality losses as well as grain contamination with mycotoxins, which are a potential health hazard. An extremely sensitive [...] Read more.
Fusarium culmorum is a ubiquitous, soil-borne fungus (ascomycete) causing foot and root rot and Fusarium head blight on cereals. It is responsible for yield and quality losses as well as grain contamination with mycotoxins, which are a potential health hazard. An extremely sensitive mitochondrial-based qPCR assay (FcMito qPCR) for quantification of F. culmorum was developed in this study. To provide specificity, the FcMito assay was successfully validated against 85 F. culmorum strains and 53 isolates of 30 other fungal species. The assay efficiency and sensitivity were evaluated against different F. culmorum strains with various amounts of pure fungal DNA and in the presence of background wheat DNA. The results demonstrated the high efficiency of the assay (97.2–106.0%, R2-values > 0.99). It was also shown that, in the presence of background DNA, 0.01 pg of fungal template could be reliably quantified. The FcMito assay was used to quantify F. culmorum DNA using 108 grain samples with different trichothecene levels. A significant positive correlation was found between fungal DNA quantity and the total trichothecene content. The obtained results showed that the sensitivity of the FcMito assay was much higher than the nuclear-based qPCR assay for F. culmorum. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Open AccessArticle Biosynthesis and Characterization of Zearalenone-14-Sulfate, Zearalenone-14-Glucoside and Zearalenone-16-Glucoside Using Common Fungal Strains
Received: 29 January 2018 / Revised: 23 February 2018 / Accepted: 24 February 2018 / Published: 1 March 2018
Cited by 2 | PDF Full-text (3283 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN [...] Read more.
Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49%) is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67%) and ZEN-16-glucoside (yield: 39%) are formed by Rhizopus oryzae and Rhizopus oligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by 1H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview Selection of Fusarium Trichothecene Toxin Genes for Molecular Detection Depends on TRI Gene Cluster Organization and Gene Function
Received: 21 November 2018 / Revised: 15 December 2018 / Accepted: 8 January 2019 / Published: 14 January 2019
PDF Full-text (2366 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Food security is a global concern. Fusarium are among the most economically important fungal pathogens because they are ubiquitous, disease management remains a challenge, they produce mycotoxins that affect food and feed safety, and trichothecene mycotoxin production can increase the pathogenicity of some [...] Read more.
Food security is a global concern. Fusarium are among the most economically important fungal pathogens because they are ubiquitous, disease management remains a challenge, they produce mycotoxins that affect food and feed safety, and trichothecene mycotoxin production can increase the pathogenicity of some Fusarium species depending on the host species. Although trichothecenes may differ in structure by their patterns of hydroxylation or acetylation, these small changes have a significant impact on toxicity and the biological activity of these compounds. Therefore, detecting and identifying which chemotype is present in a given population are important to predicting the specific toxins that may be produced and, therefore, to evaluating the risk of exposure. Due to the challenges of inducing trichothecene production by Fusarium isolates in vitro for subsequent chemical analysis, PCR assays using gene-specific primers, either singly or in combination, designed against specific genes of the trichothecene gene cluster of multiple species of Fusarium have been developed. The establishment of TRI genotypes that potentially correspond to a specific chemotype requires examination of an information and knowledge pipeline whose critical aspects in sequential order are: (i) understanding the TRI gene cluster organization which differs according to Fusarium species under study; (ii) knowledge of the re-arrangements to the core TRI gene cluster over evolutionary time, which also differs according to Fusarium species; (iii) the functions of the TRI genes in the biosynthesis of trichothecene analogs; and (iv) based on (i)–(iii), selection of appropriate target TRI gene(s) for primer design in PCR amplification for the Fusarium species under study. This review, therefore, explains this pipeline and its connection to utilizing TRI genotypes as a possible proxy to chemotype designation. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Figures

Figure 1

Open AccessFeature PaperReview Fusarium Molds and Mycotoxins: Potential Species-Specific Effects
Received: 30 May 2018 / Revised: 8 June 2018 / Accepted: 12 June 2018 / Published: 15 June 2018
Cited by 3 | PDF Full-text (373 KB) | HTML Full-text | XML Full-text
Abstract
This review summarizes the information on biochemical and biological activity of the main Fusarium mycotoxins, focusing on toxicological aspects in terms of species-specific effects. Both in vitro and in vivo studies have centered on the peculiarity of the responses to mycotoxins, demonstrating that [...] Read more.
This review summarizes the information on biochemical and biological activity of the main Fusarium mycotoxins, focusing on toxicological aspects in terms of species-specific effects. Both in vitro and in vivo studies have centered on the peculiarity of the responses to mycotoxins, demonstrating that toxicokinetics, bioavailability and the mechanisms of action of these substances vary depending on the species involved, but additional studies are needed to better understand the specific responses. The aim of this review is to summarize the toxicological responses of the main species affected by Fusarium mycotoxins. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Open AccessReview Zearalenone Promotes Cell Proliferation or Causes Cell Death?
Received: 12 April 2018 / Revised: 26 April 2018 / Accepted: 27 April 2018 / Published: 2 May 2018
Cited by 2 | PDF Full-text (1345 KB) | HTML Full-text | XML Full-text
Abstract
Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review [...] Read more.
Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review is to summarize the available mechanisms and current evidence of what is known about the cell proliferation or cell death induced by ZEA. An increasing number of studies have suggested that ZEA promoted cell proliferation attributing to its estrogen-like effects and carcinogenic properties. What’s more, many studies have indicated that ZEA caused cell death via affecting the distribution of the cell cycle, stimulating oxidative stress and inducing apoptosis. In addition, several studies have revealed that autophagy and some antioxidants can reverse the damage or cell death induced by ZEA. This review thoroughly summarized the metabolic process of ZEA and the molecular mechanisms of ZEA stimulating cell proliferation and cell death. It concluded that a low dose of ZEA can exert estrogen-like effects and carcinogenic properties, which can stimulate the proliferation of cells. While, in addition, a high dose of ZEA can cause cell death through inducing cell cycle arrest, oxidative stress, DNA damage, mitochondrial damage, and apoptosis. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Figures

Figure 1

Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top