Special Issue "Feature Papers in Chemical Engineering"

A special issue of ChemEngineering (ISSN 2305-7084).

Deadline for manuscript submissions: 31 March 2022.

Special Issue Editors

Prof. Dr. Alírio E. Rodrigues
E-Mail Website
Guest Editor
Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
Interests: chemical engineering; bioengineering; materials engineering
Special Issues and Collections in MDPI journals
Prof. Dr. Andrew S. Paluch
E-Mail Website
Guest Editor
Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
Interests: thermodynamics; phase-equilibrium; molecular simulation; separation processes
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Chemical engineering combines chemistry, physics, biology, and mathematics with engineering sciences and economics to transform raw materials into useful products in a green and sustainable way. Modern chemical engineering (ChE) can be represented by ChE = M2P2 with M2 for Molecular and Materials Engineering and P2 for Process and Product Engineering. Chemical Engineering spreads over many areas, such as energy systems, environmental, medicine, biotechnology, microelectronics, advanced materials, consumer products, and additive manufacturing.

This Special Issue aims to encourage scientists and engineers to publish your experimental and theoretical results in as much detail as possible. We invite relevant experts and colleagues to contribute feature papers reflecting the latest progress in this research field. Communications, full research papers, and review papers are acceptable formats for the submission of manuscripts.

Prof. Dr. Alírio E. Rodrigues
Prof. Dr. Andrew S. Paluch
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. ChemEngineering is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular engineering
  • materials engineering
  • process engineering
  • product engineering
  • biochemical engineering
  • catalytic engineering
  • chemical reaction engineering
  • computational methods in chemical engineering
  • electrochemical engineering
  • environmental chemical engineering
  • process systems engineering
  • microfluidic engineering and process intensification
  • separation processes
  • surface and interface engineering
  • sustainable process engineering
  • big data and artificial intelligence

Published Papers (17 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Effect of the Carrier on the Coprecipitation of Curcumin through Supercritical-Assisted Atomization
ChemEngineering 2021, 5(3), 59; https://doi.org/10.3390/chemengineering5030059 - 08 Sep 2021
Viewed by 230
Abstract
In this paper, composite systems containing curcumin (CUR) were prepared through supercritical-assisted atomization (SAA), using different carriers. Curcumin is particularly interesting in the pharmaceutical and nutraceutical fields for its antioxidant, antitumoral, and anti-inflammatory properties. However, its therapeutic effect on human health is restricted [...] Read more.
In this paper, composite systems containing curcumin (CUR) were prepared through supercritical-assisted atomization (SAA), using different carriers. Curcumin is particularly interesting in the pharmaceutical and nutraceutical fields for its antioxidant, antitumoral, and anti-inflammatory properties. However, its therapeutic effect on human health is restricted by its poor water solubility and low dissolution rate, limiting its absorption after its oral administration. To increase the dissolution rate and then the bioavailability of the active compound, CUR was coprecipitated with polymeric, i.e., polyvinylpyrrolidone (PVP) and dextran (DXT), and not polymeric, i.e., hydroxypropyl-β-cyclodextrin (HP-β-CD), carriers. The effects of some operating parameters, namely the concentration of solutes in solution and the active compound/carrier ratio, on the morphology and the particle size distribution of the powders were investigated. Submicrometric particles were produced with all the carriers. Under the best operating conditions, the mean diameters ± standard deviation were equal to 0.69 ± 0.20 μm, 0.40 ± 0.13 μm, and 0.81 ± 0.25 μm for PVP/CUR, DXT/CUR, and HP-β-CD/CUR, respectively. CUR dissolution rates from coprecipitated particles were significantly increased in the case of all the carriers. Therefore, the results are exciting from a pharmaceutical and nutraceutical point of view, to produce supplements containing curcumin, but assuring a high dissolution rate and bioavailability and, consequently, a more effective therapeutic effect. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
Impact Strength of Hybrid Epoxy–Basalt Composites Modified with Mineral and Natural Fillers
ChemEngineering 2021, 5(3), 56; https://doi.org/10.3390/chemengineering5030056 - 31 Aug 2021
Viewed by 229
Abstract
The aim of this study was to evaluate the influence of mineral and natural additives (2.5; 5; 10 wt.%) on the impact strength of epoxy–basalt composites. Three types of filler were used to modify the epoxy matrix: basalt powder (BP), basalt microfiber (BF) [...] Read more.
The aim of this study was to evaluate the influence of mineral and natural additives (2.5; 5; 10 wt.%) on the impact strength of epoxy–basalt composites. Three types of filler were used to modify the epoxy matrix: basalt powder (BP), basalt microfiber (BF) and sunflower husk ash (SA). The impact strength and the maximum force were determined for the materials. The results of the conducted research confirm that the addition of a powder fillers to the epoxy matrix of basalt fiber reinforced composites is an effective method of improving their impact characteristic. The introduction of fillers to epoxy resin allowed to improve the impact properties of all tested groups of laminates. Moreover, in all cases, the introduction of the filler increased the maximum force needed to damage the composite sample and their hardness. For the modified materials, an increase in impact strength was recorded, respectively: by 44% for composites with BP, by 7.5% for composites with BF and by 2.5% for composites with SA. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
Effects of Pore Connectivity on the Sorption of Fluids in Nanoporous Material: Ethane and CO2 Sorption in Silicalite
ChemEngineering 2021, 5(3), 55; https://doi.org/10.3390/chemengineering5030055 - 30 Aug 2021
Viewed by 326
Abstract
Adsorption of fluids in nanoporous materials is important for several applications including gas storage and catalysis. The pore network in natural, as well as engineered, materials can exhibit different degrees of connectivity between pores. While this might have important implications for the sorption [...] Read more.
Adsorption of fluids in nanoporous materials is important for several applications including gas storage and catalysis. The pore network in natural, as well as engineered, materials can exhibit different degrees of connectivity between pores. While this might have important implications for the sorption of fluids, the effects of pore connectivity are seldom addressed in the studies of fluid sorption. We have carried out Monte Carlo simulations of the sorption of ethane and CO2 in silicalite, a nanoporous material characterized by sub-nanometer pores of different geometries (straight and zigzag channel like pores), with varied degrees of pore connectivity. The variation in pore connectivity is achieved by selectively blocking some pores by loading them with methane molecules that are treated as a part of the rigid nanoporous matrix in the simulations. Normalized to the pore space available for adsorption, the magnitude of sorption increases with a decrease in pore connectivity. The increased adsorption in the systems where pore connections are removed by blocking them is because of additional, albeit weaker, adsorption sites provided by the blocker molecules. By selectively blocking all straight or zigzag channels, we find differences in the absorption behavior of guest molecules in these channels. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Graphical abstract

Article
Thermal Decomposition Kinetic Study of Non-Recyclable Paper and Plastic Waste by Thermogravimetric Analysis
ChemEngineering 2021, 5(3), 54; https://doi.org/10.3390/chemengineering5030054 - 30 Aug 2021
Viewed by 266
Abstract
The global net emissions of the Kyoto Protocol greenhouse gases (GHG), such as carbon dioxide (CO2), fluorinated gases, methane (CH4), and nitrous oxide (N2O), remain substantially high, despite concerted efforts to reduce them. Thermal treatment of solid [...] Read more.
The global net emissions of the Kyoto Protocol greenhouse gases (GHG), such as carbon dioxide (CO2), fluorinated gases, methane (CH4), and nitrous oxide (N2O), remain substantially high, despite concerted efforts to reduce them. Thermal treatment of solid waste contributes at least 2.8–4% of the GHG in part due to increased generation of municipal solid waste (MSW) and inefficient treatment processes, such as incineration and landfill. Thermal treatment processes, such as gasification and pyrolysis, are valuable ways to convert solid materials, such as wastes into syngas, liquids, and chars, for power generation, fuels, or for the bioremediation of soils. Subcoal™ is a commercial product based on paper and plastics from the source segregated waste that is not readily recyclable and that would otherwise potentially find its way in to landfills. This paper looks at the kinetic parameters associated with this product in pyrolysis, gasification, and combustion conditions for consideration as a fuel for power generation or as a reductant in the blast furnace ironmaking process. Thermogravimetric Analysis (TGA) in Nitrogen (N2), CO2, and in air, was used to measure and compare the reaction kinetics. The activation energy (Ea) and pre-exponential factor A were measured at different heating rates using non-isothermal Ozawa Flynn Wall and (OFW) and Kissinger-Akahira-Sonuse (KAS) model-free techniques. The TGA curves showed that the thermal degradation of Subcoal™ comprises three main processes: dehydration, devolatilization, and char and ash formation. In addition, the heating rate drifts the devolatilization temperature to a higher value. Likewise, the derivative thermogravimetry (DTG) results stated that Tm degradation increased as the heating rate increased. Substantial variance in Ea was noted between the four stages of thermal decomposition of Subcoal™ on both methods. The Ea for gasification reached 200.2 ± 33.6 kJ/mol by OFW and 179.0 ± 31.9 kJ/mol by KAS. Pyrolysis registered Ea values of 161.7 ± 24.7 kJ/mol by OFW and 142.6 ± 23.5 kJ/mol by KAS. Combustion returned the lowest Ea values for both OFW (76.74 ± 15.4 kJ/mol) and KAS (71.0 ± 4.4 kJ/mol). The low Ea values in combustion indicate shorter reaction time for Subcoal™ degradation compared to gasification and pyrolysis. Generally, TGA kinetics analysis using KAS and OFW methods show good consistency in evaluating Arrhenius constants. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
Performance Evaluation of the Electric Machine Cooling System Employing Nanofluid as an Advanced Coolant
ChemEngineering 2021, 5(3), 53; https://doi.org/10.3390/chemengineering5030053 - 28 Aug 2021
Viewed by 345
Abstract
In this paper, the overall performance of an electric machine cooling system was examined in terms of heat transfer and fluid flow. The structure of the cooling system was based on the cooling jacket method. The cooling jacket contains spiral channels surrounding the [...] Read more.
In this paper, the overall performance of an electric machine cooling system was examined in terms of heat transfer and fluid flow. The structure of the cooling system was based on the cooling jacket method. The cooling jacket contains spiral channels surrounding the stator and end-windings of the electric machine. Al2O3-water nanofluid is used inside the channels as the cooling fluid. The concentration of nanoparticles and the geometric structure of the cooling system have special effects on both aspects of heat transfer and fluid flow. Therefore, in this paper, the overall performance of the cooling system was evaluated by considering these effects. This study compared the importance of heat transfer and fluid flow performances on the overall performance of the cooling system. Numerical analyses were performed by 3D computational fluid dynamics and 3D fluid motion analysis. The analyses were carried out based on the 3D finite element method using the pressure-based solver of the Ansys Fluent software in steady mode. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
Kinetic Study of the Ultrasound Effect on Acid Brown 83 Dye Degradation by Hydrogen Peroxide Oxidation Processes
ChemEngineering 2021, 5(3), 52; https://doi.org/10.3390/chemengineering5030052 - 27 Aug 2021
Viewed by 211
Abstract
The effect of ultrasound on the degradation of the dye Acid Brown 83 by seven different degradation methods (blank test using only ultrasound, hydrogen peroxide in a neutral medium, hydrogen peroxide in a sulfuric acid medium and hydrogen peroxide in a sulfuric acid [...] Read more.
The effect of ultrasound on the degradation of the dye Acid Brown 83 by seven different degradation methods (blank test using only ultrasound, hydrogen peroxide in a neutral medium, hydrogen peroxide in a sulfuric acid medium and hydrogen peroxide in a sulfuric acid medium in the presence of Fe(II), both without and with ultrasonic irradiation) is studied in this paper. The effectiveness of these methods is compared by analyzing the degradation percentages of the dye and its initial degradation rate. The application of ultrasound leads to a significant increase in the efficiency of any of the degradation method studied. Kinetic study of Acid Brown 83 degradation by the above-mentioned methods is carried out by using four kinetic models (first order, second order, Behnajady and pseudo-first order). The pseudo-first order model is the one that best fits the experimental data in all the used degradation methods. Although when the degradation is performed in the presence of Fe(II), the Behnajady model presents correlation coefficients slightly higher than those of the pseudo-first order, the maximum experimental conversions obtained fit much better in all cases to the pseudo first order model. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
Promising Isotope Effect in Pd77Ag23 for Hydrogen Separation
ChemEngineering 2021, 5(3), 51; https://doi.org/10.3390/chemengineering5030051 - 27 Aug 2021
Viewed by 237
Abstract
Pd–Ag alloys are largely used as hydrogen separation membranes and, as a consequence, the Pd–Ag–H system has been intensively studied. On the contrary, fewer information is available for the Pd–Ag–D system; thus, the aim of this work is to improve the knowledge of [...] Read more.
Pd–Ag alloys are largely used as hydrogen separation membranes and, as a consequence, the Pd–Ag–H system has been intensively studied. On the contrary, fewer information is available for the Pd–Ag–D system; thus, the aim of this work is to improve the knowledge of the isotope effect on the commercial Pd77Ag23 alloy, especially for temperature above 200 °C. In particular, deuterium absorption measurements are carried out in the Pd77Ag23 alloy in the temperature range between 79 and 400 °C and in the pressure range between 10−2 and 16 bar. In this exploited pressure (p) and composition (c) range, above 300 °C the pc isotherms display the typical shape of materials where only a solid solution of deuterium is present while at lower temperatures these curves seem to be better described by the coexistence of a solid solution and a deuteride in a large composition range. The obtained results are compared and discussed with the ones previously measured with the lightest hydrogen isotope. Such a comparison shows that the Pd77Ag23 alloy exhibits a clear inverse isotope effect, as the equilibrium pressure of the Pd–Ag–D system is higher than in Pd–Ag–H by a factor of ≈2 and the solubility of deuterium is about one half of that of hydrogen. In addition, the absorption measurements were used to assess the deuteration enthalpy that below 300 °C is ΔHdeut = 31.9 ± 0.3 kJ/mol, while for temperatures higher than 300 °C, ΔHdeut increases to 43 ± 1 kJ/mol. Additionally, in this case a comparison with the lighter isotope is given and both deuteration enthalpy values result lower than those reported for hydrogenation. The results described in this paper are of practical interest for applications operating above 200 °C, such as membranes or packing column, in which Pd77Ag23 has to interact with a gas stream containing both hydrogen isotopes. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
Optimizing the Control System of Clinker Cooling: Process Modeling and Controller Tuning
ChemEngineering 2021, 5(3), 50; https://doi.org/10.3390/chemengineering5030050 - 19 Aug 2021
Viewed by 241
Abstract
This paper aims to present efficient efforts to optimize the proportional-integral-differential (PID) controller of clinker cooling in grate coolers, which have a fixed grate and at least two moving ones. The process model contains three transfer functions between the speed of the moving [...] Read more.
This paper aims to present efficient efforts to optimize the proportional-integral-differential (PID) controller of clinker cooling in grate coolers, which have a fixed grate and at least two moving ones. The process model contains three transfer functions between the speed of the moving grate and the pressures of the static and moving grates. The developed software achieves the identification of the model parameters using industrial data and by implementing non-linear regression methods. The design of the PID controller follows a loop-shaping technique, imposing as a constraint the maximum sensitivity, Ms, of the open-loop transfer function and providing a set of PIDs that satisfy a range of Ms. A simulator determines the optimal PID sets among those calculated at the design step using the integral of absolute error (IAE) as a performance criterion. The combination of a robustness constraint with a performance criterion, Ms and IAE respectively, leads to an area of controllers with Ms belonging to the range of 1.2 to 1.35. The IAE is between 4.2% and 4.8%, depending on the set-point value. PID sets located near the middle of this area can be chosen and implemented in the cooler’s routine operation. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
In Silico Study of the Influence of Various Substrates on the Electronic Properties and Electrical Conductivity of Mono- and Bilayer Films of Armchair Single-Walled Carbon Nanotubes
ChemEngineering 2021, 5(3), 48; https://doi.org/10.3390/chemengineering5030048 - 09 Aug 2021
Viewed by 226
Abstract
We investigate electronic and electro-physical properties of mono- and bilayer armchair single-walled carbon nanotube (SWCNT) films located on substrates of different types, including substrates in the form of crystalline silicon dioxide (SiO2) films with P42/mnm and P3121 [...] Read more.
We investigate electronic and electro-physical properties of mono- and bilayer armchair single-walled carbon nanotube (SWCNT) films located on substrates of different types, including substrates in the form of crystalline silicon dioxide (SiO2) films with P42/mnm and P3121 space symmetry groups. The SWCNT films interact with substrate only by van der Waals forces. The densities of electronic states (DOS) and the electron transmission functions are calculated for SWCNT films with various substrates. The electrical conductivity of SWCNT films is calculated based on the electron transmission function. It is found that the substrate plays an important role in the formation of DOS of the SWCNT films, and the surface topology determines the degree and nature of the mutual influence of the nanotube and the substrate. It is shown that the substrate affects the electronic properties of monolayer films, changing the electrical resistance value from 2% to 17%. However, the substrate has practically no effect on the electrical conductivity and resistance of the bilayer film in both directions of current transfer. In this case, the values of the resistances of the bilayer film in both directions of current transfer approach the value of ~6.4 kΩ, which is the lowest for individual SWCNT. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Graphical abstract

Article
Production of Sustainable Biochemicals by Means of Esterification Reaction and Heterogeneous Acid Catalysts
ChemEngineering 2021, 5(3), 46; https://doi.org/10.3390/chemengineering5030046 - 07 Aug 2021
Viewed by 395
Abstract
In recent years, the use of renewable raw materials for the production of chemicals has been the subject of different studies. In particular, the interest of the present study was the use of oleins, mixtures of free fatty acids (FFAs), and oleic acid [...] Read more.
In recent years, the use of renewable raw materials for the production of chemicals has been the subject of different studies. In particular, the interest of the present study was the use of oleins, mixtures of free fatty acids (FFAs), and oleic acid to produce bio-based components for lubricants formulations and the investigation of the performance of a styrene-divinylbenzene acid resin (sPSB-SA) in the esterification reaction of fatty acids. This resin has shown good activity as a heterogeneous catalyst and high stability at elevated temperatures (180 °C). It was tested in the esterification reaction of oleic acid with 1,3-propanediol and of oleic acid with glycerol. In particular, the esterification reactions were performed in a steel stirred batch reactor and a PBR loop reactor. Tests were conducted varying the reaction conditions, such as alcohol type, temperature, reaction time, and catalysts, both homogeneous and heterogeneous ones. From the obtained results, acid resin (both in reticulated and not-reticulated form) showed high activity in esterification reaction of oleic acid with 1,3-propanediol and of oleic acid with glycerol and good resistance to the deactivation; thus, they can be considered promising candidates for future applications in continuous devices. Viscosity tests were performed, underlining the good properties of the obtained products as lubricant bases. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Communication
2D Model of Transfer Processes for Water Boiling Flow in Microchannel
ChemEngineering 2021, 5(3), 42; https://doi.org/10.3390/chemengineering5030042 - 02 Aug 2021
Viewed by 423
Abstract
The modeling of transfer processes is a step in the generalization and interpretation of experimental data on heat transfer. The developed two-dimensional model is based on a homogeneous mixture model for boiling water flow in a microchannel with a new evaporation submodel. The [...] Read more.
The modeling of transfer processes is a step in the generalization and interpretation of experimental data on heat transfer. The developed two-dimensional model is based on a homogeneous mixture model for boiling water flow in a microchannel with a new evaporation submodel. The outcome of the simulation is the distribution of velocity, void fraction and temperature profiles in the microchannel. The predicted temperature profile is consistent with the experimental literature data. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
MoS2-Cysteine Nanofiltration Membrane for Lead Removal
ChemEngineering 2021, 5(3), 41; https://doi.org/10.3390/chemengineering5030041 - 01 Aug 2021
Viewed by 495
Abstract
To overcome the limitations of polymers, such as the trade-off relationship between water permeance and solute rejection, as well as the difficulty of functionalization, research on nanomaterials is being actively conducted. One of the representative nanomaterials is graphene, which has a two-dimensional shape [...] Read more.
To overcome the limitations of polymers, such as the trade-off relationship between water permeance and solute rejection, as well as the difficulty of functionalization, research on nanomaterials is being actively conducted. One of the representative nanomaterials is graphene, which has a two-dimensional shape and chemical tunability. Graphene is usually used in the form of graphene oxide in the water treatment field because it has advantages such as high water permeance and functionality on its surface. However, there is a problem in that it lacks physical stability under water-contacted conditions due to the high hydrophilicity. To overcome this problem, MoS2, which has a similar shape to graphene and hydrophobicity, can be a new option. In this study, bulk MoS2 was dispersed in a mixed solvent of acetone/isopropyl alcohol, and MoS2 nanosheet was obtained by applying sonic energy to exfoliate. In addition, Cysteine was functionalized in MoS2 with a mild reaction. When the nanofiltration (NF) performance of the membrane was compared under various conditions, the composite membrane incorporated by Cysteine 10 wt % (vs. MoS2) showed the best NF performances. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Article
Optimization of Exopolysaccharide (EPS) Production by Rhodotorula mucilaginosa sp. GUMS16
ChemEngineering 2021, 5(3), 39; https://doi.org/10.3390/chemengineering5030039 - 21 Jul 2021
Viewed by 516
Abstract
Exopolysaccharides (EPSs) are important biopolymers with diverse applications such as gelling compounds in food and cosmetic industries and as bio-flocculants in pollution remediation and bioplastics production. This research focuses on enhancing crude EPS production from Rhodotorula mucilaginosa sp. GUMS16 using the central composite [...] Read more.
Exopolysaccharides (EPSs) are important biopolymers with diverse applications such as gelling compounds in food and cosmetic industries and as bio-flocculants in pollution remediation and bioplastics production. This research focuses on enhancing crude EPS production from Rhodotorula mucilaginosa sp. GUMS16 using the central composite design method in which five levels of process variables of sucrose, pH, and ammonium sulfate were investigated with sucrose and ammonium sulfate serving as carbon and nitrogen sources during microbial incubation. The optimal crude EPS production of 13.48 g/100 mL was achieved at 1 g/100 mL of sucrose concentration, 14.73 g/100 mL of ammonium sulfate at pH 5. Variations in ammonium sulfate concentrations (1.27–14.73 g/100 mL) presented the most significant effects on the crude EPS yield, while changes in sucrose concentrations (1–5 g/100 mL) constituted the least important process variable influencing the EPS yield. The Rhodotorula mucilaginosa sp. GUMS16 may have the potential for large-scale production of EPS for food and biomedical applications. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Graphical abstract

Article
Intraparticle Model for Non-Uniform Active Phase Distribution Catalysts in a Batch Reactor
ChemEngineering 2021, 5(3), 38; https://doi.org/10.3390/chemengineering5030038 - 19 Jul 2021
Viewed by 695
Abstract
The study and the understanding of the importance of the morphological properties of heterogeneous catalysts can pave the way for important improvements in the performance of catalytic systems. Non-uniform active phase distribution catalysts are normally adopted for consecutive reactions to improve the selectivity [...] Read more.
The study and the understanding of the importance of the morphological properties of heterogeneous catalysts can pave the way for important improvements in the performance of catalytic systems. Non-uniform active phase distribution catalysts are normally adopted for consecutive reactions to improve the selectivity to the desired intermediate product. Attributes on which minor attention is paid, such as the distribution and thickness of the active phase, can be decisive in the final rationale of the catalyst synthesis strategy. Starting from a previous work, where a single non-uniform active phase model for catalyst particles was developed, a key step to control the entire system is to include the bulk-phase equations and related transport phenomena. For this purpose, this work proposes a modeling approach of a biphasic reactive system in a batch reactor in the presence of three different kinds of catalytic particles (egg shell, egg white, and egg yolk) whose distinction lies in the localization of the active zone. The reactive network consists of a couple of reactions in series, which take place exclusively on the solid surface, and the intermediate component is the main product of interest. To reveal the influence related to the type of catalyst, an extensive parametric study was conducted, varying several structural coefficients to highlight the changes in the intraparticle and bulk concentration profiles of the different chemical species. The main results can be considered of wide interest for the chemical reaction engineering community, as it was demonstrated that mass and heat transfer limitations affect the catalyst performance. For the chosen system, the egg shell catalyst normally led to better catalytic performances. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Review

Jump to: Research

Review
Graphene Oxide Synthesis, Properties and Characterization Techniques: A Comprehensive Review
ChemEngineering 2021, 5(3), 64; https://doi.org/10.3390/chemengineering5030064 (registering DOI) - 17 Sep 2021
Abstract
The unique properties of graphene oxide (GO) have attracted the attention of the research community and cost-effective routes for its production are studied. The type and percentage of the oxygen groups that decorate a GO sheet are dependent on the synthesis path, and [...] Read more.
The unique properties of graphene oxide (GO) have attracted the attention of the research community and cost-effective routes for its production are studied. The type and percentage of the oxygen groups that decorate a GO sheet are dependent on the synthesis path, and this path specifies the carbon content of the sheet. The chemical reduction of GO results in reduced graphene oxide (rGO) while the removal of the oxygen groups is also achievable with thermal processes (tpGO). This review article introduces the reader to the carbon allotropes, provides information about graphene which is the backbone of GO and focuses on GO synthesis and properties. The last part covers some characterization techniques of GO (XRD, FTIR, AFM, SEM-EDS, N2 porosimetry and UV-Vis) with a view to the fundamental principles of each technique. Some critical aspects arise for GO synthesized and characterized from our group. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Review
Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review
ChemEngineering 2021, 5(3), 47; https://doi.org/10.3390/chemengineering5030047 - 07 Aug 2021
Viewed by 410
Abstract
The main techniques used for organic pollutant removal from water are adsorption, reductive and oxidative processes, phytoremediation, bioremediation, separation by membranes and liquid–liquid extraction. In this review, strengths and weaknesses of the different purification techniques are discussed, with particular attention to the newest [...] Read more.
The main techniques used for organic pollutant removal from water are adsorption, reductive and oxidative processes, phytoremediation, bioremediation, separation by membranes and liquid–liquid extraction. In this review, strengths and weaknesses of the different purification techniques are discussed, with particular attention to the newest results published in the scientific literature. This study highlighted that adsorption is the most frequently used method for water purification, since it can balance high organic pollutants removal efficiency, it has the possibility to treat a large quantity of water in semi-continuous way and has acceptable costs. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Show Figures

Figure 1

Review
A Review on Gas-Liquid Mass Transfer Coefficients in Packed-Bed Columns
ChemEngineering 2021, 5(3), 43; https://doi.org/10.3390/chemengineering5030043 - 02 Aug 2021
Cited by 1 | Viewed by 545
Abstract
This review provides a thorough analysis of the most famous mass transfer models for random and structured packed-bed columns used in absorption/stripping and distillation processes, providing a detailed description of the equations to calculate the mass transfer parameters, i.e., gas-side coefficient per unit [...] Read more.
This review provides a thorough analysis of the most famous mass transfer models for random and structured packed-bed columns used in absorption/stripping and distillation processes, providing a detailed description of the equations to calculate the mass transfer parameters, i.e., gas-side coefficient per unit surface ky [kmol·m−2·s−1], liquid-side coefficient per unit surface kx [kmol·m−2·s−1], interfacial packing area ae [m2·m−3], which constitute the ingredients to assess the mass transfer rate of packed-bed columns. The models have been reported in the original form provided by the authors together with the geometric and model fitting parameters published in several papers to allow their adaptation to packings different from those covered in the original papers. Although the work is focused on a collection of carefully described and ready-to-use equations, we have tried to underline the criticalities behind these models, which mostly rely on the assessment of fluid-dynamics parameters such as liquid film thickness, liquid hold-up and interfacial area, or the real liquid paths or any mal-distributions flow. To this end, the paper reviewed novel experimental and simulation approaches aimed to better describe the gas-liquid multiphase flow dynamics in packed-bed column, e.g., by using optical technologies (tomography) or CFD simulations. While the results of these studies may not be easily extended to full-scale columns, the improved estimation of the main fluid-dynamic parameters will provide a more accurate modelling correlation of liquid-gas mass transfer phenomena in packed columns. Full article
(This article belongs to the Special Issue Feature Papers in Chemical Engineering)
Back to TopTop