Previous Issue
Volume 9, August
 
 

ChemEngineering, Volume 9, Issue 5 (October 2025) – 13 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 6266 KB  
Article
Influence of Added Surfactants on the Rheology and Surface Activity of Polymer Solutions
by Rajinder Pal and Chung-Chi Sun
ChemEngineering 2025, 9(5), 105; https://doi.org/10.3390/chemengineering9050105 - 23 Sep 2025
Viewed by 82
Abstract
Steady-shear rheology and surface activity of surfactant–polymer solutions were investigated experimentally. Four different polymers were studied as follows: cationic hydroxyethyl cellulose, nonionic hydroxyethyl cellulose, nonionic guar gum, and anionic xanthan gum. The influence of the following four surfactants on each of the polymers [...] Read more.
Steady-shear rheology and surface activity of surfactant–polymer solutions were investigated experimentally. Four different polymers were studied as follows: cationic hydroxyethyl cellulose, nonionic hydroxyethyl cellulose, nonionic guar gum, and anionic xanthan gum. The influence of the following four surfactants on each of the polymers was determined: nonionic alcohol ethoxylate, anionic sodium lauryl sulfate, cationic hexadecyltrimethylammonium bromide, and zwitterionic cetyl betaine. The interaction between cationic hydroxyethyl cellulose and anionic sodium lauryl sulfate was extraordinarily strong, resulting in dramatic changes in rheological and surface-active properties. The consistency increased initially, reached a maximum value, and then fell off with the further addition of surfactant. The surface tension of surfactant–polymer solution dropped substantially and exhibited a minimum value. Thus, the surfactant–polymer solutions were much more surface-active compared with pure surfactant solutions. The interaction between anionic xanthan gum and cationic hexadecyltrimethylammonium bromide was also strong, resulting in a substantial decrease in consistency. The surfactant–polymer solution became less surface-active compared with pure surfactant solution due to the migration of surfactant from solution to polymer. The interactions between other polymers and surfactants were weak to moderate, resulting in small to modest changes in rheological and surface-active properties. Surface activity of surfactant–polymer solutions often increased due to the formation of complexes more surface-active than pure surfactant molecules. Full article
Show Figures

Figure 1

18 pages, 826 KB  
Article
Effect of Degumming and Bleaching on the Yield and Quality of Epoxidized Hempseed Oil
by Tosin Oyewole, Emily Biggane, Niloy Chandra Sarker and Ewumbua Monono
ChemEngineering 2025, 9(5), 104; https://doi.org/10.3390/chemengineering9050104 - 23 Sep 2025
Viewed by 77
Abstract
Crude hemp (Cannabis sativa L.) seed oil (HSO) has a high degree of unsaturation, which has increased its interest in many industrial applications, especially epoxy-resin production. Crude HSO is refined to remove impurities and pigments; however, refining after epoxidation (post-epoxidation refining) also [...] Read more.
Crude hemp (Cannabis sativa L.) seed oil (HSO) has a high degree of unsaturation, which has increased its interest in many industrial applications, especially epoxy-resin production. Crude HSO is refined to remove impurities and pigments; however, refining after epoxidation (post-epoxidation refining) also removes impurities and side products, similar to the vegetable oil refining process. Therefore, this study evaluates if it is worth refining crude HSO before epoxidation (pre-epoxidation), and to what extent pre-refining (before epoxidation) is needed to maintain yield and quality. Crude, degummed, and bleached HSOs were epoxidized at 60 °C for 5.5 h using amberlite 120H+ solid catalyst. The cumulative recovery yield, oxirane, conversion, color, and other quality parameters were analyzed before and after epoxidation of HSOs. Results showed that the recovery yield pre- and post-epoxidation of the epoxidized hempseed oils (EHSOs) ranged from 74 to 85%, with the bleached EHSO having the lowest yield. The oxirane content and epoxy conversion ranged from 8.4 to 8.6% and 99.5%, respectively. There was a significant decrease (approximately 99%) in the chlorophyll color content after epoxidation for samples that were not bleached initially with bleaching earth. Hydrogen peroxide was very effective in bleaching the HSO. Other quality parameters did not show any significant benefit from pre-epoxidation bleaching of the HSO. Therefore, it is recommended to directly epoxidize crude HSO or degummed HSO. Full article
Show Figures

Figure 1

16 pages, 3180 KB  
Article
Influence of Bioadditives on Copper Leaching from Low-Grade Raw Materials
by Bagdaulet Kenzhaliyev, Aigul Koizhanova, Tatiana Surkova, Dinara Yessimova, David Magomedov and Zamzagul Dosymbaeva
ChemEngineering 2025, 9(5), 103; https://doi.org/10.3390/chemengineering9050103 - 23 Sep 2025
Viewed by 170
Abstract
The depletion of high-grade copper ore reserves in Kazakhstan, coupled with the increasing proportion of refractory ores and the high costs of extraction and processing, necessitates the development of efficient and economically viable technological solutions. In this context, biogeotechnology has gained considerable attention. [...] Read more.
The depletion of high-grade copper ore reserves in Kazakhstan, coupled with the increasing proportion of refractory ores and the high costs of extraction and processing, necessitates the development of efficient and economically viable technological solutions. In this context, biogeotechnology has gained considerable attention. Recently, alternative approaches based on the use of natural organic compounds—so-called bioreagents—have been introduced into the field of bioleaching. The present study aimed to investigate the effect of amino acids, aliphatic alcohols, and alcohol-based industrial by-products, used as bioadditives, on the bioleaching of copper. The results demonstrated that the influence of amino acids on copper bioleaching decreased in the following order: glycine > leucine > cysteine > histidine > asparagine. Furthermore, the addition of fusel oils, a mixture of aliphatic alcohols, to the bioleaching pulp enhanced copper recovery, achieving extraction efficiencies exceeding 90%. Full article
Show Figures

Figure 1

25 pages, 3319 KB  
Article
Techno-Economic Analysis of Hybrid Adsorption–Membrane Separation Processes for Direct Air Capture
by Paul de Joannis, Christophe Castel, Mohamed Kanniche, Eric Favre and Olivier Authier
ChemEngineering 2025, 9(5), 102; https://doi.org/10.3390/chemengineering9050102 - 22 Sep 2025
Viewed by 268
Abstract
Direct air capture (DAC) has recently gained interest as a carbon dioxide removal (CDR) method to reduce atmospheric CO2. DAC is mainly studied through standalone separation technologies, especially adsorption and absorption. Hybrid DAC, combining separation technologies, is rarely investigated and is [...] Read more.
Direct air capture (DAC) has recently gained interest as a carbon dioxide removal (CDR) method to reduce atmospheric CO2. DAC is mainly studied through standalone separation technologies, especially adsorption and absorption. Hybrid DAC, combining separation technologies, is rarely investigated and is the main topic of this work. This study investigates hybrid DAC using adsorption for pre-concentration up to a few percent or tens of percent depending on the case studied and membrane separation to concentrate the CO2 stream to high purity (>90%). Adsorption regeneration by temperature swing adsorption (TSA) and vacuum thermal swing adsorption (VTSA) are compared, and VTSA regeneration achieved higher pre-concentration outlet CO2 purity (15–30%) than TSA regeneration (1–10%). Membrane separation is studied depending on inlet CO2 purity and outlet-required purity (90 or 95%), which influence the energy requirement and cost of capture. For all cases studied, the cost of capture remained high (>1700 €/tCO2) with a high energy requirement (>2 MWhe/tCO2 and >27 GJ/tCO2). The adsorption pre-concentration step accounted for the majority (>80%) of the energy requirement and cost of capture, and future work should be focused on preferentially improving adsorption step performance. Full article
Show Figures

Figure 1

18 pages, 1897 KB  
Article
Recovery of Light Rare Earth Elements from Coal Ash via Tartaric Acid and Magnesium Sulfate Leaching
by Ardak Karagulanova, Burcu Nilgun Cetiner, Kaster Kamunur, Lyazzat Mussapyrova, Aisulu Batkal, Zhannur Myltykbayeva and Rashid Nadirov
ChemEngineering 2025, 9(5), 101; https://doi.org/10.3390/chemengineering9050101 - 19 Sep 2025
Viewed by 208
Abstract
Coal ash is a promising secondary resource for rare earth element (REE) recovery, yet efficient processing under environmentally benign conditions remains challenging. This study demonstrates that tartaric acid, when combined with MgSO4 as a salt additive, enables effective extraction of light REEs [...] Read more.
Coal ash is a promising secondary resource for rare earth element (REE) recovery, yet efficient processing under environmentally benign conditions remains challenging. This study demonstrates that tartaric acid, when combined with MgSO4 as a salt additive, enables effective extraction of light REEs (La, Ce, Nd). REE recoveries improved from ~40% without salt to nearly 65% under optimized conditions. Kinetic modeling indicated a surface-reaction–controlled mechanism with activation energies of 20–22 kJ/mol, consistent with SEM evidence of particle erosion and size reduction. These findings highlight the potential of organic-salt leaching systems as alternatives to mineral acid processes, offering both effective REE recovery and reduced environmental impact. Full article
Show Figures

Figure 1

20 pages, 4193 KB  
Article
Influence of Carboxylated Styrene–Butadiene Rubber on Gas Migration Resistance and Fluid Loss in Cement Slurries
by Guru Prasad Panda, Thotakura Vamsi Nagaraju, Gottumukkala Sri Bala and Saride Lakshmi Ganesh
ChemEngineering 2025, 9(5), 100; https://doi.org/10.3390/chemengineering9050100 - 19 Sep 2025
Viewed by 193
Abstract
The majority of downhole monitoring methods currently available for well cement projects, which are used to assess the quality of cement placement and monitor well integrity over time, are primarily qualitative in nature and rely on surface signs. Obviously, there is a need [...] Read more.
The majority of downhole monitoring methods currently available for well cement projects, which are used to assess the quality of cement placement and monitor well integrity over time, are primarily qualitative in nature and rely on surface signs. Obviously, there is a need for a practical quantitative downhole monitoring method to ensure proper cement placement and long-term performance. One potential resolution to address this enduring problem would involve enhancing the designs of the cement slurry and transforming the cement into durable downhole logging equipment, thereby facilitating real-time observation of operations. To address this issue, in this work, carboxylated styrene butadiene rubber (XSBR) polymer-treated cement was used to understand the gas migration and fluid loss mechanism. The experimental findings indicate that the electrical resistivity of polymer-treated cement is significantly influenced by applied loads and stresses. The unconfined compressive strength test with XSBR-blended cement showed a significant improvement from 22.5 MPa to 33.31 MPa when XSBR increased from 0% to 3%. Additionally, in the high pressure and high temperature (HPHT) chamber, the latex polymer used as a migration additive control, the total fluid loss is found to be about 59.2 mL under 30 min of testing. Also, to emulate the accuracy, nonlinear predictive models based on the resistivity index correlation were developed to forecast polymer-treated cement performance for all the tests performed in this study. Hence, the utilization of polymer-treated cement systems proves to be a valuable method for monitoring the placement and post-placement performance of cement, as well as for visualizing real-time operational issues associated with cementing. This will also allow operators to provide immediate solutions, saving time and operational costs. Full article
Show Figures

Figure 1

16 pages, 1875 KB  
Article
Valorization of an Industrial Pollutant Residue as a Teaching Tool: Extraction of Al3+ from Aluminum Saline Slag
by Alejandro Jiménez, Raquel Trujillano, Sophia Korili, Antonio Gil and Miguel Ángel Vicente
ChemEngineering 2025, 9(5), 99; https://doi.org/10.3390/chemengineering9050099 - 15 Sep 2025
Viewed by 309
Abstract
Aluminum is the most used non–ferrous metal. It can be recycled saving several natural resources, but generates large amounts of residues with a complex composition—still containing a valuable amount of aluminum, although also including contaminant compounds. The laboratory-scale valorization of an industrial aluminum [...] Read more.
Aluminum is the most used non–ferrous metal. It can be recycled saving several natural resources, but generates large amounts of residues with a complex composition—still containing a valuable amount of aluminum, although also including contaminant compounds. The laboratory-scale valorization of an industrial aluminum residue is here used as a powerful didactic resource in Inorganic and Analytical Chemistry and related fields such as Chemistry, Chemical Engineering, Environmental Engineering, Materials Engineering, and related university degrees, since concepts like acid-base properties (particularly amphoterism), redox reactions, speciation diagrams, or solubility–precipitation concepts are applied. The students are encouraged to look for information on the topic, to teamwork, and to elaborate a well-written laboratory report. At the same time, this laboratory work introduces them to advanced laboratory techniques and to incorporate concepts of Circular Economy and various Sustainable Development Goals, educating the students with respect to the environment. Although focused on University studies, this manuscript also contains excellent ideas for secondary teachers to motivate STEM vocations, particularly for Chemistry and Chemical and Environmental Engineering, and is also ideal for being included in the preparation of future Secondary School teachers. Full article
Show Figures

Figure 1

10 pages, 509 KB  
Article
Simultaneous Determination of Four Fatty Acids in Coix Seeds via Gas Chromatography
by Qiang Ai, Hui Wang, Chenghong Xiao, Changgui Yang, Shanmin Song, Mingxiang Zhang, Jiandong Tang and Yang Lei
ChemEngineering 2025, 9(5), 98; https://doi.org/10.3390/chemengineering9050098 - 11 Sep 2025
Viewed by 295
Abstract
The aim of this study was to establish a method named simultaneous determination for the content of four fatty acids in Coix seeds and provide a reference for the quality control of this type of medicinal ingredient. The contents of four fatty acids [...] Read more.
The aim of this study was to establish a method named simultaneous determination for the content of four fatty acids in Coix seeds and provide a reference for the quality control of this type of medicinal ingredient. The contents of four fatty acids in Coix seeds were determined via gas chromatography, and the method was subsequently validated. The linear ranges of palmitic acid, stearic acid, oleic acid and linoleic acid were 282.50–2825.00, 262.00–1572.00, 425.20–2976.75 and 304.50–1218.00 µg/mL, respectively. The RSD values of precision, repeatability and stability were less than 3.00% (n = 6), with recoveries of 98.82–102.05% (RSD 2.22–4.60%, n = 6). The contents of palmitic acid, stearic acid, oleic acid and linoleic acid in the 24 batches of Coix seeds were 0.11–0.32%, 0.06–0.08%, 0.35–1.17% and 0.31–0.73%, respectively. Oleic acid had the highest content, followed by linoleic acid, palmitic acid, and stearic acid. The detection method established in this experiment was implemented rapidly and accurately, was reproducible, and could simultaneously determine the contents of four fatty acids in Coix seeds. This study provides a reference for evaluating the quality of Coix seeds obtained from different habitats. Full article
(This article belongs to the Special Issue Advances in Sustainable and Green Chemistry)
Show Figures

Graphical abstract

39 pages, 3473 KB  
Article
Mathematical Modeling and Design of a Cooling Crystallizer Incorporating Experimental Data for Crystallization Kinetics
by Panagiotis A. Michailidis and Argyris Panagopoulos
ChemEngineering 2025, 9(5), 97; https://doi.org/10.3390/chemengineering9050097 - 2 Sep 2025
Viewed by 516
Abstract
Crystallization is one of the approximately twenty unit operations and is considered to be among the most important due to the large number of chemical compounds it produces, as well as due to the enormous quantities of these substances being manufactured around the [...] Read more.
Crystallization is one of the approximately twenty unit operations and is considered to be among the most important due to the large number of chemical compounds it produces, as well as due to the enormous quantities of these substances being manufactured around the world. This article aims to present a mathematical model for the shortcut design of a cooling crystallization unit consisting of the crystallizer and auxiliary equipment, such as an evaporator with its preheater and condenser, a heat pump that acts as the cooling system of the crystallizer, and a crystallizer pressure regulator modeled as an expansion valve. The model estimates an extensive series of variables, including mass and volume flow rates of the streams, heat duties of each piece of equipment, sizing variables such as heat transfer areas of heat exchangers and volumes of the vessels, and product flow rates for each specific feed. It embraces equations for the calculation of a series of stream properties, such as density, specific heat capacity, and latent heat of vaporization. For the sizing of the crystallizer, which is the main equipment of the unit, both flow rates and crystallization kinetics are taken into account. The latter is estimated by experimental data taken in a laboratory crystallizer and includes the crystal’s growth rate as a function of residence time. Full article
Show Figures

Graphical abstract

21 pages, 2924 KB  
Article
Feasibility Study on Using Calcium Lignosulfonate-Modified Loess for Landfill Leachate Filtration and Seepage Control
by Jinjun Guo, Wenle Hu and Shixu Zhang
ChemEngineering 2025, 9(5), 96; https://doi.org/10.3390/chemengineering9050096 - 2 Sep 2025
Viewed by 472
Abstract
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to [...] Read more.
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to investigate its effects on loess permeability via a series of laboratory tests. This study focused on the influence of varying dosages of calcium lignosulfonate (CLS) on loess permeability, along with its capacity to adsorb and immobilize heavy metal ions. Microscale characterization techniques, including Zeta potential analysis, X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy (SEM), were employed to investigate the impermeability mechanisms of CLS-modified loess and its adsorption behavior toward heavy metals. The results indicate that the permeability coefficient of loess decreases significantly with increasing compaction, while higher leachate concentrations lead to a notable increase in permeability. At a compaction degree of 0.90, the permeability coefficient was reduced to 8 × 10−8 cm/s. In contrast, under conditions of maximum leachate concentration, the permeability coefficient rose markedly to 1.5 × 10−4 cm/s. Additionally, increasing the dosage of the compacted loess stabilizer (CLS) effectively reduced the permeability coefficient of the modified loess to 7.1 × 10−5 cm/s, indicating improved impermeability and enhanced resistance to contaminant migration. With the prolonged infiltration time of landfill leachate, the removal efficiency of Pb2+ gradually decreases and stabilizes, while the Pb2+ removal efficiency of the modified loess increased by approximately 40%. CLS-modified loess, through multiple mechanisms, reduces the fluid flow pathways and enhances its adsorption capacity for Pb2+, thereby improving the soil’s protection against heavy metal contamination. While these results demonstrate the potential of CLS-modified loess as a sustainable landfill liner material, the findings are based on controlled laboratory conditions with Pb2+ as the sole target contaminant. Future work should evaluate long-term performance under field conditions, including seasonal wetting–drying and freeze–thaw cycles, and investigate multi-metal systems to validate the broader applicability of this modification technique. Full article
Show Figures

Figure 1

31 pages, 1511 KB  
Article
Economic Evaluation During Physicochemical Characterization Process: A Cost–Benefit Analysis
by Despina A. Gkika, Nick Vordos, Athanasios C. Mitropoulos and George Z. Kyzas
ChemEngineering 2025, 9(5), 95; https://doi.org/10.3390/chemengineering9050095 - 2 Sep 2025
Viewed by 508
Abstract
As academic institutions expand, the proliferation of laboratories dealing with hazardous chemicals has risen. While the physicochemical characterization equipment employed in these academic chemical laboratories is widely recognized, its usage presents a notable risk to researchers at various levels. This paper presents a [...] Read more.
As academic institutions expand, the proliferation of laboratories dealing with hazardous chemicals has risen. While the physicochemical characterization equipment employed in these academic chemical laboratories is widely recognized, its usage presents a notable risk to researchers at various levels. This paper presents a simplified approach for evaluating the effects of the implementation of prevention investments in regard to working with nanomaterials on a lab scale. The evaluation is based on modeling the benefits (avoided accident costs) and costs (safety training), as opposed to an alternative (not investing in safety training). Each scenario analyzed in the economic evaluation reflects a different level of risk. The novelty of this study lies in its objective to provide an economic assessment of the benefits and returns from safety investments—specifically training—in a chemical laboratory, using a framework that integrates qualitative insights to explore and define the context alongside quantitative data derived from a cost–benefit analysis. The Net Present Value (NPV) was evaluated. The results of the cost–benefit analysis demonstrated that the benefits exceed the cost of the investment. The findings from the sensitivity analysis highlight the significant influence of insurance benefits on safety investments in the specific case study. In this case study, the deterministic analysis yielded a Net Present Value (NPV) of €280,414.67, which aligns closely with the probabilistic results. The probabilistic NPV indicates 90% confidence that the investment will yield a positive NPV ranging from €283,053 to €337,356. The cost–benefit analysis results demonstrate that the benefits outweigh the costs, showing that with an 87% training success rate, this investment would generate benefits of approximately €6328 by preventing accidents in this study. To the best of the researchers’ knowledge, this is the first study to evaluate the influence of safety investment through an economic evaluation of laboratory accidents with small-angle X-ray scattering during the physicochemical characterization process of engineered nanomaterials. The proposed approach and framework are relevant not only to academic settings but also to industry. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

22 pages, 1978 KB  
Article
Uncertainty and Global Sensitivity Analysis of a Membrane Biogas Upgrading Process Using the COCO Simulator
by José M. Gozálvez-Zafrilla and Asunción Santafé-Moros
ChemEngineering 2025, 9(5), 94; https://doi.org/10.3390/chemengineering9050094 - 1 Sep 2025
Viewed by 547
Abstract
Process designs based on deterministic simulations without considering parameter uncertainty or variability have a high probability of failing to meet specifications. In this work, uncertainty and global sensitivity analyses were applied to a biogas upgrading membrane process implemented in the COCO simulator (CAPE-OPEN [...] Read more.
Process designs based on deterministic simulations without considering parameter uncertainty or variability have a high probability of failing to meet specifications. In this work, uncertainty and global sensitivity analyses were applied to a biogas upgrading membrane process implemented in the COCO simulator (CAPE-OPEN to CAPE-OPEN), considering both controlled and non-controlled scenarios. A user-defined model code was developed to simulate gas separation membrane stages, and a preliminary study of membrane parameter uncertainty was performed. In addition, a unit generating combinations of uncertainty factors was developed to interact with the simulator’s parametric tool. Global sensitivity analyses were carried out using the Morris method and Sobol’ indices obtained by Polynomial Chaos Expansion, allowing for the ranking and quantification of the influence of feed variability and membrane parameter uncertainty on product streams and process utilities. Results showed that when feed variability was ±10%, its effect exceeded the uncertainty of the membrane parameters. Uncertainty analysis using the Monte Carlo propagation method provided lower and upper tolerance limits for the main responses. Relative gaps between tolerance limits and mean product flows were 8–9% at a feed variability of 5% and 14–18% at a feed variability of 10%, while relative tolerance gaps resulting from composition were smaller (0.4–1.2%). Full article
Show Figures

Graphical abstract

13 pages, 1843 KB  
Article
Ethanol Fermentation by Saccharomyces cerevisiae and Scheffersomyces stipitis Using Sugarcane Bagasse Selectively Delignified via Alkaline Sulfite Pretreatment
by João Tavares, Abdelwahab Rai, Teresa de Paiva and Flávio da Silva
ChemEngineering 2025, 9(5), 93; https://doi.org/10.3390/chemengineering9050093 - 27 Aug 2025
Viewed by 674
Abstract
Bioethanol from sugarcane bagasse is a promising second-generation biofuel due to its abundance as a sugar industry by-product. Herein, enzymatic hydrolysate obtained from sugarcane bagasse pretreated with optimized hydrothermal alkaline sulfite (HAS) was evaluated for its fermentability using Saccharomyces cerevisiae PE-2 and Scheffersomyces [...] Read more.
Bioethanol from sugarcane bagasse is a promising second-generation biofuel due to its abundance as a sugar industry by-product. Herein, enzymatic hydrolysate obtained from sugarcane bagasse pretreated with optimized hydrothermal alkaline sulfite (HAS) was evaluated for its fermentability using Saccharomyces cerevisiae PE-2 and Scheffersomyces stipitis CBS 5773. The HAS pretreatment achieved a high delignification rate (63%), resulting in a cellulose- and hemicellulose-enriched substrate (55% and 27%, respectively). While the cellulose content remained relatively constant, hemicellulose content was reduced by 25%, with significant removal of acetyl groups (80%) and arabinan groups (39%). The pretreated bagasse exhibited high digestibility, applying 10 FPU (filter paper unit) cellulase together with 10 CBU (cellobiose unit) β-glucosidase per gram of dry bagasse in the hydrolysis step, yielding 72% glucan and 66% xylan conversion within 72 h. The resulting hydrolysate was efficiently fermented by S. cerevisiae and S. stipitis, achieving ethanol yields of 0.51 and 0.43 g/g of sugars, respectively. The fermentation kinetics were comparable to those observed in a synthetic medium containing pure sugars, demonstrating the effectiveness of HAS pretreatment in generating readily fermentable, carbohydrate-rich substrates. HAS pretreatment enabled improved conversion of sugarcane bagasse into fermentation-ready sugars, constituting a potential resource for bioethanol synthesis applying both S. cerevisiae and S. stipitis in the future. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop