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Abstract: Adsorption of fluids in nanoporous materials is important for several applications including
gas storage and catalysis. The pore network in natural, as well as engineered, materials can exhibit
different degrees of connectivity between pores. While this might have important implications for
the sorption of fluids, the effects of pore connectivity are seldom addressed in the studies of fluid
sorption. We have carried out Monte Carlo simulations of the sorption of ethane and CO2 in silicalite,
a nanoporous material characterized by sub-nanometer pores of different geometries (straight and
zigzag channel like pores), with varied degrees of pore connectivity. The variation in pore connectivity
is achieved by selectively blocking some pores by loading them with methane molecules that are
treated as a part of the rigid nanoporous matrix in the simulations. Normalized to the pore space
available for adsorption, the magnitude of sorption increases with a decrease in pore connectivity.
The increased adsorption in the systems where pore connections are removed by blocking them
is because of additional, albeit weaker, adsorption sites provided by the blocker molecules. By
selectively blocking all straight or zigzag channels, we find differences in the absorption behavior of
guest molecules in these channels.

Keywords: pore connectivity; CO2; ethane; adsorption; silicalite; GCMC simulation; methane;
pore blockage; pore geometry

1. Introduction

Sorption of fluids in porous media is an essential aspect to understand the fluid-
substrate interaction [1]. Sorption in nanoporous materials has also been suggested as a
strategy for the storage of fluids, notably hydrogen and CO2, among others [2]. Estimates of
fluid sorption in nano-porous materials have, therefore, been made using both experimental
as well as computational tools [3,4]. While experiments on real nanoporous materials found
in nature have been carried out, computational studies mainly deal with idealized versions
of the nanoporous materials [5,6]. In real nanoporous materials, deviation from model
pore structure can result from several factors. In recent computational studies, we have
addressed the deviations caused by the inter-crystalline space that can be found in real
samples of silicalite [7] and Mg-MOF-74 [8]. The models of silicalite and Mg-MOF-74 used
in these computations had artificially inserted inter-crystalline space to represent a real
powder sample used in the experiments. Silicalite is an all-silica analogue of ZSM-5 zeolite,
and it is a model nanoporous material often used to study fluid-substrate interactions
and confined fluid behavior [9–14]. With its network of ~0.55 nm diameter elliptical
channels running along the crystallographic axis b and interconnected by channels of
similar size running in a sinusoidal or zigzag fashion in the plane a–c, ZSM-5 provides a
good opportunity to understand severe confinement with different pore geometries [12–14].
Further, the all-silica analogue—silicalite—makes the system chemically simpler.

Another factor that gives rise to deviation from the ideal nanopore structure often
used in computer simulations is the variable degree of inter-connectivity of pores [15–17].
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This is an important aspect as nanoporous matrices found in nature commonly have pores
with different degrees of connectivity. For example, shale samples have been found to
have different degrees of pore connectivity that affects their sorption capabilities [18]. In
silicalite, pore connectivity may be reduced due to blockage of some channels that connect
channels running perpendicular to them.

To address the effects that different degrees of pore connectivity might have on
the sorption capabilities of silicalite, we report grand canonical Monte Carlo (GCMC)
simulation studies of sorption of CO2 and ethane in silicalite. Different degrees of pore
connectivity are realized by selectively blocking some channels with immobile methane
molecules, which are treated as part of silicalite in the simulations. By selectively blocking
all straight or zigzag channels, we find differences in the absorption behavior of guest
molecules in these channels.

2. Materials and Methods

A model ZSM-5 pore network was generated using the co-ordinates provided by
Koningsveld et al. [19]. As stated above, this zeolite has a network of ~0.55 nm diameter
channels running straight and parallel to the crystallographic b axis and sinusoidally in
the a–c plane crossing each other leading to slightly larger intersections. To model the
adsorbent, a unit cell of ZSM-5 was replicated in the three Cartesian directions to get a
2 × 2 × 3 supercell of dimensions 40.044 × 39.798 × 40.149 Å3. The degree of connectivity
between the pores was varied by selectively blocking some of the pore space. To accomplish
this, initially methane was adsorbed in the supercell at −73 ◦C (200 K) and 200 atm pressure
completely filling all the pore space in the supercell. GCMC simulation employing TraPPE-
UA [20] force-field for methane and ClayFF [21] for the silicalite supercell was carried out
using DL_Monte [22] for this. Subsequently, methane molecules were removed from some
channels/pores selectively making them open and available for adsorbing other fluids
(see Figure 1). The methane molecules act as analogues of organic matter blocking the
pores in natural porous matrices and the left-over seed material in zeolites. In all, 12 model
adsorbents were obtained with variable pore connectivity and total porosity. They are listed
in Table 1 along with the corresponding number of pore connections and other relevant
attributes. All these 12 model adsorbents are represented schematically in Figure 2, where
free straight channels are represented by magenta vertical lines and free sinusoidal (zigzag)
channels by blue horizontal lines. Channels blocked with methane are represented by
absence of the corresponding line. For convenience, we name the different adsorbents
using SnZm nomenclature, where the letters n and m denote, respectively, the fraction (out
of 4) of straight (S) and zigzag (Z) channels that are open for imbibition and adsorption.
For example, S4Z4 stands for the unmodified (without any methane) silicalite, while S2Z2
stands for the silicalite whose half straight and zigzag channels are either blocked or open.
Initially, one molecule each of CO2 or ethane was loaded in silicalite. GCMC simulations
were then carried out on the simulation cell obtained using DL-Monte [22]. During the
simulation, the guest molecules, i.e., ethane or CO2, could be inserted/deleted, translated,
or rotated with respective probabilities of 0.5, 0.25, and 0.25, while all silicalite atoms,
along with the methane molecules blocking the pores, were kept rigid. All simulations
were carried out using a series of gas partial pressures (up to 100 atm) at 35 ◦C. To make
a direct comparison between ethane and CO2, both guest molecules, as the immobile
methane were also modeled with the TraPPE-UA force field [20,23], while CLAYFF force
field [21] was used to model the interactions of silicalite atoms. All cross-term interactions
were calculated using the Lorentz-Berthelot mixing rules [6]. Two million Monte Carlo
steps were sufficient to obtain statistically meaningful configurations. Of these, the first
500,000 steps were discarded to ensure the best values at equilibrium. Coordinates were
sampled every 10,000 steps. Each simulation step yielded the number of adsorbed guest
molecules. These were averaged over the production run and statistical measures of
uncertainties obtained for the number of adsorbed molecules from this averaging. We note
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that GCMC simulations reported here are used to estimate the amount of fluid physi-sorbed
in the substrate while ignoring any possibility of chemi-sorption.
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Figure 1. Simulation snapshots of CO2 adsorption in the system S2Z2 at 100 atm in the crystallographic planes a–c (a) and
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Table 1. Different systems simulated and the corresponding number of pore connections. S4Z4 is the
unmodified silicalite. Systems with a larger number of straight channels that are free, compared to
free zigzag channels, are highlighted with red-colored text (S-majority), while those with a larger
number of free zigzag channels, compared to free straight channels, are highlighted in blue-colored
text (Z-majority). Systems where half of the free space available in the unmodified silicalite is
blocked/free are highlighted with yellow background and the system S2Z2 with half each of the
straight and zigzag channels blocked/free is shown in green text color.

System name
Open Straight

Channels (% of
Total)

Open Sinusoidal
Channels (% of

Total)

Number of
Pore

Connections

Fraction of Total
Pore Volume

Available

S4Z4 100 100 48 1.0

S4Z3 100 75 36 0.875

S4Z2 100 50 24 0.75

S4Z1 100 25 12 0.625
S4Z0 100 0 0 0.50
S3Z1 75 25 9 0.50
S2Z2 50 50 12 0.50
S1Z3 25 75 9 0.50
S0Z4 0 100 0 0.50
S1Z4 25 100 12 0.625

S2Z4 50 100 24 0.75

S3Z4 75 100 36 0.875
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Figure 2. Schematic showing the definition of different systems. Each vertical line in magenta shows
free straight channels while blue horizontal lines show free zigzag channel. The blocked channels are
marked by an absence of the corresponding line. S4Z4 corresponds to the unmodified silicalite with
no pore blocked with methane.

3. Results
3.1. Effects of the Relative Number of Open Channels Available for Adsorption and Pore Connections

Complete adsorption isotherms for the partial pressures between 0.05 and 100 atm.
for all systems listed in Table 1 are shown in Figure 3 (CO2), and Figure 4 (ethane). These
isotherms demonstrate that the amount of adsorption of both fluids increases as expected
when, progressively, a higher number of channels is made freely available for adsorption.
For an even comparison, the adsorbed amount needs to be normalized with respect to
the volume available for adsorption. For this, we focus on systems where half of all
channel volume comprising straight, and zigzag channels is free while the other half is
blocked. This is true for the five systems of S4Z0, S3Z1, S2Z2, S1Z3, and S0Z4 (see Table 1,
yellow highlighted portion). The pore space available for sorption in all these systems
is equal. Figure 5 shows the adsorption amounts of the two fluids at three gas partial
pressures in these systems as a function of the percentage of straight channel space that
is available for adsorption. The points in these plots represent the systems S0Z4–S4Z0
going from left to right. Note that the extreme cases of S0Z4 and S4Z0 involve no dual
pore connectivity, while pore connectivity is highest in S2Z2. Thus, it can be inferred from
Figure 5 that pore connectivity leads to a lowering of the amount of fluid sorption. For
ethane, there is no significant difference in the amount of fluid adsorbed in S4Z0 or S0Z4,
whereas for CO2, the amount of fluid adsorbed is clearly higher for S4Z0 compared to S0Z4.
This suggests a preference for residing in the straight channels and intersections, vis a vis
the zigzag channels by CO2, and is consistent with observations made earlier using MD
simulations [24].
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Figure 5. Number of fluid molecules (a) CO2 and (b) ethane adsorbed in systems with half of the pore space in the
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While Figure 5 shows that the adsorbed amount is unfavorably impacted by variable
pore connectivity, the data shown in this figure encompasses only three different number
of pore connections—0, 9, and 12. We therefore calculated the number of adsorbed fluid
molecules normalized to free pore volume available in S4Z4 (unmodified silicalite). This
normalized adsorption amount (nads) is shown in Figure 6 as a function of the number of
pore connections. As shown in Table 1, a given number of pore connections can be achieved
by making a larger number of straight or zigzag channels free for adsorption (systems
highlighted in red and blue text color, respectively). We call these systems S-majority and
Z-majority systems, respectively. Note that systems S4Z4 and S2Z2 are an exception to this,
and while the data for S4Z4 are included in Figure 6 (rightmost data points in the plots),
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those for S2Z2 are not included. When normalized to the available space, the adsorbed
amount of both fluids decreases with increase in the number of pore connections as also
suggested by Figure 5. Unlike Figure 5 however, the decrease in the normalized amount
of adsorption with an increase in pore connectivity is unambiguous and the difference
in extreme cases is clearly beyond the uncertainty involved. While the nads values of
ethane in both S-majority and Z-majority systems are similar within the uncertainties
involved, those for CO2 get progressively more distinct beyond uncertainty as the number
of pore connections is decreased—a consequence of CO2 preferring to reside in the straight
channels as observed above.
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3.2. Fluid-Fluid and Fluid-Substrate Interactions in S2Z2

In Figure 7, we show the radial distribution functions (RDF) representing the fluid-
fluid and fluid-substrate pair interactions for CO2 (a) and ethane (b), adsorbed in S2Z2 at
100 atm. The highest-pressure simulation is selected for better statistics. CO2 and ethane
are represented by the constituent peripheral atoms, namely oxygen (labeled Oc) for CO2
and the pseudo-atom CH3 for ethane. Oxygen and silicon atoms belonging to silicalite
framework (labeled Os and Si respectively) and the blocker methane molecule/pseudo
atom (labeled M) represent the substrate. The RDF of fluid-fluid pairs for CO2 exhibit peaks
at smaller r values compared to ethane because of a higher fluid number density of CO2 at
100 atm compared to that of ethane. In general, the interactions of the substrate atoms with
CO2 are stronger than that with ethane as can be seen by the position of the first peak in
the RDF of substrate-fluid pairs in Figure 7a, as compared to that in Figure 7b. Of all the
substrate atoms, the first RDF peak occurs at the farthest distance for both fluid-Si pairs.
This is because the silicon atoms are occluded by oxygen atoms of silicalite, and only the
latter interact directly with the adsorbed fluids. The first peaks of the RDF corresponding to
CH3-M and Oc-M occur significantly earlier (at lower r) than the those for fluid-Si pairs and
are comparably closer to the fluid-Os pairs in both cases. This suggests that the interaction
of fluid molecules with the blocker is direct unlike that with the silicon atoms. Thus, the
blocker can be seen as an additional adsorption site for the fluid molecules, albeit a weaker
one in comparison to that provided by the oxygen atoms of silicalite. This explains the
increase in nads as pore connections are reduced by blocking parts of intersecting pores
with methane molecules.
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3.3. Effect of Pore Connectivity on the Orientational Distribution of Fluid Molecules in the
Straight Channels

Orientational distribution of fluid molecules can offer useful insights on the fluid–
substrate and, in the present case, fluid-blocker interactions. In the case of silicalite, however,
as the fluid molecules in the zigzag channels may show a high degree of disorder due to
the geometrical restrictions imposed on them by the sinusoidal shape of the channels, it
is more illustrative to consider the orientational distribution of fluid molecules adsorbed
in the straight channels. This is because, with their simple geometry, the straight channels
impose a unidirectional restriction on the adsorbed molecules. In Figure 8, we show the
orientational distribution of fluid molecules in the straight channels of silicalite in terms
of the angle made by the axis of the fluid molecule with the axis of the straight channels
(i.e., Cartesian Y direction). The data is a sum of 200 equivalent configurations generated
by the simulations consistent with the given pressure and temperature conditions. For
comparison, the distribution expected for an isotropic medium with no preferred orientation
is also included as a black line. We note that the number of available molecules becomes
progressively smaller from S4Z0 to S0Z4 because of the decreasing number of free straight
channels. However, it is noteworthy that, despite having all straight channels blocked in
in S0Z4, some molecules in the zigzag channels might occupy the intersection of these
channels with the straight channels. The intersections are blocked in the sense that their
access from a straight channel is obstructed by an immobile methane molecule, while that
from a zigzag channel is free (see inset, Figure 8a). These molecules will be counted as
occupying straight channels too. Thus, the number of adsorbed molecules in the straight
channels is non-zero even in the case of S0Z4. In S4Z0, all zigzag channels are blocked, and
all the blocking methane molecules lie on the walls of straight channels in opposite pairs
across the pore, whereas in S0Z4, the blockers occupy the straight channels along their axes,
leaving intersections free (see inset, Figure 8a). Thus, the orientation of the pair of blocking
molecules turns 90 degrees between S4Z0 and S0Z4. In S4Z0, CO2 shows a tendency for
lying perpendicular to the pore axis, and ethane prefers to lie, making an angle of ~30degrees
with it. The effect of progressively blocking the straight channels is a monotonous increase
in the tendency of both molecules to orient perpendicular to the channel axis.
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Figure 8. Distribution of angles between the axis of the straight channels and the molecular axis of (a) CO2 and (b) ethane
molecules adsorbed in the half-blocked systems (yellow portion of Table 1) at a pressure of 100 atm. The schematic in inset
of (a) shows the position of methane molecules blocking the approach to zigzag or straight channels in the systems S4Z0 and
S0Z4. A part of a typical straight channel is shown as a cylinder here, and the methane molecules are shown as yellow discs.

3.4. Effect of Pore Connectivity on the Distribution of Fluid Molecules in the Channels

Figures 9 and 10 show the distribution of CO2 and ethane molecules, respectively,
in parts of the simulation cell indicated with the coordinates, when they are adsorbed at
100 atm in the systems S0Z4 (zigzag channels, left horizontal panels) and S4Z0 (straight
channels, right vertical panels) compared with the unmodified silicalite (S4Z4). Figure 9a
compares the distribution of CO2 molecules in the zigzag channels in S4Z4 (without any
blocker molecules) with that in S0Z4 (with all straight channels blocked). The effect of
the blocking pore connections within straight channels is to push the fluid molecules into
narrower regions of high intensity that are better separated from each other. A similar,
albeit relatively weaker, narrowing can also be seen in the straight channels (Figure 9b).
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silicalite (S4Z4) and silicalite with all straight (S0Z4) and zigzag (S4Z0) channels blocked. The intensity corresponds to the
number of fluid molecules found at a location in 200 configurations of the system.

Compared to CO2, the distribution of ethane molecules (Figure 10) is characterized
by more clearly defined separated regions of stronger adsorption. In straight channels,
ethane molecules are restricted to narrower regions compared to CO2. This is because of a
stronger interaction with the substrate due to the quadrupole moment CO2 molecules that
adsorb closer to the channel walls compared to ethane molecules, which are pushed into
the channel center. This is also visible in the RDF plots (Figure 7) where the RDF for CO2
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atom pairs peak earlier than those involving ethane. Further, the effect of blocking of pore
connections in ethane is weaker than that in CO2.
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4. Discussion

The effect of pore connectivity studied in terms of blocked pore intersections is to
increase the amount of adsorption normalized to volume. This is a result of additional
adsorption sites provided by the methane molecule. Zhang et al. [25] have made a similar
observation on the effects of amorphous organic carbon (AOC) on the CO2 adsorption in
black carbon, wherein presence of AOC was found to enhance the adsorption amounts.
In a natural material, the pore intersections can be blocked by the organic matter or by
the inherent discontinuation of the pores. In the latter case, the role of the pore blocker
is played by atoms of the constituent material itself. In case of a silica rich material one
can therefore expect the methane here to be replaced by silica units, which will act as even
stronger additional sites of adsorption. Further, if the Si/Al ratio in the substrate is finite,
the counter-ions may also act as blocking molecules. With strong electrostatic interactions,
these counter-ions may act as stronger adsorption sites compared to the methane used as
blocker here. An inherent discontinuation of the pores can also be expected for porous
materials that have a random distribution of pores. For example, it is possible to control
the microstructure and pore sizes in nanoporous metals by controlling the conditions and
strategies of synthesis [26]. Results presented above suggest that this control can be used
to enhance the sorption capabilities of such nanoporous materials in addition to providing
a way of controlling nanofluidic transport [27].

Figure 8 shows that, as more and more straight channels are blocked, both fluid
molecules exhibit a tendency to lie perpendicular to the channel axis of the straight pore
and therefore lie in the plane of zigzag pores. This orientation facilitates minimal interaction
with the pore surface. As a result, the sorbed molecules occupy the pore center. This is
consistent with the distribution of both fluid molecules in the channels getting narrower
on reducing the pore connectivity (Figures 9 and 10) and suggests that the fluid-fluid
interactions become stronger than the fluid-substrate interactions. This may have important
implications for the dynamical behavior of the adsorbed fluids as weaker fluid-substrate
interactions may facilitate fluid diffusion in silicalite with lower degrees of pore connectivity.
Indeed, pore connectivity has been found to suppress diffusion in an earlier work with
a different way of connecting the pore [15]. In a future study, we plan to use the SnZm
models developed here to study the effects of pore connectivity in silicalite on the dynamics
of adsorbed fluids.
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Although the pore connectivity is found to enhance the volume of normalized sorption
amounts (nads) in general, for both fluids, the effects of selectively blocking the straight or
zigzag pores differs significantly on CO2 sorption (Figure 6). The effects of pore geometry
are thus apparently significant only for CO2 while for ethane pores of both types of
geometry are equivalent. This could be because for ethane molecules that occupy mostly
the central regions of the pore, the tortuosity of the zigzag pore geometry is not important,
while for CO2, which interacts strongly with the pore surface, any twisting in the pore
surface will have effects and so CO2 molecules exhibit a preference to occupy the straight
channels instead of the zigzag channels.

5. Conclusions

We have obtained adsorption isotherms at 35 ◦C of CO2 and ethane in silicalite, with
varying degrees of pore connectivity, in a range of gas partial pressures between 0.05 and
100 atm, using grand canonical Monte Carlo simulations. The degree of pore connectivity is
varied between 100 and 0% for a total of 48 pore connections in the unmodified silicalite, by
selectively blocking some channels with methane molecules that serve as pore blockers. By
comparing the amount of fluid adsorbed in the different silicalite models normalized to the
pore volume available in the unmodified silicalite, we observed that reducing the number
of pore connections by blocking with methane molecules results in a higher adsorption
for a given pore volume. This is because in a pore connection that is blocked, the blocker
molecules provide an additional weaker site for fluid adsorption. By selectively blocking
all straight or zigzag channels, we found differences in the absorption behavior of guest
molecules in these channels. Comparing radial distribution functions and the distribution
of adsorbed molecules in the channels reveals differences between the fluid-substrate
interaction for CO2 and ethane. Although the degree of pore connectivity is found to have
unambiguous effects on the adsorption of fluids, the effects of pore connectivity can be
expected to be stronger on the dynamics of the adsorbed fluids with important practical
implications for chemical separation and carbon capture. We plan to address these effects
in a separate study that will use the models developed in this study.
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