Development of a Bioactive Sauce: Effect of the Packaging and Storage Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Sauce Preparation
2.2. Experimental Procedure
2.3. Plastic Containers and Storage Assay
2.4. Overall Migration Test of Plastic Material
2.5. Analytical Methods
2.5.1. Determination of Total Polyphenol Content
2.5.2. Antioxidant Activity
2.5.3. Determination of Total Carotenoid Content
2.5.4. Determination of Brown Pigment Content
2.5.5. Physicochemical Determinations
2.6. Sensory Evaluation
2.6.1. Panel Training
2.6.2. Sensory Evaluation of Sauces during Storage
2.7. Statistical Analyses
3. Results and Discussion
Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Traffano-Schiffo, M.V.; Castro-Giraldez, M.; Colom, R.J.; Fito, P.J. New spectrophotometric system to segregate tissues in Mandarin fruit. Food Bioprocess Technol. 2018, 11, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Melgar, B.; Pereira, E.; Oliveira, M.B.P.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Sokovic, M.; Barros, L.; Ferreira, I.C.F.R. Extensive profiling of three varieties of Opuntia spp. fruit for innovative food ingredients. Food Res. Int. 2017, 101, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A. Content of bioactive compounds and antioxidant capacity of pumpkin puree enriched with japanese quince, cornelian cherry, strawberry and apple. Acta Sci. Pol. Technol. Aliment. 2011, 10, 51–60, ISSN 1889-9594. [Google Scholar] [PubMed]
- García-Casal, M.N.; Peña-Rosas, J.P.; Malavé, H.G. Sauces, spices, and condiments: Definitions, potential benefits, consumption patterns, and global markets. Ann. N. Y. Acad. Sci. 2016, 1379, 3–16. [Google Scholar] [CrossRef]
- Baiano, A.; Tamagnone, P.; Marchitelli, V.; Nobile, M.A.D. Quality decay kinetics of semi-preserved sauce as affected by packaging. J. Food Sci. 2005, 70, E92–E97. [Google Scholar] [CrossRef]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2018, 274, 872–885. [Google Scholar] [CrossRef]
- Conti, S.; Villari, G.; Amico, E.; Caruso, G. Effects of production system and transplanting time on yield, quality and antioxidant content of organic winter squash (Cucurbita moschata Duch.). Sci. Hortic. 2015, 183, 136–143. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, J.; Diao, W.; Wang, C. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydr. Polym. 2014, 113, 314–324. [Google Scholar] [CrossRef]
- Tamarindo, S.; Pastore, C. Packaging Film Impact on Food Organoleptic Properties: An Experimental Study. J. Appl. Packag. Res. 2016, 8, 78–87. [Google Scholar]
- Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr. Polym. 2017, 176, 187–194. [Google Scholar] [CrossRef]
- Sapper, M.; Wilcaso, P.; Santamarina, M.P.; Roselló, J.; Chiralt, A. Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control 2018, 92, 505–515. [Google Scholar] [CrossRef]
- Valencia-Sullca, C.; Vargas, M.; Atarés, L.; Chiralt, A. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocoll. 2018, 75, 107–115. [Google Scholar] [CrossRef]
- Chiralt, A.; González-Martínez, C.; Vargas, M.; Atarés, L. Edible films and coatings from proteins. In Proteins in Food Processing; Yada, R.Y., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2018; pp. 477–500. ISBN 9780081007297. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Fernando, A.L. Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packag. Shelf Life 2016, 8, 63–70. [Google Scholar] [CrossRef]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Warhurst, A.M. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2018, 651, 3253–3268. [Google Scholar] [CrossRef] [PubMed]
- Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Fasano, E.; Bono-Blay, F.; Cirillo, T.; Montuori, P.; Lacorte, S. Migration of phthalates, alkylphenols, bisphenol A and di (2-ethylhexyl) adipate from food packaging. Food Control 2012, 27, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Petersen, K.; Nielsen, P.V.; Bertelsen, G.; Lawther, M.; Olsen, M.B.; Nilsson, N.H.; Mortensen, G. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 1999, 10, 52–68. [Google Scholar] [CrossRef]
- De Anda-Flores, Y.B.; Cordón-Cardona, B.A.; González-León, A.; Valenzuela-Quintanar, A.I.; Peralta, E.; Soto-Valdez, H. Effect of assay conditions on the migration of phthalates from polyvinyl chloride cling films used for food packaging in Mexico. Food Packag. Shelf 2021, 29, 100684. [Google Scholar] [CrossRef]
- Carlos, K.S.; Dejager, L.S.; Begley, T.H. Investigation of the primary plasticizers present un polyvinyl chloride (PVC) products currently authorized as food contact materials. Food Addit. Contam. 2018, 35, 1214–1222. [Google Scholar] [CrossRef]
- Borzi, F.; Torrieri, E.; Wrona, M.; Nerín, C. Polyamide modified with green tea extract for fresh minced meat active packaging applications. Food Chem. 2019, 300, 125242. [Google Scholar] [CrossRef]
- Pilevar, Z.; Bahrami, A.; Beikzadeh, S.; Hosseini, H.; Seid, M.J. Migration of styrene monomer from polystyrene packaging materials into foods. Characterization and safety evaluation. Trends Food Sci. Technol. 2019, 91, 248–261. [Google Scholar] [CrossRef]
- Gelbke, H.P.; Banton, M.; Block, C.; Dawkins, G.; Eisert, R.; Leibold, E.; Pemberton, I.M.P.; Sakoda, A.; Yasukawa, A. Risk assessment for migration of styrene oligomers into food from polystyrene food containers. Food Chem. Toxicol. 2019, 124, 151–167. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No. 10/2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, 12, 1–89. [Google Scholar]
- Common Market of the South (MERCOSUR); Resolutions of the Common Market Group. MERCOSUR/GMC/RES No. 20/21: Annex: General Provisions for Containers and Plastic Equipment in Contact with Food; GMC (Dec. CMC N° 20/02, Art. 6); Common Market of the South (MERCOSUR): Montevideo, Uruguay, 2021. [Google Scholar]
- Schmid, P.; Welle, F. Chemical migration from beverage packaging materials—A review. Beverages 2020, 6, 37. [Google Scholar] [CrossRef]
- Sosa, C.A.; Sgroppo, S.C.; Bevilacqua, A.E. Physicochemical changes on pumpkin/pepper sauces during refrigerated storage. J. Food Process. Preserv. 2012, 37, 262–268. [Google Scholar] [CrossRef]
- Watson, H.D.; Mead, M.N. Revisiones sobre ciencia y tecnología de los alimentos. In Volumen 2: Migración de Sustancias Químicas Desde el Envase al Alimento, 1st ed.; Acribia Ed: Zaragoza, Spain, 1995; ISBN 9788420007878. [Google Scholar]
- Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef]
- Angelova, Y.; Petkova, S.; Zozikova, E.; Kotseva, E.; Iliev, L. Effects of kinetin and 4PU-30 on the growth and the content of polyphenols in tobacco callus tissue. Bulg. J. Plant Physiol. 2001, 27, 36–42. [Google Scholar]
- Ueda, Y.; Matsuda, Y.; Murata, T.; Hoshi, Y.; Kabata, K.; Ono, M.; Yasuda, S. Increased phenolic content and antioxidant capacity of the heated leaves of yacon (Smallanthus sonchifolius). Biosci. Biotechnol. Biochem. 2019, 83, 2288–2297. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Davies, B.H.; Matthews, S.; Kirk, J.T.O. The nature and biosynthesis of the carotenoids of different colour varieties of Capsicum annuum. Phytochemistry 1970, 9, 797–805. [Google Scholar] [CrossRef]
- Viña, S.Z.; Chaves, A.R. Antioxidant responses in minimally processed celery during refrigerated storage. Food Chem. 2006, 94, 68–74. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis. In Volume I: Agricultural Chemicals, Contaminants, Dugs, 15th ed.; Association Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990; ISBN 0935584420. [Google Scholar]
- Yun, J.H.; Cha, Y.J.; Lee, D.S. Storage stability and shelf life characteristics of Korean savory sauce products. Prev. Nutr. Food Sci. 2007, 12, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Giovanelli, G.; Lavelli, V. Evaluation of heat and oxidative damage during storage of processed tomato products. I. Study of heat damage indices. J. Sci. Food Agric. 2002, 82, 1263–1267. [Google Scholar] [CrossRef]
- Muzzaffar, S.; Babas, W.N.; Nazir, N.; Masoodi, F.A.; Bhat, M.M.; Bazaz, R. Effect of storage on physicochemical, microbial and antioxidant properties of pumpkin (Cucurbita moschata) candy. Cogent Food Agric. 2016, 2, 1163650. [Google Scholar] [CrossRef]
- Coltro, L.; Pitta, J.B.; da Costa, P.A.; Fávaro Perez, M.A.; Aparecida de Araújo, V.; Rodrigues, R. Migration of conventional and new plasticizers from PVC films into food simulants: L A comparative study. Food Control 2014, 44, 118–129. [Google Scholar] [CrossRef]
- Noureddine, T.; Hayette, L.; Chaalal, M. Effect of Time and Temperature Storage on Orange Beverage Stability. EC Nutr. 2017, 11, 48–56. [Google Scholar]
- Zorić, Z.; Pedisić, S.; Kovačević, D.B.; Ježek, D.; Dragović-Uzelac, V. Impact of packaging material and storage conditions on polyphenol stability, colour and sensory characteristics of freeze-dried sour cherry (prunus cerasus var. Marasca). J. Food Sci. Technol.-Mysore 2016, 53, 1247–1258. [Google Scholar] [CrossRef] [Green Version]
- Radovanović, B.; Radovanović, A.; Nikolić, V.; Manojlović, N.; Dimitrijević, J. Storage effect on phenolic content and antioxidant activity in selected fruit extracts. Bulg. Chem. Commun. 2017, 49, 879–883. [Google Scholar]
- Ranđelović, D.; Lazić, V.; Tepić, A.; Mošić, I. The influence of packaging materials protective properties and applying modified atmosphere on packed dried apricot quality changes. Hem. Ind. 2014, 68, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Henríquez, C.; Córdova, A.; Lutz, M.; Saavedra, J. Storage stability test of apple peel powder using two packaging materials: High-density polyethylene and metalized films of high barrier. Ind. Crop. Prod. 2013, 45, 121–127. [Google Scholar] [CrossRef]
- Bakan, A.; Eksi, A. Effect of packaging materials and storage temperature on the quality of sour cherry nectar. Int. J. Food Sci. Technol. 2014, 49, 2425–2432. [Google Scholar] [CrossRef]
- Traffano-Schiffo, M.V.; Laghi, L.; Castro-Giraldez, M.; Tylewicz, U.; Rocculi, P.; Ragni, L.; Fito, P.J. Osmotic dehydration of organic kiwifruit pre-treated by pulsed electric fields and monitored by NMR. Food Chem. 2017, 236, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, P.D.; Bramley, P.M. The biosynthesis and nutritional uses of carotenoids. J. Lipid Res. 2004, 43, 228–265. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.H.; Kim, J.B.; Park, J.S.; Lee, S.W.; Cho, K.J. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: Deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 2007, 58, 3135–3144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montesano, D.; Rocchetti, G.; Putnik, P.; Lucini, L. Bioactive profile of pumpkin: An overview on terpenoids and their health-promoting properties. Curr. Opin. Food Sci. 2018, 22, 81–87. [Google Scholar] [CrossRef]
- Provesi, J.G.; Dias, C.O.; Amante, E.R. Changes in carotenoids during processing and storage of pumpkin puree. Food Chem. 2011, 128, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Provesi, J.G.; Amante, E.R. Carotenoids in pumpkin and impact of processing treatments and storage. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Academic Press: London, UK, 2015; pp. 71–80. [Google Scholar] [CrossRef]
- Song, J.; Wei, Q.; Wang, X.; Li, D.; Liu, C.; Zhang, M.; Meng, L. Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Res. Int. 2018, 107, 130–136. [Google Scholar] [CrossRef]
- Castro-López, C.; Sánchez-Alejo, E.J.; Saucedo-Pompa, S.; Rojas, R.; Aranda-Ruiz, J.; Martínez-Avila, G.C.G. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage. Heliyon 2016, 2, e00152. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, J.; Wang, Y.; Li, J.; Yang, Y.; Liu, X. The Effects of Storage Conditions on Lycopene Content and Color of Tomato Hot Pot Sauce. Int. J. Anal. Chem. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Gliemmo, M.F.; Campos, C.A.; Gerschenson, L.N. Interaction between potassium sorbate and aspartame in aqueous model sugar systems. J. Food Sci. 2001, 66, 428–431. [Google Scholar] [CrossRef]
- Gliemmo, M.F.; Latorre, M.E.; Gerschenson, L.N.; Campos, C.A. Color stability of pumpkin (Cucurbita moschata, Duchesne ex Poiret) puree during storage at room temperature: Effect of pH, potassium sorbate, ascorbic acid and packaging material. LWT 2009, 42, 196–201. [Google Scholar] [CrossRef]
- Sánchez, A.H.; Casado, F.J.; Beato, V.M.; de Castro, A.; Montano, A. Chemical and colour changes related to the use of sorbates and ascorbic acid in pickled cucumbers and caperberries during long-term storage. Int. J. Food Sci. Technol. 2013, 48, 179–186. [Google Scholar] [CrossRef]
- Kohan-nia, N.; Pakbin, B.; Mahmoudi, R.; Fakhri, O. Effect of packaging material on color properties of catsup tomato sauce. J. Appl. Packag. Res. 2016, 8, 10–16. [Google Scholar]
Storage Time (Days) | Acidity (%) | pH | ||||
---|---|---|---|---|---|---|
PVC | PE/PA | PS | PVC | PE/PA | PS | |
0 | 0.473 ± 0.009 a1 | 0.483 ± 0.009 a1 | 0.46 ± 0.02 bc1 | 4.78 ± 0.03 b1 | 4.78 ± 0.03 b1 | 4.73 ± 0.03 ab1 |
10 | 0.477 ± 0.007 a1 | 0.477 ± 0.007 a1 | 0.45 ± 0.02 c2 | 4.79 ± 0.02 b1 | 4.73 ± 0.03 bc1 | 4.70 ± 0.18 b1 |
20 | 0.481 ± 0.013 a1 | 0.49 ± 0.02 a1 | 0.49 ± 0.03 a1 | 4.68 ± 0.03 c1 | 4.70 ± 0.05 c1 | 4.75 ± 0.05 ab1 |
30 | 0.456 ± 0.004 b2 | 0.479 ± 0.011 a1 | 0.481 ± 0.011 ab1 | 4.86 ± 0.02 a1 | 4.86 ± 0.01 a1 | 4.79 ± 0.05 ab2 |
40 | 0.474 ± 0.008 a1 | 0.47 ± 0.03 a1 | 0.472 ± 0.004 abc1 | 4.81 ± 0.06 ab1 | 4.75 ± 0.05 bc1 | 4.76 ± 0.08 ab1 |
50 | 0.486 ± 0.004 a1 | 0.49 ± 0.02 a1 | 0.486 ± 0.004 ab1 | 4.81 ± 0.01 b2 | 4.85 ± 0.02 a12 | 4.86 ± 0.04 a1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giménez, C.G.; Traffano-Schiffo, M.V.; Sgroppo, S.C.; Sosa, C.A. Development of a Bioactive Sauce: Effect of the Packaging and Storage Conditions. ChemEngineering 2022, 6, 34. https://doi.org/10.3390/chemengineering6030034
Giménez CG, Traffano-Schiffo MV, Sgroppo SC, Sosa CA. Development of a Bioactive Sauce: Effect of the Packaging and Storage Conditions. ChemEngineering. 2022; 6(3):34. https://doi.org/10.3390/chemengineering6030034
Chicago/Turabian StyleGiménez, Cecilia G., María Victoria Traffano-Schiffo, Sonia C. Sgroppo, and Carola A. Sosa. 2022. "Development of a Bioactive Sauce: Effect of the Packaging and Storage Conditions" ChemEngineering 6, no. 3: 34. https://doi.org/10.3390/chemengineering6030034
APA StyleGiménez, C. G., Traffano-Schiffo, M. V., Sgroppo, S. C., & Sosa, C. A. (2022). Development of a Bioactive Sauce: Effect of the Packaging and Storage Conditions. ChemEngineering, 6(3), 34. https://doi.org/10.3390/chemengineering6030034