Reliability of Biodegradation Measurements for Inhibitive Industrial Wastewaters
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- Buffer solution
- -
- KH2PO4 (AnalaRNORMAPUR)→8.50 g
- -
- K2HPO4 (Hipersolv for HPLC)→21.75 g
- -
- Na2HPO4·2H2O (GRP Rectapur)→33.40 g
- -
- NH4Cl (Merck)→0.50 g
- (b)
- CaCl2·2H2O (Riedel–de Haën)→36.40 g
- (c)
- MgSO4·7H2O (VWR)→22.50 g
- (d)
- FeCl3·6H2O (Sigma–Aldrich)→0.25 g
Reduction of I3− → 3I−
I3− + 2S2O3−2 → 3I− + S4O6−2
3. Results
3.1. Biodegradation of WWP1 Sample
3.2. Biodegradation of the WWP2 Sample
3.3. Blank Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grady, C.P.L.; Daigger, G.T.; Love, N.; Filipe, C.D.M. Biological Wastewater Treatment, 3rd ed.; Taylor and Francis Group: Abingdon, UK, 2011. [Google Scholar] [CrossRef]
- Mittal, A. Biological Wastewater Treatment. Water Today. August 2011, pp. 32–44. Available online: https://www.watertoday.org/Article%20Archieve/Aquatech%2012.pdf (accessed on 30 October 2021).
- Cetecioglu, Z.; Atasoy, M. Biodegradation and inhibitory effects of antibiotics on biological wastewater treatment systems. In Toxicity and Biodegradation Testing. Methods in Pharmacology and Toxicology; Bidoia, E., Montagnolli, R., Eds.; Humana Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Kumar, A.; Chandra, R. Biodegradation and toxicity reduction of pulp paper mill wastewater by isolated laccase producing Bacillus cereus AKRC03. Clean. Eng. Technol. 2021, 4, 100193. [Google Scholar] [CrossRef]
- EN 1899-2:1998; Water Quality. Determination of Biochemical Oxygen Demand after n Days (BODn). Part 2: Method for Undiluted Samples. European Committee for Standardization, Central Secretariat: Rue de Stassart, 36 B-1050 Brussels. ISO: Geneva, Switzerland, 1998.
- Lepik, R.; Tenno, T. Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement. Environ. Technol. 2012, 33, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T. BOD Techniques (3rd of 3 BOD Articles). Available online: https://polyseed.com/wp-content/uploads/2020/06/bodtech.pdf (accessed on 21 November 2021).
- OECD. OECD Guideline for Testing of Chemicals, 301 F: Manometric Respirometric; OECD: Paris, France, 1992. [Google Scholar]
- EN 1899-1:1998; Water Quality. Determination of Biochemical Oxygen Demand after n Days (BODn). Part 1: Dilution and Seeding Method with Allylthiourea Addition. European Commmittee for Standardization, Central Secretariat: Rue de Stassart, 36 B-1050 Brussels. ISO: Geneva, Switzerland, 1998.
- EN 25813:1992; Water Quality. Determination of Dissolved Oxygen. Iodometric Method. European Commmittee for Standardization, Central Secretariat: Rue de Stassart, 36 B-1050 Brussels. ISO: Geneva, Switzerland, 1993.
- EN 25814:1992; Water Quality. Determination of Dissolved Oxygen. Electrochemical Probe Method. European Commmittee for Standardization, Central Secretariat: Rue de Stassart, 36 B-1050 Brussels. ISO: Geneva, Switzerland, 1993.
- Klein, K.; Kattel, E.; Goi, A.; Kivi, A.; Dulova, N.; Saluste., A.; Zekker., I.; Trapido., M.; Tenno., T. Combined treatment of pyrogenic wastewater from oil shale retorting. Oil Shale 2017, 34, 82–96. Available online: https://doi.org/10.3176/oil.2017.1.06 (accessed on 29 January 2022). [CrossRef] [Green Version]
- Matikka, V.; Veijalainen, A.-M.; Vilpas, R. Haja-Asutuksen Jätevesien Niukkaresurssiset Käsittelykonseptit, Loppuraportti, Savonia. Available online: http://portal.savonia.fi/pdf/julkaisutoiminta/MASU_raportti.pdf (accessed on 1 January 2022).
- King, W. Winkler Titrations—Measuring Dissolved Oxygen. Available online: https://web.colby.edu/colbyatsea/2011/02/11/winkler-titrations-measuring-dissolved-oxygen/ (accessed on 25 October 2021).
- Prokkola, H.; Kuokkanen, T.; Lassi, U. Material-efficient utilization of waste oils—Biodegradability and other chemical properties of vegetable recycling oils. Green Sustain. Chem. 2012, 2, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Prokkola, H.; Kuokkanen, T.; Vähäoja, P.; Lassi, U.; Rämö, J. Characterization and biodegradation rates of tall oil soaps in different water and soil environments. Water Air Soil Pollut. 2014, 225, 11. [Google Scholar] [CrossRef]
- EN 14111; Fat and Oil Derivatives—Fatty Acid Methyl Esters (FAME)—Determination of Iodine Value. European Commmittee For Standardization, Central Secretariat: Rue de Stassart, 36 B-1050 Brussels. ISO: Geneva, Switzerland, 2003. Available online: https://shop.bsigroup.com/products/fat-and-oil-derivatives-fatty-acid-methyl-esters-fame-determination-of-iodine-value/standard (accessed on 25 October 2021).
- Cyprowski, M.; Stobnicka-Kupiec, A.; Ławniczek-Wałczyk, A.; Bakal-Kijek, A.; Gołofit-Szymczak, M.; Górny, R.L. Anaerobic bacteria in wastewater treatment plant. Int. Arch. Occup. Environ. Health 2018, 91, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peu, P.; Sassi, J.-F.; Girault, R.; Picard, S.; Saint-Cast, P.; Béline, F.; Dabert, D. Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Bioresour. Technol. 2011, 102, 10794–10802. [Google Scholar] [CrossRef] [PubMed]
- Vähäoja, P.; Roppola, K.; Välimäki, I.; Kuokkanen, T. Studies of biodegradability of certain oils in forest soil as determined by the respirometric BOD OxiTop method. Int. J. Environ. Anal. Chem. 2005, 85, 1065–1073. [Google Scholar] [CrossRef]
- Kuokkanen, T.; Vähäoja, P.; Välimäki, I.; Lauhanen, R. Suitability of the respirometric BOD Oxitop method for determining the biodegradability of oils in ground water using forestry hydraulic oils as model compounds. Int. J. Environ. Anal. Chem. 2004, 84, 677–689. [Google Scholar] [CrossRef]
- Goodhead, A.K.; Head, I.M.; Jason, R.; Snape, J.R.; Davenport, R.J. Standard inocula preparations reduce the bacterial diversity and reliability of regulatory biodegradation tests. Environ. Sci. Pollut. Res. 2014, 21, 9511–9521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurtshuk, P., Jr. Bacterial metabolism. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch: Galveston, TX, USA, 1996; Chapter 4. Available online: https://www.ncbi.nlm.nih.gov/books/NBK7919/ (accessed on 29 December 2021).
- Quax, W.J. Bacterial enzymes. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community; Springer: Berlin/Heidelberg, Germany, 2013; pp. 193–211. [Google Scholar] [CrossRef]
- Young, L.Y.; Häggblom, M.M. Biodegradation of toxic and environmental pollutants. Curr. Opin. Biotechnol. 1991, 2, 429–435. [Google Scholar] [CrossRef]
- Hanchang, S.H.I. Industrial Wastewater Types, Amounts, and Effects, Point Sources of Pollution: Local Effects and It’s Control—Vol. I. Industrial Wastewater-Types, Amounts and Effects. Available online: https://www.eolss.net/sample-chapters/c09/e4-11-02-02.pdf (accessed on 24 October 2021).
- Chowdhury, M.; Mostafa, M.G.; Biswas, T.K.; Mandal, A.; Saha, A.K. Characterization of the effluents from leather processing industries. Environ. Process 2015, 2, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.M.; Baig, M.A.; Hassan, I.; Qazi, I.A.; Malik, M.; Saeed, H. Textile wastewater characterization and reduction of its COD & BOD by oxidation. Electron. J. Environ. Agric. Food Chem. 2004, 3, 804–811. [Google Scholar]
- Goletić, Š.A.; Avdić, N. The cellulose and paper industry wastewater treatment. Glas. Hem. Tehnol. Bosne Herceg. 2012, 39, 45–50. [Google Scholar]
- Lenntech. Available online: https://www.lenntech.com/petrochemical.htm (accessed on 12 October 2021).
- Simate, G.S.; Cluett, J.; Iyuke, S.E.; Musapatika, E.T.; Ndlovu, S.; Walubita, L.F.; Alvarez, A.E. The treatment of brewery wastewater for reuse: State of the art. Desalination 2011, 273, 235–247. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Putri, A.P. The degradation of BOD and COD the batik industry wastewater using Egeria densa and Salvinia molesta. J. Sains Teknol. Lingkung. 2017, 9, 82–91. Available online: https://media.neliti.com/media/publications/139797-EN-the-degradation-of-bod-and-cod-of-batik.pdf (accessed on 29 December 2021). [CrossRef]
- Hasan, M.; Alam, M.; Haque, M.; Moly, H.H.; Tanji, M. Impacts of textile and leather effluent on environment: An assessment through life cycle of fishes and plants. J. Text Eng. Fash Technol. 2021, 7, 3. [Google Scholar] [CrossRef]
- Vázquez-Rodríguez, G.A.; Beltrán-Hernández, R.I.; Coronel-Olivares, C.; Rols, J.-L. Standardization of activated sludge for biodegradation tests. Anal. Bioanal. Chem. 2011, 401, 1127–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oulu Waterworks. Annual Report. 2020. Available online: https://www.oulunvesi.fi/documents/399509/1456592/oulun_vesi_toimintakertomus_2020_sa.pdf/6192e648-aa82-4fb1-9183-d12d9ac13724 (accessed on 20 January 2022).
- Zeng, G.; Fu, H.; Zhong, H.; Yuan, X.; Fu, M.; Wang, W.; Huang, G. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and rhamnolipid, in liquid culture media and compost matrix. Biodegradation 2007, 18, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Lilja, R.; Mikkola, I. Teollisuusjätevesiä Koskevan Lupasääntelyn Keventämismahdollisuudet; Ekoleima: Otava, Finland, 2017; Available online: https://ym.fi/documents/1410903/38439968/Teollisuusjatevesia-koskevan-saantelyn-keventaminen-0F3C0521_6D04_4D5C_A50C_6AABDF86FC23-142771.pdf/83aca9a8-73cf-11cd-0bb5-4a7a47c2f7e5/Teollisuusjatevesia-koskevan-saantelyn-keventaminen-0F3C0521_6D04_4D5C_A50C_6AABDF86FC23-142771.pdf?t=1603261097230 (accessed on 29 January 2022).
- Waste Act (646/2011; Amendments Up to 528/2014 Included) Section 17. Available online: https://www.finlex.fi/fi/laki/kaannokset/2011/en20110646_20140528.pdf (accessed on 20 September 2021).
Sample | TOC | ThOD | pH |
---|---|---|---|
WWP1 | 34000 mg(C) L−1 ± 1160 mg/L * | 90670 mg(O2) L−1 | 6.60 ± 0.06 * |
WWP2 | 30 mg(C) L−1 ± 1.44 mg/L * | 80 mg(O2) L−1 | 8.10 ± 0.06 * |
Sample | Dilution Factor | Time (d) | Titrated BOD (mg L−1) | El. Chem. BOD (mg L−1) | El. Chem. Biodegradation Degree (%) |
---|---|---|---|---|---|
WWP1 | Blank | 7 | 1.6 | 0.2 | |
Raw | --- | 6.9 | 0 | ||
1:5 | --- | 11 | 0.01 | ||
1:10 | --- | 9.2 | 0.01 | ||
1:50 | 0 | 0 | --- | ||
1:100 | 0 | 40.2 | 0.04 | ||
1:500 | --- | 3125 | 3.4 | ||
1:1000 | --- | 7230 | 8 | ||
1:5000 | --- | 33,650 | 37 | ||
1:10,000 | 42,760 | 46,000 | 51 | ||
WWP1 | Blank | 28 | 2.0 | 0.3 | |
Raw | --- | 7.6 | 0.008 | ||
1:5 | --- | 36.3 | 0.04 | ||
1:10 | --- | 39.4 | 0.04 | ||
1:50 | 0 | 320 | 0.4 | ||
1:100 | --- | 820 | 0.9 | ||
1:500 | --- | 3900 | 4 | ||
1:1000 | --- | 7490 | 8 | ||
1:5000 | --- | 36,750 | 40 | ||
1:10,000 | --- | 68,100 | 75 |
Sample | Dilution Factor | Time (d) | Manometric Respirometry BOD (mg L−1) | Manometric Respirometry Biodegradation Degree (%) |
---|---|---|---|---|
WWP1 | Blank | 7 | 0.7 ± 0.5 | |
Raw | negative | --- | ||
1:5 | 0 | 0 | ||
1:10 | 0 | 0 | ||
1:50 | 23 ± 12.5 | 0.03 | ||
1:100 | 470 ± 355 | 0.54 | ||
1:500 | 21,400 ± 21,500 | 25 | ||
1:1000 | 44,200 ± 2100 | 51 | ||
1:5000 | 12800 | 15 | ||
1:10,000 | 96,000 ± 14,500 | >100 | ||
WWP1 | Blank | 28 | 0.7 ± 0.2 | |
Raw | 0 | --- | ||
1:5 | 0 | 0 | ||
1:10 | 0 | 0 | ||
1:50 | 60 ± 12.5 | 0.08 | ||
1:100 | 26,500 ± 2050 | 30 | ||
1:500 | 36,400 ± 32,125 | 42 | ||
1:1000 | 64,800 ± 8.7 | 74 | ||
1:5000 | 77,500 ± 2100 | 89 | ||
1:10,000 | 107,500 ± 0 | >100 |
Sample | Dilution | Time (d) | Titrated BOD (mg L−1) | El. Chem. BOD (mg L−1) | El. Chem. Biodegradation Degree (%) |
---|---|---|---|---|---|
WWP2 | Blank | 7 | 1.6 ± 0.8 | 0.2 | |
Raw | 1.3 ± 0.04 | 0.1 | 0.1 | ||
1:2 | 12.0 ± 2.5 | 14 | 18 | ||
1:5 | 22 ± 3.9 | 31 | 39 | ||
1:10 | 34 ± 1.9 | 47 | 59 | ||
1:50 | 98 ± 2 | 105 | >100 | ||
1:100 | 0 | 0 | - | ||
1:200 | 0 | 92 | >100 | ||
WWP2 | Blank | 28 | 2.0 | 0.3 | |
Raw | 5.2 | 4.3 | 5 | ||
1:2 | 11 ± 1.5 | 15 | 19 | ||
1:5 | 14 ± 0 | 35 | 44 | ||
1:10 | --- | 73 | 91 | ||
1:50 | 126 | 123 | >100 | ||
1:100 | 460 | 76 | 95 | ||
1:200 | 0 | 72 | 90 |
Sample | Dilution Factor | Time (d) | Manometric Respirometry BOD (mg L−1) | Manometric Respirometry Biodegradation Degree (%) |
---|---|---|---|---|
WWP2 | Blank | 7 | 1.6 ± 0.15 | |
Raw | 9.2 ± 0.55 | 12 | ||
1:2 | 9.4 ± 1.1 | 12 | ||
1:5 | 17 ± 1.25 | 21 | ||
1:10 | 17 ± 0 | 21 | ||
1:50 | 0 | - | ||
1:100 | 30 ± 0 | 38 | ||
1:200 | Negative | |||
WWP2 | Blank | 28 | 8.6 ± 3.8 | |
Raw | 30 ± 3.7 | 26 | ||
1:2 | 41 ± 12 | 51 | ||
1:5 | 66 ± 4.25 | 82 | ||
1:10 | 140 ± 30 | >100 | ||
1:50 | 340 ± 50 | >100 | ||
1:100 | 370 ± 20 | >100 | ||
1:200 | Negative | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokkola, H.; Heponiemi, A.; Pesonen, J.; Kuokkanen, T.; Lassi, U. Reliability of Biodegradation Measurements for Inhibitive Industrial Wastewaters. ChemEngineering 2022, 6, 15. https://doi.org/10.3390/chemengineering6010015
Prokkola H, Heponiemi A, Pesonen J, Kuokkanen T, Lassi U. Reliability of Biodegradation Measurements for Inhibitive Industrial Wastewaters. ChemEngineering. 2022; 6(1):15. https://doi.org/10.3390/chemengineering6010015
Chicago/Turabian StyleProkkola, Hanna, Anne Heponiemi, Janne Pesonen, Toivo Kuokkanen, and Ulla Lassi. 2022. "Reliability of Biodegradation Measurements for Inhibitive Industrial Wastewaters" ChemEngineering 6, no. 1: 15. https://doi.org/10.3390/chemengineering6010015
APA StyleProkkola, H., Heponiemi, A., Pesonen, J., Kuokkanen, T., & Lassi, U. (2022). Reliability of Biodegradation Measurements for Inhibitive Industrial Wastewaters. ChemEngineering, 6(1), 15. https://doi.org/10.3390/chemengineering6010015