Efficiency of Mechanochemical Ball Milling Technique in the Preparation of Fe/TiO2 Photocatalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fe/TiO2 Photocatalysts
2.3. Catalyst Characterization
2.4. Photocatalytic Oxidation Reaction
3. Results and Discussion
3.1. Fe/TiO2 Photocatalysts
3.2. Photocatalytic Oxidation of the 2,4-DCP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naseri, A.; Sarabi, G.A.; Samadi, M.; Yousefi, M.; Ebrahimi, M.; Moshfegh, A.Z. Recent advances on dual-functional photocatalytic systems for combined removal of hazardous water pollutants and energy generation. Res. Chem. Intermed. 2022, 48, 911–933. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Mariana, M.; HPS, A.K.; Yahya, E.B.; Olaiya, N.; Alfatah, T.; Suriani, A.; Mohamed, A. Recent trends and future prospects of nanostructured aerogels in water treatment applications. J. Water Process Eng. 2021, 45, 102481. [Google Scholar] [CrossRef]
- Hojjati-Najafabadi, A.; Mansoorianfar, M.; Liang, T.; Shahin, K.; Karimi-Maleh, H. A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Sci. Total Environ. 2022, 824, 153844. [Google Scholar] [CrossRef]
- Kadmi, Y.; Favier, L.; Yehya, T.; Soutrel, I.; Simion, A.I.; Vial, C.; Wolbert, D. Controlling contamination for determination of ultra-trace levels of priority pollutants chlorophenols in environmental water matrices. Arab. J. Chem. 2019, 12, 2905–2913. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, K.; Wang, C.; Guan, J.; Yuan, X.; Li, B. Quantitative determination and toxicity evaluation of 2, 4-dichlorophenol using poly (eosin Y)/hydroxylated multi-walled carbon nanotubes modified electrode. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Esmaeili, N.; Saraei, F.E.K.; Pirbazari, A.E.; Tabatabai-Yazdi, F.-S.; Khodaee, Z.; Amirinezhad, A.; Esmaeili, A.; Pirbazari, A.E. Estimation of 2,4-dichlorophenol photocatalytic removal using different artificial intelligence approaches. Chem. Prod. Process Model. 2021. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, L.; Zhou, C.; Zhou, Y.; Zhou, J.; Xia, S.; Rittmann, B.E. A kinetic model for 2,4-dichlorophenol adsorption and hydrodechlorination over a palladized biofilm. Water Res. 2022, 214, 118201. [Google Scholar] [CrossRef]
- Marwat, M.A.; Ullah, H.; Usman, M.; Ehsan, M.A.; Zhang, H.; Khan, M.F.; Ali, S.; Yousaf, M. Significantly improved photocatalytic activity of the SnO2/BiFeO3 heterojunction for pollutant degradation and mechanism. Ceram. Int. 2022, 48, 14789–14798. [Google Scholar] [CrossRef]
- Taghipour, S.; Ayati, B. Cultivation of aerobic granules through synthetic petroleum wastewater treatment in a cyclic aerobic granular reactor. Desalination Water Treat. 2017, 76, 134–142. [Google Scholar] [CrossRef]
- Taghipour, S.; Ayati, B.; Razaei, M. Study of the SBAR performance in COD removal of Petroleum and MTBE. Modares Civ. Eng. J. 2017, 17, 17–27. [Google Scholar]
- Taghipour, S.; Ayati, B. Study of SBAR Capability in Petroleum Wastewater Treatment. Water Reuse 2015, 2, 119–128. [Google Scholar]
- Taghipour, S.; Jannesari, M.; Ataie-Ashtiani, B.; Hosseini, S.M.; Taghipour, M. Catalytic Processes for Removal of Emerging Water Pollutants. In Emerging Water Pollutants: Concerns and Remediation Technologies; Bentham Science: Sharjah, United Arab Emirates, 2022; Volume 1, pp. 290–325. [Google Scholar] [CrossRef]
- Khorsandi, H.; Teymori, M.; Aghapour, A.A.; Jafari, S.J.; Taghipour, S.; Bargeshadi, R. Photodegradation of ceftriaxone in aqueous solution by using UVC and UVC/H2O2 oxidation processes. Appl. Water Sci. 2019, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xu, J.; Yang, J.; Xue, Y.; Dai, L. Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem. Eng. J. 2021, 427, 131498. [Google Scholar] [CrossRef]
- Gomes, J.; Bernardo, C.; Jesus, F.; Pereira, J.L.; Martins, R.C. Ozone Kinetic Studies Assessment for the PPCPs Abatement: Mixtures Relevance. ChemEngineering 2022, 6, 20. [Google Scholar] [CrossRef]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Ebrahim, S.E. Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: A comprehensive review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100666. [Google Scholar] [CrossRef]
- Taghipour, S.; Khadir, A.; Taghipour, M. Carbon Nanotubes Composite Membrane for Water Desalination. In Sustainable Materials and Systems for Water Desalination; Springer: Cham, Switzerland, 2021; pp. 163–184. [Google Scholar]
- Khadir, A.; Ramezanali, A.M.; Taghipour, S.; Jafari, K. Insights of the Removal of Antibiotics from Water and Wastewater: A Review on Physical, Chemical, and Biological Techniques. In Applied Water Science: Remediation Technologies; Wiley: Hoboken, NJ, USA, 2021; Volume 2, pp. 1–47. [Google Scholar]
- Li, Z.; Li, Z.; Zuo, C.; Fang, X. Application of Nanostructured TiO2 in UV Photodetectors: A Review. Adv. Mater. 2022, 2, 2109083. [Google Scholar] [CrossRef]
- Su, K.; Li, L.; Deng, S.; Gao, Z.; Qin, Q.; Yang, J.; Zhang, S.; Chen, J. Research progress of TiO2 photocatalytic reduction of oxyanion pollutants in water: A mini review. Green Chem. Lett. Rev. 2021, 15, 35–44. [Google Scholar] [CrossRef]
- Algarin, P.C. Effects of Zn Doping and High Energy Ball Milling on the Photocatalytic Properties of TiO2. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2008. [Google Scholar]
- Wu, D.; Li, C.; Zhang, D.; Wang, L.; Zhang, X.; Shi, Z.; Lin, Q. Enhanced photocatalytic activity of Gd3+ doped TiO2 and Gd2O3 modified TiO2 prepared via ball milling method. J. Rare Earths 2019, 37, 845–852. [Google Scholar] [CrossRef]
- Saber, D.; El-Aziz, K.; Felemban, B.F.; Alghtani, A.H.; Ali, H.T.; Ahmed, E.M.; Megahed, M. Characterization and performance evaluation of Cu-based/TiO2 nano composites. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, C.; Kong, Q.; Shi, Z.; Zhang, D.; Wang, L.; Han, L.; Zhang, X.; Lin, Q. Photocatalytic activity of Lu3+/TiO2 prepared by ball milling method. J. Rare Earths 2018, 36, 819–825. [Google Scholar] [CrossRef]
- Santos, D.M.D.L.; Navas, J.; Sánchez-Coronilla, A.; Alcántara, R.; Fernández-Lorenzo, C.; Martín-Calleja, J. Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: Structural and electronic characterization. Mater. Res. Bull. 2015, 70, 704–711. [Google Scholar] [CrossRef]
- Nasralla, N.; Yeganeh, M.; Astuti, Y.; Piticharoenphun, S.; Shahtahmasebi, N.; Kompany, A.; Karimipour, M.; Mendis, B.G.; Poolton, N.R.J.; Šiller, L. Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method. Sci. Iran. 2013, 20, 1018–1022. [Google Scholar]
- Kissoum, Y.; Mekki, D.E.; Bououdina, M.; Sakher, E.; Bellucci, S. Dependence of Fe Doping and Milling on TiO2 Phase Transformation: Optical and Magnetic Studies. J. Supercond. Nov. Magn. 2019, 33, 427–440. [Google Scholar] [CrossRef]
- Wei, M.; Wang, B.; Chen, M.; Lyu, H.; Lee, X.; Wang, S.; Yu, Z.; Zhang, X. Recent advances in the treatment of contaminated soils by ball milling technology: Classification, mechanisms, and applications. J. Clean. Prod. 2022, 340, 130821. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef] [PubMed]
- Krusenbaum, A.; Grätz, S.; Tigineh, G.T.; Borchardt, L.; Kim, J.G. The mechanochemical synthesis of polymers. Chem. Soc. Rev. 2022, 51, 2873–2905. [Google Scholar] [CrossRef]
- Coste, S.; Bertrand, G.; Coddet, C.; Gaffet, E.; Hahn, H.; Sieger, H. High-energy ball milling of Al2O3–TiO2 powders. J. Alloy. Compd. 2007, 434–435, 489–492. [Google Scholar] [CrossRef]
- Pedrayes, F.; Norniella, J.G.; Melero, M.G.; Menéndez-Aguado, J.M.; del Coz-Díaz, J.J. Frequency domain characterization of torque in tumbling ball mills using DEM modelling: Application to filling level monitoring. Powder Technol. 2018, 323, 433–444. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Paul, T.C.; Podder, J. Synthesis and characterization of Zn-incorporated TiO2 thin films: Impact of crystallite size on X-ray line broadening and bandgap tuning. Appl. Phys. A 2019, 125, 818. [Google Scholar] [CrossRef]
- Wu, L.; Xie, Q.; Lv, Y.; Zhang, Z.; Wu, Z.; Liang, X.; Lu, M.; Nie, Y. Degradation of methylene blue by dielectric barrier discharge plasma coupled with activated carbon supported on polyurethane foam. RSC Adv. 2019, 9, 25967–25975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soundarrajan, P.; Sankarasubramanian, K.; Logu, T.; Sethuraman, K.; Ramamurthi, K. Growth of rutile TiO2 nanorods on TiO2 seed layer prepared using facile low cost chemical methods. Mater. Lett. 2014, 116, 191–194. [Google Scholar] [CrossRef]
- He, J.; Du, Y.-E.; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24, 2996. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Chua, D.H.; Sun, H.; Chen, L.; Wang, K.; Lu, T.; Pan, L. Construction of two-dimensional bimetal (Fe-Ti) oxide/carbon/MXene architecture from titanium carbide MXene for ultrahigh-rate lithium-ion storage. J. Colloid Interface Sci. 2020, 588, 147–156. [Google Scholar] [CrossRef]
- Challagulla, S.; Tarafder, K.; Ganesan, R.; Roy, S. Structure sensitive photocatalytic reduction of nitroarenes over TiO 2. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Franceschini, F.; Bartoli, M.; Tagliaferro, A.; Carrara, S. Electrodes for Paracetamol Sensing Modified with Bismuth Oxide and Oxynitrate Heterostructures: An Experimental and Computational Study. Chemosensors 2021, 9, 361. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Q.; Yang, H.; Shi, D.; Qian, J. Photocatalytic antibacterial properties of copper doped TiO2 prepared by high-energy ball milling. Ceram. Int. 2020, 46, 16716–16724. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Sánchez, I.M.; Bandala, E.R. Photocatalytic Degradation of Estriol Using Iron-Doped TiO2 under High and Low UV Irradiation. Catalysts 2018, 8, 625. [Google Scholar] [CrossRef] [Green Version]
- Maleki-Ghaleh, H.; Shakeri, M.; Dargahi, Z.; Kavanlouei, M.; Garabagh, H.K.; Moradpur-Tari, E.; Yourdkhani, A.; Fallah, A.; Zarrabi, A.; Koc, B.; et al. Characterization and optical properties of mechanochemically synthesized molybdenum-doped rutile nanoparticles and their electronic structure studies by density functional theory. Mater. Today Chem. 2022, 24, 100820. [Google Scholar] [CrossRef]
- Luan, P.; Xie, M.; Liu, D.; Fu, X.; Jing, L. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Sci. Rep. 2014, 4, 6180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanjana, N.; Maiaugree, W.; Laokul, P. Photocatalytic activity of nanocrystalline Fe3+-doped anatase TiO2 hollow spheres in a methylene blue solution under visible-light irradiation. J. Mater. Sci. Mater. Electron. 2022, 33, 4659–4680. [Google Scholar] [CrossRef]
- Moradi, H.; Eshaghi, A.; Hosseini, S.R.; Ghani, K. Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrason. Sonochemistry 2016, 32, 314–319. [Google Scholar] [CrossRef]
- Carneiro, J.A.O.; De Azevedo, S.S.; Fernandes, F.D.P.; Freitas, E.; Pereira, M.A.C.D.C.; Tavares, C.J.; Lanceros-Mendez, S.; Teixeira, V.M.P. Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: The influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J. Mater. Sci. 2014, 49, 7476–7488. [Google Scholar] [CrossRef]
- Taghipour, S.; Hosseini, S.M.; Ataie-Ashtiani, B. Engineering nanomaterials for water and wastewater treatment: Review of classifications, properties and applications. New J. Chem. 2019, 43, 7902–7927. [Google Scholar] [CrossRef]
- Taghipour, S.; Ataie-Ashtiani, B.; Hosseini, S.M.; Yeung, K.L. Graphitic carbon nitride-based composites for photocatalytic abatement of emerging pollutants. In Micro and Nano Technologies; Wiley: Hoboken, NJ, USA, 2022; pp. 175–214. [Google Scholar]
- Jannesari, M.; Akhavan, O.; Hosseini, H.R.M. Graphene oxide in generation of nanobubbles using controllable microvortices of jet flows. Carbon 2018, 138, 8–17. [Google Scholar] [CrossRef]
- Jannesari, M.; Akhavan, O.; Madaah Hosseini, H.R.; Bakhshi, B. Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. ACS Appl. Mater. Interfaces 2020, 12, 35813–35825. [Google Scholar] [CrossRef]
- Ahmadpur, M. Impact of COVID-19 spread on road safety indices of Turkey. Int. J. Inj. Control. Saf. Promot. 2022, 29, 1–12. [Google Scholar] [CrossRef]
- Wu, T.; Zhu, X.; Xing, Z.; Mou, S.; Li, C.; Qiao, Y.; Liu, Q.; Luo, Y.; Shi, X.; Zhang, Y.; et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem. Int. Ed. 2019, 58, 18449–18453. [Google Scholar] [CrossRef]
- Khalid, N.R.; Hussain, M.K.; Murtaza, G.; Ikram, M.; Ahmad, M.; Hammad, A. A Novel Ag2O/Fe–TiO2 Photocatalyst for CO2 Conversion into Methane Under Visible Light. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1288–1296. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Li, Z.; Liu, C.; Miao, R.; He, G.; Zhao, M.; Xue, J.; Xia, Z.; Wang, Y.; et al. Hydrothermal synthesis of MoS2 nanosheet loaded TiO2 nanoarrays for enhanced visible light photocatalytic applications. RSC Adv. 2019, 9, 3479–3485. [Google Scholar] [CrossRef] [Green Version]
- Ghorai, T.K.; Chakraborty, M.; Pramanik, P. Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis. J. Alloy. Compd. 2011, 509, 8158–8164. [Google Scholar] [CrossRef]
- Aguinaco, A.; Amaya, B.; Ramírez-del-Solar, M. Facile fabrication of Fe-TiO2 thin film and its photocatalytic activity. Environ. Sci. Pollut. Res. 2022, 29, 23292–23302. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Zhong, X.; Xia, D.; Yin, X.; Li, F.; Zhao, D.; Ji, H.; Liu, W. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community. Sci. Rep. 2017, 7, srep44626. [Google Scholar] [CrossRef] [Green Version]
- Pei, K.; Liu, T. Enhanced Cr (VI) removal with Pb (II) presence by Fe2+-activated persulfate and zero-valent iron system. Environ. Technol. 2022, 1–15. [Google Scholar] [CrossRef]
- Mancuso, A.; Sacco, O.; Vaiano, V.; Bonelli, B.; Esposito, S.; Freyria, F.; Blangetti, N.; Sannino, D. Visible Light-Driven Photocatalytic Activity and Kinetics of Fe-Doped TiO2 Prepared by a Three-Block Copolymer Templating Approach. Materials 2021, 14, 3105. [Google Scholar] [CrossRef]
- Wang, M.; Gao, J.; Zhu, G.; Li, N.; Zhu, R.; Wei, X.; Liu, P.; Guo, Q. One-step solvothermal synthesis of Fe-doped BiOI film with enhanced photocatalytic performance. RSC Adv. 2016, 6, 106615–106624. [Google Scholar] [CrossRef]
- Sakar, M.; Prakash, R.M.; Do, T.-O. Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts 2019, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Solano, R.A.; Herrera, A.P.; Maestre, D.; Cremades, A. Fe-TiO2 nanoparticles synthesized by green chemistry for potential application in waste water photocatalytic treatment. J. Nanotechnol. 2019, 2019, 4571848. [Google Scholar]
- Senol, S.D.; Boyraz, C.; Ozugurlu, E.; Gungor, A.; Arda, L. Band Gap Engineering of Mg Doped ZnO Nanorods Prepared by a Hydrothermal Method. Cryst. Res. Technol. 2019, 54, 1800233. [Google Scholar] [CrossRef]
- Azarpira, H.; Sadani, M.; Abtahi, M.; Vaezi, N.; Rezaei, S.; Atafar, Z.; Mohseni, S.M.; Sarkhosh, M.; Ghaderpoori, M.; Keramati, H.; et al. Photo-catalytic degradation of triclosan with UV/iodide/ZnO process: Performance, kinetic, degradation pathway, energy consumption and toxicology. J. Photochem. Photobiol. A Chem. 2018, 371, 423–432. [Google Scholar] [CrossRef]
- Ahadi, S.; Moalej, N.S.; Sheibani, S. Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sci. 2019, 96, 105975. [Google Scholar] [CrossRef]
- Liu, L.; Chen, F.; Yang, F.; Chen, Y.; Crittenden, J. Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2. Chem. Eng. J. 2011, 181–182, 189–195. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Miessner, H.; Mueller, S.; Mahyar, A.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. J. Hazard. Mater. 2018, 343, 107–115. [Google Scholar] [CrossRef]
- Neghi, N.; Kumar, M. Performance analysis of photolytic, photocatalytic, and adsorption systems in the degradation of metronidazole on the perspective of removal rate and energy consumption. Water Air Soil Pollut. 2017, 228, 1–12. [Google Scholar]
- Available online: https://www.info.gov.hk/gia/general/202111/09/P2021110900485.htm (accessed on 25 April 2022).
Catalysts |
BET Surface Area (m2 g−1) | Average Pore Diameter (nm) | Total Pore Volume (cm3 g−1) | Crystal Size (nm) |
---|---|---|---|---|
Rutile TiO2 | 2.69 | 7.39 | 0.013 | 73.3 |
Fe/TiO2-34 | 5.78 | 52.41 | 0.023 | 48.3 |
Fe/TiO2-17 | 6.46 | 16.20 | 0.028 | 45.1 |
Fe/TiO2-7 | 6.87 | 14.83 | 0.071 | 41 |
Samples | Reaction Rate Constant (k, h−1) | Correlation Coefficient (R2) | Removal Efficiency (%) |
---|---|---|---|
Rutile TiO2 | 0.031 | 0.95 | 59.4 |
Fe/TiO2-34 | 0.032 | 0.91 | 64.4 |
Fe/TiO2-17 | 0.035 | 0.96 | 71.8 |
Fe/TiO2-7 | 0.057 | 0.98 | 81.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghipour, S.; Yeung, K.-L.; Ataie-Ashtiani, B. Efficiency of Mechanochemical Ball Milling Technique in the Preparation of Fe/TiO2 Photocatalysts. ChemEngineering 2022, 6, 77. https://doi.org/10.3390/chemengineering6050077
Taghipour S, Yeung K-L, Ataie-Ashtiani B. Efficiency of Mechanochemical Ball Milling Technique in the Preparation of Fe/TiO2 Photocatalysts. ChemEngineering. 2022; 6(5):77. https://doi.org/10.3390/chemengineering6050077
Chicago/Turabian StyleTaghipour, Shabnam, King-Lun Yeung, and Behzad Ataie-Ashtiani. 2022. "Efficiency of Mechanochemical Ball Milling Technique in the Preparation of Fe/TiO2 Photocatalysts" ChemEngineering 6, no. 5: 77. https://doi.org/10.3390/chemengineering6050077
APA StyleTaghipour, S., Yeung, K. -L., & Ataie-Ashtiani, B. (2022). Efficiency of Mechanochemical Ball Milling Technique in the Preparation of Fe/TiO2 Photocatalysts. ChemEngineering, 6(5), 77. https://doi.org/10.3390/chemengineering6050077