Promising Isotope Effect in Pd77Ag23 for Hydrogen Separation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Deuterium Absorption in Pd77Ag23
3.2. Hydrogen Isotope Effect in Pd77Ag23
3.3. Enthalpy of Deuteration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. The Future of Hydrogen. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 23 June 2021).
- Dawood, F.; Anda, M.; Shafiullah, G. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook Report OECD/IEA 2014; International Energy Agency (IEA): Paris, France, 2014; Available online: https://www.iea.org/reports/world-energy-outlook-2014 (accessed on 29 July 2021).
- Du, Z.; Liu, C.; Zhai, J.; Guo, X.; Xiong, Y.; Su, W.; He, G.A. Review of Hydrogen Purification Technologies for Fuel Cell Vehicles. Catalysts 2021, 11, 393. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Innovation in hydrogen production. Int. J. Hydrog. Energy 2017, 42, 14843–14864. [Google Scholar] [CrossRef]
- Southall, G.D.; Khare, A. The feasibility of distributed hydrogen production from renewable energy sources and the financial contribution from UK motorists on environmental grounds. Sustain. Cities Soc. 2016, 26, 134–149. [Google Scholar] [CrossRef]
- Jørgensen, C.; Ropenus, S. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration. Int. J. Hydrog. Energy 2008, 33, 5335–5344. [Google Scholar] [CrossRef]
- Kirati, S.; Hammoudi, M.; Mousli, I. Hybrid energy system for hydrogen production in the Adrar region (Algeria): Production rate and purity level. Int. J. Hydrog. Energy 2018, 43, 3378–3393. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, O.; Solomin, S. Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast. Int. J. Hydrog. Energy 2017, 42, 9361–9370. [Google Scholar] [CrossRef]
- Wunsch, A.; Gapp, E.; Peters, T.; Pfeifer, P. Impact of product gas impurities from dehydrogenation of perhydro-dibenzyltoluene on the performance of a 10 μm Pd Ag-membrane. J. Membr. Sci. 2021, 628, 119094. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2016. Available online: https://www.iea.org/reports/world-energy-outlook-2016 (accessed on 29 July 2021).
- Alique, D.; Martinez-Diaz, D.; Sanz, R.; Calles, J.A. Review of supported Pd-based membranes preparation by electroless plating for ultra-pure hydrogen production. Membranes 2018, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Ockwig, N.W.; Nenoff, T.M. Membranes for hydrogen separation. Chem. Rev. 2007, 107, 4078–4110. [Google Scholar] [CrossRef]
- Sarker, S.; Chandra, D.; Hirscher, M.; Dolan, M.; Isheim, D.; Wermer, J.; Viano, D.; Baricco, M.; Udovic, T.J.; Grant, D.; et al. Developments in the Ni–Nb–Zr amorphous alloy membranes. Appl. Phys. A 2016, 122, 1–9. [Google Scholar] [CrossRef]
- Phair, J.W.; Donelson, R. Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation. Ind. Eng. Chem. Res. 2006, 45, 5657–5674. [Google Scholar] [CrossRef]
- Santucci, A.; Tosti, S.; Basile, A. Alternatives to palladium in membranes for hydrogen separation: Nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes. In Handbook of Membrane Reactors; Basile, A., Ed.; (Ch. 4); Woodhead Publishing Series in Energy: Cornwall, UK, 2013; Volume 1, pp. 183–217. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, B.; Jiang, J.; Xu, W. H2 purification process with double layer bcc-PdCu alloy membrane at ambient temperature. Int. J. Hydrog. Energy 2020, 45, 17540–17547. [Google Scholar] [CrossRef]
- De Nooijer, N.; Sanchez, J.D.; Melendez, J.; Fernandez, E.; Tanaka, D.A.P.; Annaland, M.V.S.; Gallucci, F. Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes. Int. J. Hydrog. Energy 2020, 45, 7303–7312. [Google Scholar] [CrossRef]
- Liu, J.; Bellini, S.; de Nooijer, N.C.A.; Sun, Y.; PachecoTanaka, D.A.; Tang, C.; Li, H.; Gallucci, F.; Caravella, A. Hydrogenpermeation and stability in ultra-thin PdRu supported membranes. Int. J. Hydrog. Energy 2020, 45, 7455–7467. [Google Scholar] [CrossRef]
- Bellini, S.; Liang, X.; Li, X.; Gallucci, F.; Caravella, A. Non-ideal hydrogen permeation through V-alloymembranes. J. Membr. Sci. 2018, 564, 456–464. [Google Scholar] [CrossRef]
- Li, H.; Caravella, A.; Xu, H.Y. Recent progress in Pd-based composite membranes. J. Mater. Chem. A 2016, 4, 14069–14094. [Google Scholar] [CrossRef]
- Basile, A.; Gallucci, F.; Tosti, S. Synthesis, characterization, and applications of palladium membranes. Membr. Sci. Technol. 2008, 13, 255–323. [Google Scholar] [CrossRef]
- Tanaka, D.A.P.; Medrano, J.A.; Viviente Sole, J.L.; Gallucci, F. Metallic membranes for hydrogen separation. In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Gallucci, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–29. [Google Scholar]
- Shu, J.; Grandjean, B.P.A.; Van Neste, A.; Kaliaguine, S. Catalytic palladium-based membrane reactors: A review. Can. J. Chem. Eng. 1991, 69, 1036–1060. [Google Scholar] [CrossRef]
- Kikuchi, E. Membrane reactor application to hydrogen production. Catal. Today 2000, 56, 97–101. [Google Scholar] [CrossRef]
- Chen, W.-H.; Escalante, J. Influence of vacuum degree on hydrogen permeation through a Pd membrane in different H2/N2 gas mixtures. Renew. Energy 2020, 155, 1245–1263. [Google Scholar] [CrossRef]
- Oh, D.-K.; Lee, K.-Y.; Park, J.-S. Hydrogen Purification from compact palladium membrane module using a low temperature diffusion bonding technology. Membranes 2020, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tang, C.; Bao, F.; Shao, W.; Xu, T.; Li, H.; Xu, H. Microstructural investigation and on-site repair of thin pd-ag alloy membranes. Membranes 2020, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Petriev, I.; Pushankina, P.; Bolotin, S.; Lutsenko, I.; Kukueva, E.; Baryshev, M. The influence of modifying nanoflower and nanostar type Pd coatings on low temperature hydrogen permeability through Pd-containing membranes. J. Membr. Sci. 2021, 620, 118894. [Google Scholar] [CrossRef]
- Petriev, I.; Pushankina, P.; Lutsenko, I.; Shostak, N.; Baryshev, M. Synthesis, electrocatalytic and gas transport characteristics of pentagonally structured star-shaped nanocrystallites of Pd-Ag. Nanomaterials 2020, 10, 2081. [Google Scholar] [CrossRef]
- Tosti, S.; Cavezza, C.; Fabbricino, M.; Pontoni, L.; Palma, V.; Ruocco, C. Production of hydrogen in aPd-membrane reactor via catalytic reforming of olive mill wastewater. Chem. Eng. J. 2015, 275, 366–373. [Google Scholar] [CrossRef]
- Vadrucci, M.; Borgognoni, F.; Moriani, A.; Santucci, A.; Tosti, S. Hydrogen permeation through Pd–Ag membranes: Surface effects and Sieverts’ law. Int. J. Hydrog. Energy 2013, 38, 4144–4152. [Google Scholar] [CrossRef]
- Tosti, S.; Pozio, A. Membrane processes for the nuclear fusion fuel cycle. Membranes 2018, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.; Luo, D.; Qin, X.; Yang, W. Hydrogen isotopes separation using frontal displacement chromatography with Pd–Al2O3 packed column. Int. J. Hydrog. Energy 2012, 37, 10774–10778. [Google Scholar] [CrossRef]
- Heung, L.K.; Sessions, H.T.; Poore, A.S.; Jacobs, W.D.; Williams, C.S. Next generation TCAP hydrogen isotope separation process. Fusion Sci. Technol. 2008, 54, 399–402. [Google Scholar] [CrossRef]
- Hara, M.; Sakurai, J.; Akamaru, S.; Hashizume, K.; Nishimura, K.; Mori, K.; Okabe, T.; Watanabe, K.; Matsuyama, M. Thermodynamic and magnetic properties of Pd0.93Ag0.07 hydride. Mater. Trans. 2007, 48, 3154–3159. [Google Scholar] [CrossRef] [Green Version]
- Anand, N.; Pati, S.; Jat, R.A.; Parida, S.; Mukerjee, S. Thermodynamics and kinetics of hydrogen/deuterium absorption–desorption in Pd 0.77 Ag 0.23 alloy. Int. J. Hydrog. Energy 2015, 40, 444–450. [Google Scholar] [CrossRef]
- Catti, M.; Fabelo, O.; Filabozzi, A.; Pietropaolo, A.; Tosti, S.; Pozio, A.; Santucci, A. Neutron diffraction study of the Pd0.772Ag0.228Dν membrane for hydrogen separation. Int. J. Hydrog. Energy 2017, 42, 6787–6792. [Google Scholar] [CrossRef]
- Catti, M.; Fabelo, O.; Filabozzi, A.; Pietropaolo, A.; Santucci, A.; Tosti, S. Kinetics of deuteration of the Pd0.772Ag0.228 alloy with α/β phase transition by in-situ neutron diffraction. J. Alloys. Compd. 2019, 790, 502–508. [Google Scholar] [CrossRef]
- Colognesi, D.; Demmel, F.; Filabozzi, A.; Pietropaolo, A.; Pozio, A.; Romanelli, G.; Santucci, A.; Tosti, S. Proton dynamics in palladium–silver: An inelastic neutron scattering investigation. Molecules 2020, 25, 5587. [Google Scholar] [CrossRef]
- Paolone, A.; Tosti, S.; Santucci, A.; Palumbo, O.; Trequattrini, F. Hydrogen and deuterium solubility in commercial Pd–Ag alloys for hydrogen purification. Chem. Eng. 2017, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, O.; Brutti, S.; Trequattrini, F.; Sarker, S.; Dolan, M.; Chandra, D.; Paolone, A. Temperature dependence of the elastic modulus of (Ni0.6Nb0.4)1-xZrx membranes: Effects of thermal treatments and hydrogenation. Energies 2015, 8, 3944–3954. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, O.; Trequattrini, F.; Vitucci, F.M.; Bianchin, A.; Paolone, A. Study of the hydrogenation/dehydrogenation process in the Mg-Ni-C-Al system. J. Alloys Compd. 2015, 645, S239–S241. [Google Scholar] [CrossRef]
- Palumbo, O.; Trequattrini, F.; Sarker, S.; Hulyakar, M.; Pal, N.; Chandra, D.; Dolan, M.; Paolone, A. New studies of the physical properties of metallic amorphous membranes for hydrogen purification. Challenges 2017, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.K. Chemical Metallurgy: Principles and Practice; Wiley-VCH: Weinheim, Germany, 2003; p. 273. [Google Scholar]
- Suzuki, A.; Yukawa, H. A Review for consistent analysis of hydrogen permeability through dense metallic membranes. Membranes 2020, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Manchester, F.D.; Martin, A.S.; Pitre, J.M. The H-Pd (hydrogen-palladium) system. J. Phase Equilibria Diffus. 1994, 15, 62–83. [Google Scholar] [CrossRef]
- Wicke, E.; Blaurock, J. New experiments on and interpretations of hysteresis effects of Pd-D2 and Pd-H2. J. Less Common Met. 1987, 130, 351–363. [Google Scholar] [CrossRef]
- Serra, E.; Kemali, M.; Perujo, A.; Ross, D.K. Hydrogen and deuterium in Pd-25 Pct Ag alloy: Permeation, diffusion, solubilization, and surface reaction. Metall. Mater. Trans. A 1998, 29, 1023–1028. [Google Scholar] [CrossRef]
- Sicking, G. Isotope effects in metal-hydrogen systems. J. Less Common Met. 1984, 101, 169–190. [Google Scholar] [CrossRef]
- Wiswall, R.H.; Reilly, J.J. Inverse hydrogen isotope effects in some metal hydride systems. Inorg. Chem. 1972, 11, 1691–1696. [Google Scholar] [CrossRef]
- Bellini, S.; Sun, Y.; Gallucci, F.; Caravella, A. Thermo dynamic aspects in non-ideal metal membranes for hydrogen purification. Membranes 2018, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Brutti, S.; Tosti, S.; Santucci, A.; Paolone, A. Deuterium absorption properties of V85Ni15 and evidence of isotope effect. Int. J. Hydrog. Energy 2019, 44, 20145–20149. [Google Scholar] [CrossRef]
- El-Eskandarany, M.; Shaban, E.; Ali, N.; Aldakheel, F.; Alkandary, A. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles. Sci. Rep. 2016, 6, 37335. [Google Scholar] [CrossRef] [Green Version]
- Brutti, S.; Farina, L.; Trequattrini, F.; Palumbo, O.; Reale, P.; Silvestri, L.; Panero, S.; Paolone, A. Extremely pure Mg2FeH6 as a negative electrode for lithium batteries. Energies 2018, 11, 1952. [Google Scholar] [CrossRef] [Green Version]
- Pinatel, E.R.; Palumbo, M.; Massimino, F.; Rizzi, P.; Baricco, M. Hydrogensorption in the LaNi5-xAlx-H system (0 ≤ x ≤ 1). Intermetallics 2015, 62, 7–16. [Google Scholar] [CrossRef]
- Karger, B.L.; Snyder, L.R.; Horvath, C. An Introduction to Separation Science; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Palumbo, O.; Trequattrini, F.; Pal, N.; Hulyalkar, M.; Sarker, S.; Chandra, D.; Flanagan, T.; Dolan, M.; Paolone, A. Hydrogen absorption properties of amorphous (Ni0.6Nb0.4−yTay)100−xZrx membranes. Prog. Nat. Sci. 2017, 27, 126–131. [Google Scholar] [CrossRef]
- Lässer, R. Tritium in Metals. Z. Phys. Chem. Neue Folge 1985, 143, 23–49. [Google Scholar] [CrossRef]
- Yasumatsu, T.; Wan, J.L.; Matsuyama, M.; Watanabe, K. Absorption of hydrogen isotopes by Pd-Pt alloys. J. Alloys Compd. 1999, 293–295, 900–907. [Google Scholar] [CrossRef]
- Carson, A.W.; Lewis, F.A. Pressure-composition isotherms for the Pd + Ag + Hsystem. Trans. Faraday Soc. 1967, 63, 1453–1457. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trequattrini, F.; Palumbo, O.; Tosti, S.; Santucci, A.; Paolone, A. Promising Isotope Effect in Pd77Ag23 for Hydrogen Separation. ChemEngineering 2021, 5, 51. https://doi.org/10.3390/chemengineering5030051
Trequattrini F, Palumbo O, Tosti S, Santucci A, Paolone A. Promising Isotope Effect in Pd77Ag23 for Hydrogen Separation. ChemEngineering. 2021; 5(3):51. https://doi.org/10.3390/chemengineering5030051
Chicago/Turabian StyleTrequattrini, Francesco, Oriele Palumbo, Silvano Tosti, Alessia Santucci, and Annalisa Paolone. 2021. "Promising Isotope Effect in Pd77Ag23 for Hydrogen Separation" ChemEngineering 5, no. 3: 51. https://doi.org/10.3390/chemengineering5030051
APA StyleTrequattrini, F., Palumbo, O., Tosti, S., Santucci, A., & Paolone, A. (2021). Promising Isotope Effect in Pd77Ag23 for Hydrogen Separation. ChemEngineering, 5(3), 51. https://doi.org/10.3390/chemengineering5030051