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Abstract: To overcome the limitations of polymers, such as the trade-off relationship between
water permeance and solute rejection, as well as the difficulty of functionalization, research on
nanomaterials is being actively conducted. One of the representative nanomaterials is graphene,
which has a two-dimensional shape and chemical tunability. Graphene is usually used in the form of
graphene oxide in the water treatment field because it has advantages such as high water permeance
and functionality on its surface. However, there is a problem in that it lacks physical stability under
water-contacted conditions due to the high hydrophilicity. To overcome this problem, MoS2, which
has a similar shape to graphene and hydrophobicity, can be a new option. In this study, bulk MoS2

was dispersed in a mixed solvent of acetone/isopropyl alcohol, and MoS2 nanosheet was obtained
by applying sonic energy to exfoliate. In addition, Cysteine was functionalized in MoS2 with a mild
reaction. When the nanofiltration (NF) performance of the membrane was compared under various
conditions, the composite membrane incorporated by Cysteine 10 wt % (vs. MoS2) showed the best
NF performances.

Keywords: molybdenum disulfide; cysteine; lead; heavy metal; wastewater; nanofiltration

1. Introduction

The importance of technology to purify polluted water is growing because many water
intake sources for obtaining clean water are being polluted due to the continuous popu-
lation growth and industrial development in various countries [1,2]. Among pollutants,
heavy metals such as lead, cadmium, mercury, and chromium can accumulate in the human
body and cause serious problems such as Minamata disease, Itai-Itai disease, and cancer [3].
In addition, many industrial wastewaters containing heavy metals must be discharged
into nature after removing those heavy metals. Most heavy metals harm the human body
or organic life, but lead is especially damaging. Lead is emitted from various industries
and causes a problem even if a small amount, as low as 0.01–0.5 ppm, is accumulated in
the body [4,5]. According to US EPA (the United States Environmental Protection Agency)
standards, the dissolved lead concentration in wastewater must not exceed 5.0 ppm [6]. To
remove heavy metal ions contained in water, there are various methods, such as forward
osmosis (FO), reverse osmosis (RO), nanofiltration (NF), chemical precipitation, ion ex-
change, and adsorption [7–9]. Among the various methods, precipitation, agglomeration,
ion exchange, and adsorption have been widely used to remove ions [10–14]. However,
the process that requires a chemical reaction has the disadvantages of having high costs
and a long process time. Moreover, it needs the post-treatment process. Therefore, there
is a need to more actively utilize inexpensive, efficient, and contaminant-free processes
such as RO, NF, UF, MF, etc. Among them, the NF process can effectively reject inorganic
ions by the size exclusion principle and the electrostatic interaction mechanism (Donnan
exclusion) between the membrane and ions, and can improve the water flux by controlling
the process conditions so that it consumes less energy than the RO process [15].
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There are many studies that removed lead ions or other heavy metal ions that have
been conducted using NF membranes. When a solution containing Pb2+ and Co2+ ions
was passed through a commercial NF membrane, AFC30, the rejections were 84% and 64%,
respectively, at pH 5 [16], and the rejections of AFC40 against Co(NO3)2 and Pb(NO3)2
were 76% and 60% at pH 6, respectively [17,18]. Another commercial membrane, NF 270,
showed a rejection of 60–70% for Pb2+ and Co2+ at pH 5 [19]. On the other hand, NF90, an
aromatic polyamide Thin-film composite membrane produced by Dow-FilmTec, showed
a high rejection of 91–94% for Pb2+ at pH 5–6 because of the size exclusion effect which
resulted from the small pore size [20]. The NF90 membrane is a tight NF membrane with a
molecular weight cut-off (MWCO) of about 90 Da, and has a maximum operating pressure,
flow rate, and temperature of 4137 kPa, 3.6 m3 h−1, and 45 ◦C, respectively. It is also
very robust with a usable pH range of 1 to 12 [20]. In addition, there are various tailor-
made membrane research cases. T.S. Chung et al. reported the hollow fiber membrane
composed of polybenzimidazole/polyethersulfone dual-layer for the rejection of Pb2+ (93%,
at pH 2.2) and Cd2+ (95%, pH 5) [21]. Moreover, they reported the NF membrane with
a pentablock copolymer selective layer. It exhibited excellent rejection efficiency (>98%)
for Pb2+ and Cd2+ at a pH range of 5.3–5.8 [22]. Moreover, PEI-based membranes showed
better rejection for heavy metals than PIP-based membranes, but the PEI-based membranes
had a lower permeate of 1 LMH bar−1 than the PIP-based membranes (6–10 LMH bar−1).
The above cases have their own merits, but it is difficult to change membrane properties by
engineering polymers without applying hetero material.

To overcome the trade-off relationship between water permeance and solute rejection,
therefore, the focus of this study is the fabrication of 2D nanomaterial-based membrane
using MoS2 to maintain a certain level of water permeance while gaining a high level of
lead ion rejection. The exfoliated MoS2 nanosheet has several advantages when used in
water treatment membranes: (1) MoS2 nanosheets are not detached easily when applied to
the water treatment process because it does not have a hydrophilic functional group, (2) free
from the phenomenon of a decrease in permeance due to the attraction between hydrophilic
functional groups and water molecules, (3) it receives less resistance from the movement of
water molecules because the surface of the MoS2 nanosheet is relatively smooth compared
to graphene oxide (GO), and (4) the degree of deformation or compression under pressure
is less than GO because the out-of-plane of the MoS2 nanosheet is rigid [23–27]. Therefore,
if these features are well utilized, NF membranes with high solute rejection with good
water permeance can be manufactured. This performance is meaningful because it cannot
be realized with conventional commercial membranes.

This study focused on improving the lead ion rejection of the membrane to obtain lead-
free water after a single NF process. Instead of controlling the pore size of the membrane, a
method of improving the rejection performance for lead ions via electrostatic interaction
by controlling the surface characteristics is adopted. Considering the trade-off relationship
between water permeance and solute rejection, the appropriate membrane thickness and
operating pressure were selected. In addition, the composition of the membrane showing
the optimal permeance and rejection values was studied.

2. Materials and Methods
2.1. Materials

Bulk MoS2 powder (99%, metal basis), starting material, was purchased from Alfa
Aesar (Ward Hill, MA, USA). Acetone (99.5%) and isopropyl alcohol (IPA) (99.5%) were
obtained from DUKSAN (Danwon-gu, Ansan, Republic of Korea). L-Cysteine (97%) and
N,N-Dimethylformamide (DMF, ACS reagent, ≥99.8%) were acquired from Sigma-Aldrich.
Polytetrafluoroethylene (PTFE, 0.1 microns, 47 mm, STERLITECH, Kent, WA, USA) was
used as the filtering membrane for rinsing MoS2 nanosheets. In the NF test, lead (II) nitrate
(ACS reagent, ≥99.0%, Sigma-Aldrich, Saint Louis, MO, USA) and polyethersulfone (PES,
1000 Da, 47 mm, NP010, Microdyn Nadir, Wiesbaden, Germany) were used as a feed solute
and supporting membrane, respectively.
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2.2. Synthesis of Cysteine-Functionalized MoS2 Nanosheets

Bulk MoS2 is dispersed in a mixed solvent to exfoliate. Bulk MoS2 powder (200 mg)
was added to the prepared acetone-IPA (8:2) mixture solvent and sonicated in a bath for 10 h.
After precipitating the powders that have not been exfoliated for 1 day, the supernatant
is collected and centrifuged (3000 RPM, 30 min). After collecting the supernatant, carry
out vacuum filtration through a PTFE membrane filter and then wash with ethanol and
DI water. MoS2 nanosheets were vacuum dried at 50 ◦C for 1 day and then collected.
The MoS2 nanosheet was redispersed in DMF to have a concentration of 100 ug mL−1

(50 mL), and Cysteine was added to become 1, 2, 5, 10, 20, 40 wt % based on the MoS2
mass. This MoS2-Cysteine mixture was reacted by oil-bath at 70 ◦C for 30 min to obtain
Cys-functionalized MoS2 (MoS2-Cys) nanosheets (Scheme 1). The synthesized composites
were named MC0, MC1, MC2, MC5, MC10, MC20, and MC40 according to the Cysteine
content 0–40 wt %.
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2.3. Fabrication of the NF Membrane

NF membranes for the test were fabricated by the facile vacuum filtration process
(Figure S1). Pristine MoS2 or MoS2-Cys dispersions were filtered on the PES flat sheet
membrane (47 mm in diameter), and the membranes were dried at 50 ◦C in a vacuum
state. The volume of dispersions was determined according to the target thickness of
the final product. Based on the pristine MoS2 dispersion, if 1 mL of the 100 µg mL−1

solution is filtered, an active layer with a thickness of about 100 nm was obtained. If the
volume of the solution is increased by 1 mL, the final thickness increases by about 100 nm.
Thickness control was possible under the same conditions with pristine MoS2 nanosheet
even when Cysteine is functionalized, and the concentration of Cysteine has a little effect
on the thickness change.

2.4. Characterizations

The MoS2 nanosheet was analyzed by X-ray diffraction (XRD, D/Max–2500, Rigaku,
Akishima-shi, Tokyo, Japan) and Raman spectroscopy (LabRAM HR, Horiba-Jobin-Yvon
Co., Bensheim, Germany) with a LASER of 514 nm using the dried membrane form, and
UV-Vis spectrometer (S-3100, SCINCO Co., Ltd., Gangnam-gu, Seoul, Korea) was carried
out using the MoS2 dispersion in acetone-IPA mixture solvent (>100 µg mL−1) to confirm
the exfoliation state. Characterizations of the MoS2-Cys nanosheet were carried out by
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Fourier transform infrared spectroscopy (FTIR, Nicolet iS10 FTIR Spectrometer, Thermo
Fisher Scientific, Waltham, MA, USA) with preparing pellet using MoS2-Cys and KBr at
a 1:100 wt % ratio, and X-ray photoelectron spectroscopy (XPS, Multilab 2000, Thermo
Fisher Scientific, Waltham, MA, USA) was carried out using the dried membrane form.
In addition, analysis of the membranes was performed by a Zeta potential instrument
(ELSZ-2, Otsuka Electronics Co., Ltd., Hirakata-shi, Osaka, Japan), field-emission scanning
electron microscopy (FESEM, JSM-7500F, JEOL, Akishima, Tokyo, Japan), and atomic
force microscopy (AFM, XE-100, Park Systems, Gwanggyo-ro, Suwon, Korea) using the
membrane that MoS2-based material deposited onto the PES support.

2.5. NF Performances

An NF test was conducted using a lab-scale dead-end cell (HP4750, high pressure
stirred cell, STERLITECH, Kent, WA, USA) under the pressure of 1–9 bar. The membranes
were used after cutting to a circular shape to fit into the dead-end cell kit holder. The
effective membrane area was 14.6 cm2. Before all tests, pre-compaction was performed
with DI water at 5 bar for 1 h. In the performance test, a Pb(NO3)2 aqueous solution of
1000 ppm was used as a feed solution after adjusting pH until 6 by adding 0.1 M NaOH
aqueous solution. Water permeance (WP) and the rejection of Pb2+ ions were calculated
using Equations (1) and (2) below, respectively:

WP =
Q

A∆P
(1)

where Q is the flow rate (L h−1) of permeate, A is the effective surface area (m2), ∆p is the
transmembrane pressure (bar).

R =

(
1 −

Cp

C f

)
× 100% (2)

where Cp and Cf are the concentrations of lead in permeate and feed, respectively.

3. Results
3.1. Synthesis of MoS2 Nanosheet

A physical property analysis was performed to check whether MoS2 was well exfo-
liated or not. In the XRD pattern, it can be seen that the bulk MoS2 pattern is in good
agreement with the reference (JCPDS card 87-2416). After MoS2 exfoliation, only the peak
related to the (002) plane remained, and other peaks disappeared so that it was confirmed
that the MoS2 nanosheets were obtained (Figure 1a) and agree with the literatures [28,29].
Moreover, the same type of UV-Vis spectrum and absorption peaks as those previously
reported in MoS2 nanosheet-related literature were observed after exfoliation, while no ab-
sorption peak was observed in the spectrum of bulk MoS2 (Figure 1b). Peaks 1 and 2 refer to
the electron transition between the higher density of state regions, and Peaks 3 and 4 refer to
direct transitions of electrons from the valence band to the conduction band [30,31]. In addi-
tion, in the Raman analysis results, E1

2g and A1g peaks were blue-shifted (∆p = 26.69 cm−1)
and red-shifted (∆p = 24.90 cm−1), respectively (Figure S2), after MoS2 exfoliation. As the
in-plane vibration between Mo and S atoms is strengthened, E1

2g is blue-shifted, and van
der Waals interaction in the out-of-plane direction of S atoms is reduced, resulting in the
redshift of A1g [32]. When these results were considered together, it was confirmed that
MoS2 was well exfoliated in the form of nanosheets.
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Figure 1. (a) XRD patterns and (b) UV-Vis spectra of the bulk MoS2 and exfoliated MoS2 nanosheet.

3.2. Physical/Chemical Analysis of Cysteine-Functionalized MoS2

All the analysis results for the MoS2-Cys membrane provided those for MC10 as
representative. By checking the functional group of materials through ATR, the existence or
bonding state was analyzed (Figure 2). MoS2 nanosheet showed the general spectral shape
of chemically exfoliated MoS2 with bands of 3500–3200 cm−1 and 1613 cm−1 resulting from
the –OH group, and the band of 1200–900 cm–1 attributed to overlapping the stretching
vibrations of Mo=O and S=O [33,34]. Through this result, the presence of MoS2 nanosheets
can be confirmed, and it can be seen that mild oxidation occurred in the process of exfoliat-
ing MoS2 through a solution process. In the case of Cysteine, major bands were observed
at 3436, 2950, 2515, 2020, and 1525–1315 cm−1, and these corresponded to –OH, –NH2,
and S–H stretching vibrations; N–H stretching vibration; and the –COOH group [35–37].
In addition, in the case of MoS2-Cys, it was confirmed that the Mo=O and S=O stretch
vibration bands at 1200–900 cm–1 derived from MoS2 were strengthened compared to
that of the Cysteine. Considering that additional oxidation cannot occur in the process
of functionalizing Cysteine on MoS2, it can be analyzed that bonds between the oxygen
functional groups of Cysteine and the components of MoS2 are formed.
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Figure 2. FTIR spectra of the MoS2 nanosheet, Cysteine, and Cysteine-functionalized MoS2.

The status of MoS2-Cys was double-checked through XPS analysis. In Figure 3a,b,
general peaks of the chemically exfoliated MoS2 were observed from the Mo 3d core-
level spectra of MoS2 and MoS2-Cys [38,39]. Note that, even after the functionalization
of Cysteine on MoS2, it can be seen that additional oxidation did not occur because the
intensity of the peak resulting from MoO3 did not increase at all. On the other hand, the
intensity of the S 2s spectrum next to the Mo 3d spectrum was enhanced after Cysteine was
combined. In addition, in the S 2p spectra of MoS2 and MoS2-Cys (Figure 3c,d), it can be
seen that there was no additional oxidation during the functionalization process because
the S 2p1/2 and S 2p3/2 peaks do not change even after combining Cysteine to MoS2.
Cysteine-related peaks appeared at 164.5 eV and 163.6 eV (Figure 3d and Figure S3) [38,40].
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Combining these results with the above FTIR results, it can be said that an interaction
between MoS2 and Cysteine has occurred.
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Figure 3. Mo 3d XPS core-level spectra of the (a) MoS2 nanosheet and (b) MoS2-Cys nanosheet. S 2p
XPS core-level spectra of the (c) MoS2 nanosheet and (d) MoS2-Cys nanosheet.

In addition, the morphology and nanosheet size were checked out (Figure S4). In the
SEM images, it can be seen that the pristine MoS2 membrane has a morphology in the form
of stacked MoS2 nanosheets, and the membrane composed of MoS2-Cys also had almost
the same morphology (Figure S4a,b). Moreover, when individual MoS2 and MoS2-Cys
nanosheets were measured by AFM, the lateral sizes of nanosheets were 0.957 and 0.937 um,
respectively (Figure S4c,d). The thickness of MoS2 nanosheet was about 1.4 nm, and about
0.1 nm thicker for MoS2-Cys than MoS2, although there were slight variations. This slight
difference may be due to the presence of Cys molecules.

3.3. Nanofiltration Performances

The NF performance of the MoS2-Cys membrane for the lead dissolved water was
tested. First, we searched for the optimal active layer thickness and operating pressure
using the pristine MoS2 nanosheets. When the thickness of the MoS2 nanosheet layer was
controlled in the range of 100–500 nm under constant pressure (5 bar), the water permeance
decreases as the thickness increases, and when the thickness increases from 100 to 200 nm,
the Pb2+ rejection was greatly improved. However, the Pb2+ rejection was no longer
significantly improved even though the thickness was increased to 300–500 nm so that the
optimal thickness was determined to be 200 nm (Figure 4a). In addition, when observing
the NF performances at various operating pressures from 1 to 9 bar with the thickness
fixed at 200 nm, the water permeance increased and the rejection decreased as increasing
operating pressure (Figure 4b). However, since it was confirmed that the decrease in
rejection becomes magnified when the pressure is higher than 5 bar, the operating pressure
was set to 5 bar.
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Figure 4. Water permeance and Pb2+ ion rejection of the MoS2 nanosheet membrane according
to (a) MoS2 layer thickness and (b) applied pressure (the error bars were calculated based on the
repeated experiments).

Based on the previous test results, the thickness of the active layer was 200 nm and
the operating pressure was fixed at 5 bar, and the NF performances of the MoS2-based
membranes were evaluated according to the Cysteine content using the Pb(NO3)2 aqueous
solution-adjusted pH 6 (Figure 5). The water permeance of the MoS2 nanosheet mem-
brane was 22.3 LMH bar−1, and as the Cysteine content increased from 1 wt % to 10 wt %,
the water permeance also gradually improved, obtaining the maximum permeance of
56.7 LMH bar−1 in MC10. This phenomenon resulted from increasing the content of hy-
drophilic Cysteine functional groups on the MoS2 (MoS2-Cys itself was still hydrophobic)
(Figure S5a). When the concentration of Cysteine was increased to 20 and 40 wt %, it
seems that the excessive Cysteine present in the membrane hinders the mobility of water
molecules regardless of whether it is hydrophilic or not. In addition, the rejection of Pb2+

ions continued to increase as the Cysteine content increased, but MC20 and MC40 showed
a very small increase in rejection so that the optimal condition can be determined as MC10
with considering water permeance. The rejection of Pb2+ ions was improved after com-
bining the Cysteine to MoS2 via the Donnan exclusion effect because there is no reason
for the dramatic change in the overall pore size or structure of the MoS2 membrane by
the introduction of Cysteine. In fact, when checking the Zeta potential of MoS2 nanosheet
and MC10 membranes under various pH conditions, MC10 showed positive Zeta at pH 6
where the NF test was performed (Figure S5b). Therefore, it was possible to effectively
improve the rejection of Pb2+ ions by controlling the electrochemical state of the material
surface without changing the physical structure of the membrane or the state of the water
channel. In addition, the residual Pb metal was confirmed from the MoS2-Cys membrane
surface after nanofiltration (Figure S6).
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Figure 5. NF performance MoS2-based membrane according to Cysteine concentrations.
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4. Conclusions

Bulk MoS2 was exfoliated in a nanosheet state based on a simple and industrially
applicable solution process, and Cysteine was incorporated therein. When an appropriate
amount of Cysteine was applied to MoS2, both the water permeance and Pb2+ rejection
were improved, overcoming the trade-off relationship between solvent permeance and
solute rejection in the NF system. In particular, since the NF performance was improved
by controlling the electrochemical properties of the surface without changing the physical
structure or state of the membrane, it is quite valuable in that it can enhance the efficiency
of the fabrication process. However, in order to improve the completeness of this research
in the future, it is necessary to study how the NF performance changes under various
pH conditions or how good the long-term operation stability is. In addition, it would be
worthy of checking the rejection performance of not only the Pb2+ ions but also the other
heavy metal ions that are frequently released from the industry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemengineering5030041/s1, Figure S1: A fabrication process of MoS2-Cys NF membranes,
Figure S2: Raman spectra of the bulk MoS2 and exfoliated MoS2 nanosheet, Figure S3: S 2p XPS
core-level spectra of the Cysteine, Figure S4: SEM images of (a) pristine MoS2 and (b) MoS2-Cys
membranes. AFM results of (c) pristine MoS2 and (d) MoS2-Cys membranes. Figure S5: (a) Water
contact angle according to Cysteine concentration and (b) Zeta potential of the MoS2 nanosheet and
MC10 in various pH.
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