Background/Objectives: A comparative study of silver (Ag), titanium nitride (TiN), zirconium nitride (ZrN), and copper (Cu) coatings on titanium (Ti) disks, considering the specifications of a microporous skin- and bone-integrated titanium pylon (SBIP), was performed to assess their biocompatibility, osseointegration, and mechanical
[...] Read more.
Background/Objectives: A comparative study of silver (Ag), titanium nitride (TiN), zirconium nitride (ZrN), and copper (Cu) coatings on titanium (Ti) disks, considering the specifications of a microporous skin- and bone-integrated titanium pylon (SBIP), was performed to assess their biocompatibility, osseointegration, and mechanical properties.
Methods: To assess cytotoxicity and biocompatibility, Ti disks with various metal coatings were co-cultured with FetMSCs and MG-63 cells for 1, 3, 7, and 14 days and subsequently evaluated using a cell viability assay, as supported by SEM and confocal microscopy studies. The antimicrobial activity of the selected four materials coating the implants was tested against
S. aureus by mounting Ti disks onto the surface of LB agar dishes spread with a bacterial suspension and measuring the diameter of the growth inhibition zones. Quantitative Real-Time Polymerase Chain Reaction (RT-PCR) analysis of the relative gene expression of biomarkers that are associated with extracellular matrix components (fibronectin, vitronectin, type I collagen) and cell adhesion (α2, α5, αV integrins), as well as of osteogenic markers (osteopontin, osteonectin, TGF-β1, SMAD), was performed during the 14-day follow-up period. Additionally, the activity of matrix metalloproteinases (MMP-1, -2, -8, -9) was assessed.
Results: All samples with metal coatings, except the copper coating, demonstrated a good cytotoxicity profile, as evidenced by the presence of a cellular monolayer on the sample surface on the 14th day of the follow-up period (as shown by SEM and inverted confocal microscopy). All metal coatings enhanced MMP activity, as well as cellular adhesion and osteogenic marker expression; however, TiN showed the highest values of these parameters. Significant inhibition of bacterial growth was observed only in the Ag-coated Ti disks, and it persisted for over 35 days.
Conclusions: The silver-based coating, due to its high antibacterial activity, low cytotoxicity, and biointegrative capacity, can be recommended as the coating of choice for microporous titanium implants for further preclinical studies.
Full article