Plasma Surface Modification of Biomedical Implants and Devices: Emphasis on Orthopedic, Dental, and Cardiovascular Applications
Abstract
1. Introduction
2. Material Surface Modification
2.1. Need/Requirements of Surface Modification
2.2. Methods of Surface Modification
3. Plasma Surface Modification
4. Plasma Surface Modification in Biomedical Applications
4.1. Dental Implant Applications
4.2. Bone Implant Applications
4.3. Cardiovascular Implant Applications
4.4. Other Biomedical Implants and Devices
4.5. Batch-to-Batch Variability and Quality Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAP | Cold Atmospheric Plasma |
| DLC | Diamond-Like Carbon |
| DBD | Dielectric Barrier Discharge |
| ECs | Endothelial Cells |
| EDX | Energy-Dispersive X-ray |
| FAp | Fluorapatite |
| F-DLC | Fluorinated DLC |
| FHA | Fluoridated Hydroxyapatite |
| FTIR | Fourier transform infrared spectroscopy |
| GRGD | Gly-Arg-Gly-Asp |
| HA | Hydroxyapatite |
| HMDSO | Hexamethyldisiloxane |
| HUVECs | Human Umbilical Vein Endothelial Cells |
| L-PBF | Laser Powder Bed Fusion |
| PAC | Plasma-Activated Coating |
| PDMS | Polydimethylsiloxane |
| PEEK | Polyetheretherketone |
| PEG | Polyethylene glycol |
| PEO | Plasma electrolytic oxidation |
| PIII | Plasma Immersion Ion Implantation |
| PLLA | Poly-L-Lactic Acid |
| PTFE | Polytetrafluoroethylene |
| PPHMDSN | Plasma-Polymerized hexamethyldisilazane |
| P-PPAm | Pulsed-Plasma Polymeric Allylamine |
| PU | Polyurethane |
| RF | Radio Frequency |
| RGD | Arginine–Glycine–Aspartic acid |
| RGDS | Arg-Gly-Asp-Ser |
| SBF | Simulated Body Fluid |
| SEM | Scanning Electron Microscopy |
| SS | Stainless Steel |
| Ti | Titanium |
| TiO2 | Titania |
| XRD | X-ray diffraction |
References
- Lam, R.H.; Chen, W. Biomedical devices. In Materials, Design, and Manufacturing; Springer: Reading, MA, USA, 2019. [Google Scholar]
- Wong, K.K. Methods in Research and Development of Biomedical Devices; World Scientific: Singapore, 2013. [Google Scholar]
- Mahajan, A.; Devgan, S.; Kalyanasundaram, D. Surface alteration of Cobalt-Chromium and duplex stainless steel alloys for biomedical applications: A concise review. Mater. Manuf. Process. 2023, 38, 260–270. [Google Scholar] [CrossRef]
- Mani, G.; Porter, D.; Collins, S.; Schatz, T.; Ornberg, A.; Shulfer, R. A review on manufacturing processes of cobalt-chromium alloy implants and its impact on corrosion resistance and biocompatibility. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35431. [Google Scholar] [CrossRef]
- Hermawan, H.; Ramdan, D.; Djuansjah, J.R. Metals for biomedical applications. Biomed. Eng.-Theory Appl. 2011, 1, 411–430. [Google Scholar]
- Bai, Z.; Gilbert, J.L. Corrosion performance of stainless steels, cobalt, and titanium alloys in biomedical applications. In Corrosion: Environments and Industries; ASM International: Syracuse, NY, USA, 2006; pp. 837–852. [Google Scholar]
- Mavrogenis, A.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of implant osseointegration. J. Musculoskelet. Neuronal Interact. 2009, 9, 61–71. [Google Scholar]
- Prodanov, D.; Delbeke, J. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front. Neurosci. 2016, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Todros, S.; Todesco, M.; Bagno, A. Biomaterials and their biomedical applications: From replacement to regeneration. Processes 2021, 9, 1949. [Google Scholar] [CrossRef]
- Iqbal, S.; Sohail, M.; Fang, S.; Ding, J.; Shen, L.; Chen, M.; Shu, G.; Du, Y.-Z.; Ji, J. Biomaterials evolution: From inert to instructive. Biomater. Sci. 2023, 11, 6109–6115. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Gupta, S.; Sharma, A. Surgical Devices for Biomedical Implants. In Additive Manufacturing for Biomedical Applications: Recent Trends and Challenges; Dixit, A., Kumar, A., Pathak, D.K., Eds.; Springer Nature: Singapore, 2024; pp. 195–218. [Google Scholar]
- Goncalves, A.D.; Balestri, W.; Reinwald, Y. Biomedical implants for regenerative therapies. In Biomaterials; IntechOpen: London, UK, 2020; Volume 9, pp. 1–36. [Google Scholar]
- Saba, T.; Saad, K.S.K.; Rashid, A.B. Precise surface engineering: Leveraging chemical vapor deposition for enhanced biocompatibility and durability in biomedical implants. Heliyon 2024, 10, e37976. [Google Scholar] [CrossRef] [PubMed]
- Razavi, Z.-S.; Soltani, M.; Mahmoudvand, G.; Farokhi, S.; Karimi-Rouzbahani, A.; Farasati-Far, B.; Tahmasebi-Ghorabi, S.; Pazoki-Toroudi, H.; Afkhami, H. Advancements in tissue engineering for cardiovascular health: A biomedical engineering perspective. Front. Bioeng. Biotechnol. 2024, 12, 1385124. [Google Scholar] [CrossRef]
- Woeppel, K.M.; Cui, X.T. Nanoparticle and biomolecule surface modification synergistically increases neural electrode recording yield and minimizes inflammatory host response. Adv. Healthc. Mater. 2021, 10, 2002150. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Siddiqui, T.U. Advancing Personalized Medicine: The Role of Additive Manufacturing in Patient-Specific Implants and Tissue Engineering. In Biomaterials in Orthopaedics & Trauma: Current Status and Future Trends in Revolutionizing Patient Care; Springer: Singapore, 2025; pp. 239–252. [Google Scholar]
- Guzzi, E.A.; Tibbitt, M.W. Additive manufacturing of precision biomaterials. Adv. Mater. 2020, 32, 1901994. [Google Scholar] [CrossRef] [PubMed]
- Kattimani, V.S.; Kondaka, S.; Lingamaneni, K.P. Hydroxyapatite—Past, Present, and Future in Bone Regeneration. Bone Tissue Regen. Insights 2016, 7, BTRI.S36138. [Google Scholar] [CrossRef]
- Bal, Z.; Kaito, T.; Korkusuz, F.; Yoshikawa, H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater. 2020, 3, 521–544. [Google Scholar] [CrossRef]
- Florea, D.A.; Chircov, C.; Grumezescu, A.M. Hydroxyapatite Particles—Directing the Cellular Activity in Bone Regeneration Processes: An Up-To-Date Review. Appl. Sci. 2020, 10, 3483. [Google Scholar] [CrossRef]
- Braem, A.; Kamarudin, N.H.N.; Bhaskar, N.; Hadzhieva, Z.; Mele, A.; Soulié, J.; Linklater, D.P.; Bonilla-Gameros, L.; Boccaccini, A.R.; Roy, I. Biomaterial strategies to combat implant infections: New perspectives to old challenges. Int. Mater. Rev. 2023, 68, 1011–1049. [Google Scholar] [CrossRef]
- Hannan, M.A.; Abbas, S.M.; Samad, S.A.; Hussain, A. Modulation techniques for biomedical implanted devices and their challenges. Sensors 2011, 12, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Kumar, A.; Kaya, S.; Marzouki, R.; Zhang, F.; Guo, L. Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings 2022, 12, 1459. [Google Scholar] [CrossRef]
- Neděla, O.; Slepička, P.; Švorčík, V. Surface modification of polymer substrates for biomedical applications. Materials 2017, 10, 1115. [Google Scholar] [CrossRef]
- Wu, G.; Li, P.; Feng, H.; Zhang, X.; Chu, P.K. Engineering and functionalization of biomaterials via surface modification. J. Mater. Chem. B 2015, 3, 2024–2042. [Google Scholar] [CrossRef]
- Pillai, R.; Thomas, V. Plasma assisted surface engineered natural fibers and its derivatives for adsorptive removal of heavy metals. In Proceedings of the APS Annual Gaseous Electronics Meeting Abstracts, Virtual, 4–8 October 2021; p. PR21.002. [Google Scholar]
- Pillai, R.R.; Thomas, V. Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications. Polymers 2023, 15, 400. [Google Scholar] [CrossRef]
- Skorb, E.V.; Andreeva, D.V. Surface Nanoarchitecture for Bio-Applications: Self-Regulating Intelligent Interfaces. Adv. Funct. Mater. 2013, 23, 4483–4506. [Google Scholar] [CrossRef]
- Agnes, C.J.; Karoichan, A.; Tabrizian, M. The diamond concept enigma: Recent trends of its implementation in cross-linked chitosan-based scaffolds for bone tissue engineering. ACS Appl. Bio Mater. 2023, 6, 2515–2545. [Google Scholar] [CrossRef]
- Osypko, K.F.; Ciszyński, M.P.; Kubasiewicz-Ross, P.; Hadzik, J. Bone tissue 3D bioprinting in regenerative dentistry through the perspective of the diamond concept of healing: A narrative review. Adv. Clin. Exp. Med. 2023, 32, 921–931. [Google Scholar] [CrossRef]
- Mas-Moruno, C.; Su, B.; Dalby, M.J. Multifunctional coatings and nanotopographies: Toward cell instructive and antibacterial implants. Adv. Healthc. Mater. 2019, 8, 1801103. [Google Scholar] [CrossRef] [PubMed]
- Raphel, J.; Holodniy, M.; Goodman, S.B.; Heilshorn, S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 2016, 84, 301–314. [Google Scholar] [CrossRef]
- Molloy, A.; Beaumont, K.; Alyami, A.; Kirimi, M.; Hoare, D.; Mirzai, N.; Heidari, H.; Mitra, S.; Neale, S.L.; Mercer, J.R. Challenges to the development of the next generation of self-reporting cardiovascular implantable medical devices. IEEE Rev. Biomed. Eng. 2021, 15, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V. Implantable devices: Issues and challenges. Electronics 2012, 2, 1–34. [Google Scholar] [CrossRef]
- Amjed, M.A.; Mohamd, T.B.; Saadallah, N.H.; Shareef, R.T.; Abad, G.K. Modern Challenges and Innovations in Clinical Biomedical Devices; Book Rivers: Lucknow, Uttar Pradesh, India, 2025. [Google Scholar]
- Singh, A.B.; Khandelwal, C.; Dangayach, G.S. Revolutionizing healthcare materials: Innovations in processing, advancements, and challenges for enhanced medical device integration and performance. J. Micromanuf. 2024, 25165984241256234. [Google Scholar] [CrossRef]
- Barthelat, F. Architectured materials in engineering and biology: Fabrication, structure, mechanics and performance. Int. Mater. Rev. 2015, 60, 413–430. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef]
- Shayeb, M.A.; Elfadil, S.; Abutayyem, H.; Shqaidef, A.; Marrapodi, M.M.; Cicciù, M.; Minervini, G. Bioactive surface modifications on dental implants: A systematic review and meta-analysis of osseointegration and longevity. Clin. Oral Investig. 2024, 28, 592. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, G.; Li, J.J. Advances in implant surface modifications to improve osseointegration. Mater. Adv. 2021, 2, 6901–6927. [Google Scholar] [CrossRef]
- Niinomi, M. Metals for Biomedical Devices; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar]
- Teo, A.J.; Mishra, A.; Park, I.; Kim, Y.-J.; Park, W.-T.; Yoon, Y.-J. Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Eng. 2016, 2, 454–472. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Lazoryak, B.I.; Davidova, G.A.; Murzakhanov, F.F.; Gabbasov, B.F.; Petrakova, N.V.; Fosca, M.; Barinov, S.M.; Vadala, G.; Uskoković, V. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications. Mater. Sci. Eng. C 2021, 129, 112410. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Pandiaraj, S.; Muthusamy, S.; Panchal, H.; Alsoufi, M.S.; Ibrahim, A.M.M.; Elsheikh, A. Biodegradable magnesium metal matrix composites for biomedical implants: Synthesis, mechanical performance, and corrosion behavior—A review. J. Mater. Res. Technol. 2022, 20, 650–670. [Google Scholar] [CrossRef]
- Zwawi, M. Recent advances in bio-medical implants; mechanical properties, surface modifications and applications. Eng. Res. Express 2022, 4, 032003. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Ramakrishna, S. Surface engineering of biomaterials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol. J. 2021, 16, 2000116. [Google Scholar] [CrossRef]
- Luong-Van, E.; Rodriguez, I.; Low, H.Y.; Elmouelhi, N.; Lowenhaupt, B.; Natarajan, S.; Lim, C.T.; Prajapati, R.; Vyakarnam, M.; Cooper, K. Review: Micro- and nanostructured surface engineering for biomedical applications. J. Mater. Res. 2013, 28, 165–174. [Google Scholar] [CrossRef]
- Kurup, A.; Dhatrak, P.; Khasnis, N. Surface modification techniques of titanium and titanium alloys for biomedical dental applications: A review. Mater. Today Proc. 2021, 39, 84–90. [Google Scholar] [CrossRef]
- Sharath Kumar, J.; Kumar, R.; Verma, R. Surface modification aspects for improving biomedical properties in implants: A review. Acta Metall. Sin. Engl. Lett. 2024, 37, 213–241. [Google Scholar] [CrossRef]
- Thull, R.; Grant, D. Physical and Chemical Vapor Deposition and Plasma-assisted Techniques for Coating Titanium. In Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications; Brunette, D.M., Tengvall, P., Textor, M., Thomsen, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 283–341. [Google Scholar]
- Rasouli, R.; Barhoum, A.; Uludag, H. A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance. Biomater. Sci. 2018, 6, 1312–1338. [Google Scholar] [CrossRef]
- Dong, H.; Liu, H.; Zhou, N.; Li, Q.; Yang, G.; Chen, L.; Mou, Y. Surface modified techniques and emerging functional coating of dental implants. Coatings 2020, 10, 1012. [Google Scholar] [CrossRef]
- Roh, S.; Jang, Y.; Yoo, J.; Seong, H. Surface modification strategies for biomedical applications: Enhancing cell–biomaterial interfaces and biochip performances. BioChip J. 2023, 17, 174–191. [Google Scholar] [CrossRef]
- Boulos, M.I.; Fauchais, P.; Pfender, E. Thermal Plasmas; Springer: Boston, MA, USA, 1994; Volume 1. [Google Scholar] [CrossRef]
- Burm, K. Plasma: The fourth state of matter. Plasma Chem. Plasma Process. 2012, 32, 401–407. [Google Scholar] [CrossRef]
- Braithwaite, N. The origins of ‘plasma’. Phys. World 2008, 21, 19. [Google Scholar] [CrossRef]
- Van Roosmalen, A.; Baggerman, J.; Brader, S. The Plasma State. In Dry Etching for VLSI; Springer: Boston, MA, USA, 1991; pp. 5–15. [Google Scholar]
- Hegemann, D.; Brunner, H.; Oehr, C. Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 208, 281–286. [Google Scholar] [CrossRef]
- Pillai, R.R.; Lungu, C.T.; Vaidya, U.; Thomas, V. Plasma-Corona Modifications of Carbon Fibers and Carbon Nanostructures. In Handbook of Functionalized Carbon Nanostructures: From Synthesis Methods to Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1061–1091. [Google Scholar]
- Pillai, R.R.; Adhikari, K.R.; Gardner, S.; Sunilkumar, S.; Sanas, S.; Mohammad, H.; Thomas, V. Inkjet-printed plasma-functionalized polymer-based capacitive sensor for PAHs. Mater. Today Commun. 2023, 35, 105659. [Google Scholar] [CrossRef]
- Pillai, R.R.; Appavoo, K.; Lungu, C.T.; Behura, S.K.; Thomas, V. Plasma-Corona-Processed Nanostructured Coating for Thermoregulative Textiles. ACS Appl. Polym. Mater. 2024, 6, 14047–14056. [Google Scholar] [CrossRef]
- Bradford, J.P.; Hernandez-Moreno, G.; Pillai, R.R.; Hernandez-Nichols, A.L.; Thomas, V. Low-Temperature Plasmas Improving Chemical and Cellular Properties of Poly (Ether Ether Ketone) Biomaterial for Biomineralization. Materials 2024, 17, 171. [Google Scholar] [CrossRef]
- Deslima, C.W.; Vinoy, V.M.; Pillai, R.R.; Vijayan, V.M. Application of low-temperature plasma treatment for rapid and efficient polydopamine coating on 3D-printed polymer scaffolds. MRS Commun. 2023, 13, 1163–1170. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Jin, S.; Han, G.-H.; Kwon, G.C.; Choi, J.J.; Choi, E.H.; Uhm, H.S.; Cho, G. Plasma apparatuses for biomedical applications. IEEE Trans. Plasma Sci. 2015, 43, 944–950. [Google Scholar] [CrossRef]
- Martines, E. Special issue “plasma technology for biomedical applications”. Appl. Sci. 2020, 10, 1524. [Google Scholar] [CrossRef]
- Wakelin, E.A.; Fathi, A.; Kracica, M.; Yeo, G.C.; Wise, S.G.; Weiss, A.S.; McCulloch, D.G.; Dehghani, F.; Mckenzie, D.R.; Bilek, M.M. Mechanical properties of plasma immersion ion implanted PEEK for bioactivation of medical devices. ACS Appl. Mater. Interfaces 2015, 7, 23029–23040. [Google Scholar] [CrossRef]
- Hernandez-Moreno, G.; Vijayan, V.M.; Halloran, B.A.; Ambalavanan, N.; Hernandez-Nichols, A.L.; Bradford, J.P.; Pillai, R.R.; Thomas, V. A plasma-3D print combined in vitro platform with implications for reliable materiobiological screening. J. Mater. Chem. B 2024, 12, 6654–6667. [Google Scholar] [CrossRef]
- Pillai, R.R.; McMahan, B.M.; Hebert, L.; Oh, J.; Lungu, C.T.; Antony, V.B.; Thomas, V. Plasma Surface Activated Carbon Fiber Mats for Effective Aerosol-Mediated Mn Remediation. ACS Sustain. Resour. Manag. 2024, 1, 2602–2611. [Google Scholar] [CrossRef]
- Pillai, R.R.; Panickar, R.; Vaidya, U.; Lungu, C.T.; Antony, V.B.; Thomas, V. Organic dusty-misty plasma-assisted modeling of natural fiber adsorbent-bed for Mn (II) and Cd (II) from aqueous system. J. Environ. Chem. Eng. 2025, 13, 116759. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, V.M.; Walker, M.; Pillai, R.R.; Moreno, G.H.; Vohra, Y.K.; Morris, J.J.; Thomas, V. Plasma Electroless Reduction: A Green Process for Designing Metallic Nanostructure Interfaces onto Polymeric Surfaces and 3D Scaffolds. ACS Appl. Mater. Interfaces 2022, 14, 25065–25079. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.Z.; Naik, D.K. Applications of laser surface texturing in biomedical field: A review. Bioinspired Biomim. Nanobiomater. 2025, 14, 80–100. [Google Scholar] [CrossRef]
- Desmet, T.; Morent, R.; De Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules 2009, 10, 2351–2378. [Google Scholar] [CrossRef] [PubMed]
- Orsini, G.; Tosco, V.; Monterubbianesi, R.; Orilisi, G.; Putignano, A. A new era in restorative dentistry. In The First Outstanding 50 Years of “Università Politecnica delle Marche” Research Achievements in Life Sciences; Springer: Berlin/Heidelberg, Germany, 2020; pp. 319–334. [Google Scholar]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface modifications and their effects on titanium dental implants. BioMed Res. Int. 2015, 2015, 791725. [Google Scholar] [CrossRef]
- Najeeb, S.; Khurshid, Z.; Matinlinna, J.P.; Siddiqui, F.; Nassani, M.Z.; Baroudi, K. Nanomodified peek dental implants: Bioactive composites and surface modification—A review. Int. J. Dent. 2015, 2015, 381759. [Google Scholar] [CrossRef]
- Yoshinari, M.; Matsuzaka, K.; Inoue, T. Surface modification by cold-plasma technique for dental implants—Bio-functionalization with binding pharmaceuticals. Jpn. Dent. Sci. Rev. 2011, 47, 89–101. [Google Scholar] [CrossRef]
- Yoshinari, M.; Hayakawa, T.; Matsuzaka, K.; Inoue, T.; Oda, Y.; Shimono, M.; Ide, T.; Tanaka, T. Oxygen plasma surface modification enhances immobilization of simvastatin acid. Biomed. Res. 2006, 27, 29–36. [Google Scholar] [CrossRef]
- Balamurugan, P.; Selvakumar, N. In-vitro experiments on bio-functional calcium phosphate based coatings on titanium dental implant. Mater. Res. Express 2023, 10, 066512. [Google Scholar] [CrossRef]
- Yoshinari, M.; Hayakawa, T.; Matsuzaka, K.; Inoue, T.; Oda, Y.; Shimono, M. Immobilization of Fibronectin onto Organic Hexamethyldisiloxane Coatings with Plasma Surface Modification—Analysis of Fibronectin Adsorption Using Quartz Crystal Microbalance-dissipation Technique. J. Oral Tissue Eng. 2004, 1, 69–79. [Google Scholar] [CrossRef]
- Marín-Pareja, N.; Salvagni, E.; Guillem-Marti, J.; Aparicio, C.; Ginebra, M.-P. Collagen-functionalised titanium surfaces for biological sealing of dental implants: Effect of immobilisation process on fibroblasts response. Colloids Surf. B Biointerfaces 2014, 122, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.M.; Martinelli, A.E.; Alves, C.; Nascimento, R.M.; Távora, M.P.; Vilar, C.D. Surface modification of Ti implants by plasma oxidation in hollow cathode discharge. Surf. Coat. Technol. 2006, 200, 2618–2626. [Google Scholar] [CrossRef]
- Alves, C.; Guerra Neto, C.L.B.; Morais, G.H.S.; da Silva, C.F.; Hajek, V. Nitriding of titanium disks and industrial dental implants using hollow cathode discharge. Surf. Coat. Technol. 2005, 194, 196–202. [Google Scholar] [CrossRef]
- Nevins, M.; Chen, C.-Y.; Parma-Benfenati, S.; Kim, D.M. Gas Plasma Treatment Improves Titanium Dental Implant Osseointegration—A Preclinical In Vivo Experimental Study. Bioengineering 2023, 10, 1181. [Google Scholar] [CrossRef]
- Duske, K.; Koban, I.; Kindel, E.; Schröder, K.; Nebe, B.; Holtfreter, B.; Jablonowski, L.; Weltmann, K.D.; Kocher, T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J. Clin. Periodontol. 2012, 39, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Al Maruf, D.S.A.; Ren, J.; Cheng, K.; Xin, H.; Lewin, W.; Pickering, E.; Kruse, H.V.; Leinkram, D.; Parthasarathi, K.; Wise, I.; et al. Evaluation of osseointegration of plasma treated polyaryletherketone maxillofacial implants. Sci. Rep. 2025, 15, 1895. [Google Scholar] [CrossRef]
- Huang, H.-H.; Hsu, C.-H.; Pan, S.-J.; He, J.-L.; Chen, C.-C.; Lee, T.-L. Corrosion and cell adhesion behavior of TiN-coated and ion-nitrided titanium for dental applications. Appl. Surf. Sci. 2005, 244, 252–256. [Google Scholar] [CrossRef]
- Palanivelu, R.; Kalainathan, S.; Ruban Kumar, A. Characterization studies on plasma sprayed (AT/HA) bi-layered nano ceramics coating on biomedical commercially pure titanium dental implant. Ceram. Int. 2014, 40, 7745–7751. [Google Scholar] [CrossRef]
- Chou, W.-C.; Wang, R.C.C.; Huang, C.-L.; Lee, T.-M. The effect of plasma treatment on the osseointegration of rough titanium implant: A histo-morphometric study in rabbits. J. Dent. Sci. 2018, 13, 267–273. [Google Scholar] [CrossRef]
- Yoshinari, M.; Oda, Y.; Kato, T.; Okuda, K.; Hirayama, A. Influence of surface modifications to titanium on oral bacterial adhesion in vitro. J. Biomed. Mater. Res. 2000, 52, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Bunz, O.; Steegmann, M.-C.; Benz, K.; Testrich, H.; Quade, A.; Naumova, E.A.; Arnold, W.H.; Fricke, K.; Piwowarczyk, A.; Dittmar, T. Human Gingival Fibroblast Adhesion and Proliferation on Hydroxyapatite-Coated Zirconia Abutment Surfaces. Materials 2022, 15, 3625. [Google Scholar] [CrossRef] [PubMed]
- Paiwand, S.; Schäfer, S.; Kopp, A.; Beikler, T.; Fiedler, I.; Gosau, M.; Fuest, S.; Smeets, R. Antibacterial potential of silver and zinc loaded plasma-electrolytic oxidation coatings for dental titanium implants. Int. J. Implant Dent. 2025, 11, 12. [Google Scholar] [CrossRef]
- Chuang, T.-L.; Yeh, C.-L.; Chen, C.-Y.; Chang, H.-H.; Liao, S.-C.; Lin, C.-P. Development of Dual-Functional Titanium Implant for Osseointegration and Antimicrobial Effects via Plasma Modification. Int. Dent. J. 2025, 75, 103871. [Google Scholar] [CrossRef]
- Logesh, M.; Choe, H.-C. Multifunctional Ag/MWCNT/HA coatings on Ti6Al4V alloy via plasma electrolytic oxidation: Enhanced electrochemical and antibacterial properties for dental implants. Surf. Coat. Technol. 2025, 507, 132128. [Google Scholar] [CrossRef]
- Fischer, N.G.; Kobe, A.C.; Dai, J.; He, J.; Wang, H.; Pizarek, J.A.; De Jong, D.A.; Ye, Z.; Huang, S.; Aparicio, C. Tapping basement membrane motifs: Oral junctional epithelium for surface-mediated soft tissue attachment to prevent failure of percutaneous devices. Acta Biomater. 2022, 141, 70–88. [Google Scholar] [CrossRef]
- Yan, S.; Komasa, S.; Agariguchi, A.; Pezzotti, G.; Okazaki, J.; Maekawa, K. Osseointegration Properties of Titanium Implants Treated by Nonthermal Atmospheric-Pressure Nitrogen Plasma. Int. J. Mol. Sci. 2022, 23, 15420. [Google Scholar] [CrossRef]
- Vahabzadeh, S.; Roy, M.; Bandyopadhyay, A.; Bose, S. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater. 2015, 17, 47–55. [Google Scholar] [CrossRef]
- Mohammadtaheri, M.; Bozorg, M.; Yazdani, A.; Salehi, M. Fabrication of Ti–Al2O3–HA composites by spark plasma sintering and its properties for medical applications. J. Mater. Res. 2022, 37, 2571–2580. [Google Scholar] [CrossRef]
- Yoshinari, M.; Kato, T.; Matsuzaka, K.; Hayakawa, T.; Inoue, T.; Oda, Y.; Okuda, K.; Shimono, M. Adsorption behavior of antimicrobial peptide histatin 5 on PMMA. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Rupp, F.; Haupt, M.; Klostermann, H.; Kim, H.S.; Eichler, M.; Peetsch, A.; Scheideler, L.; Doering, C.; Oehr, C.; Wendel, H.P.; et al. Multifunctional nature of UV-irradiated nanocrystalline anatase thin films for biomedical applications. Acta Biomater. 2010, 6, 4566–4577. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Li, Y.C.; Tsai, W.F.; Ai, C.F.; Huang, H.H. Oxygen plasma immersion ion implantation treatment enhances the human bone marrow mesenchymal stem cells responses to titanium surface for dental implant application. Clin. Oral Implants Res. 2015, 26, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ao, X.; Xie, P.; Wu, J.; Dong, Y.; Yu, D.; Wang, J.; Zhu, Z.; Xu, H.H.K.; Chen, W. Effects of novel non-thermal atmospheric plasma treatment of titanium on physical and biological improvements and in vivo osseointegration in rats. Sci. Rep. 2020, 10, 10637. [Google Scholar] [CrossRef]
- Naujokat, H.; Harder, S.; Schulz, L.Y.; Wiltfang, J.; Flörke, C.; Açil, Y. Surface conditioning with cold argon plasma and its effect on the osseointegration of dental implants in miniature pigs. J. Cranio-Maxillofac. Surg. 2019, 47, 484–490. [Google Scholar] [CrossRef]
- Kwon, J.S.; Cho, W.T.; Lee, J.H.; Joo, J.Y.; Lee, J.Y.; Lim, Y.; Jeon, H.J.; Huh, J.B. Prospective Randomized Controlled Clinical Trial to Evaluate the Safety and Efficacy of ACTLINK Plasma Treatment for Promoting Osseointegration and Bone Regeneration in Dental Implants. Bioengineering 2024, 11, 980. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Zhao, H.; Liu, Y.; Liu, J.; Bai, N. Bioactive Effects of Low-Temperature Argon–Oxygen Plasma on a Titanium Implant Surface. ACS Omega 2020, 5, 3996–4003. [Google Scholar] [CrossRef]
- Kahm, S.H.; Lee, S.H.; Lim, Y.; Jeon, H.J.; Yun, K.-I. Osseointegration of Dental Implants after Vacuum Plasma Surface Treatment In Vivo. J. Funct. Biomater. 2024, 15, 278. [Google Scholar] [CrossRef]
- Zhou, S.-J.; Bai, Y.; Ma, W.; Chen, W.-D. Suspension Plasma-Sprayed Fluoridated Hydroxyapatite/Calcium Silicate Composite Coatings for Biomedical Applications. J. Therm. Spray Technol. 2019, 28, 1025–1038. [Google Scholar] [CrossRef]
- Ke, D.; Vu, A.A.; Bandyopadhyay, A.; Bose, S. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater. 2019, 84, 414–423. [Google Scholar] [CrossRef]
- Rezaei, A.; Golenji, R.B.; Alipour, F.; Hadavi, M.M.; Mobasherpour, I. Hydroxyapatite/hydroxyapatite-magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants. Ceram. Int. 2020, 46, 25374–25381. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, M.; Ding, C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 2000, 21, 841–849. [Google Scholar] [CrossRef]
- Khor, K.A.; Vreeling, A.; Dong, Z.L.; Cheang, P. Laser treatment of plasma sprayed HA coatings. Mater. Sci. Eng. A 1999, 266, 1–7. [Google Scholar] [CrossRef]
- Heimann, R.B. Thermal spraying of biomaterials. Surf. Coat. Technol. 2006, 201, 2012–2019. [Google Scholar] [CrossRef]
- Pillai, R.S.; Frasnelli, M.; Sglavo, V.M. HA/β-TCP plasma sprayed coatings on Ti substrate for biomedical applications. Ceram. Int. 2018, 44, 1328–1333. [Google Scholar] [CrossRef]
- Xue, W.; Tao, S.; Liu, X.; Zheng, X.; Ding, C. In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity. Biomaterials 2004, 25, 415–421. [Google Scholar] [CrossRef]
- Candidato, R.T.; Sergi, R.; Jouin, J.; Noguera, O.; Pawłowski, L. Advanced microstructural study of solution precursor plasma sprayed Zn doped hydroxyapatite coatings. J. Eur. Ceram. Soc. 2018, 38, 2134–2144. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Zhu, S.; Luo, E.; Li, J.; Feng, G.; Liao, Y.; Hu, J. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 2010, 31, 9006–9014. [Google Scholar] [CrossRef]
- Cao, L.; Ullah, I.; Li, N.; Niu, S.; Sun, R.; Xia, D.; Yang, R.; Zhang, X. Plasma spray of biofunctional (Mg, Sr)-substituted hydroxyapatite coatings for titanium alloy implants. J. Mater. Sci. Technol. 2019, 35, 719–726. [Google Scholar] [CrossRef]
- Vu, A.A.; Robertson, S.F.; Ke, D.; Bandyopadhyay, A.; Bose, S. Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomater. 2019, 92, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Ke, D.; Robertson, S.F.; Dernell, W.S.; Bandyopadhyay, A.; Bose, S. Effects of MgO and SiO2 on Plasma-Sprayed Hydroxyapatite Coating: An in Vivo Study in Rat Distal Femoral Defects. ACS Appl. Mater. Interfaces 2017, 9, 25731–25737. [Google Scholar] [CrossRef]
- Nasiruddin, U.; Nirvan, P.; Shishir, R.; Mohankumar, N.; Ponnilavan, V.; Krishna, L.R.; Rameshbabu, N. Effect of acidic, alkaline and neutral post-treatments on in-vitro corrosion resistance and bioactivity of plasma electrolytic oxidised ZE41 magnesium alloy for temporary implant application. Surf. Coat. Technol. 2025, 512, 132365. [Google Scholar] [CrossRef]
- Aydin, S.; Soares, A.P.; Fischer, H.; Knecht, R.S.; Kopp, A.; Schmidt-Bleek, K.; Heiland, M.; Rendenbach, C. In vitro study on the osteoimmunological potential of magnesium implants (WE43MEO). Biomed. Eng. OnLine 2025, 24, 90. [Google Scholar] [CrossRef]
- Hacking, S.A.; Zuraw, M.; Harvey, E.J.; Tanzer, M.; Krygier, J.J.; Bobyn, J.D. A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography. J. Biomed. Mater. Res. Part A 2007, 82, 179–187. [Google Scholar] [CrossRef]
- Larsson, A.; Andersson, M.; Wigren, S.; Pivodic, A.; Flynn, M.; Nannmark, U. Soft Tissue Integration of Hydroxyapatite-Coated Abutments for Bone Conduction Implants. Clin. Implant Dent. Relat. Res. 2015, 17, e730–e735. [Google Scholar] [CrossRef] [PubMed]
- Finke, B.; Luethen, F.; Schroeder, K.; Mueller, P.D.; Bergemann, C.; Frant, M.; Ohl, A.; Nebe, B.J. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials 2007, 28, 4521–4534. [Google Scholar] [CrossRef]
- Seo, H.S.; Ko, Y.M.; Shim, J.W.; Lim, Y.K.; Kook, J.-K.; Cho, D.-L.; Kim, B.H. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization. Appl. Surf. Sci. 2010, 257, 596–602. [Google Scholar] [CrossRef]
- Khang, D.; Lu, J.; Yao, C.; Haberstroh, K.M.; Webster, T.J. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 2008, 29, 970–983. [Google Scholar] [CrossRef]
- Singh, H.; Singh, S.; Prakash, C. Experimental investigation and parametric optimization of HA-TiO2 plasma spray coating on β-phase titanium alloy. Mater. Today Proc. 2020, 28, 1340–1344. [Google Scholar] [CrossRef]
- Czarnowska, E.; Morgiel, J.; Ossowski, M.; Major, R.; Sowinska, A.; Wierzchon, T. Microstructure and biocompatibility of titanium oxides produced on nitrided surface layer under glow discharge conditions. J. Nanosci. Nanotechnol. 2011, 11, 8917–8923. [Google Scholar] [CrossRef]
- Witkowska, J.; Borowski, T.; Sowińska, A.; Choińska, E.; Moszczyńska, D.; Morgiel, J.; Sobiecki, J.; Wierzchoń, T. Influence of Low Temperature Plasma Oxidizing on the Bioactivity of NiTi Shape Memory Alloy for Medical Applications. Materials 2023, 16, 6086. [Google Scholar] [CrossRef]
- Czarnowska, E.; Borowski, T.; Sowińska, A.; Lelątko, J.; Oleksiak, J.; Kamiński, J.; Tarnowski, M.; Wierzchoń, T. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding. Appl. Surf. Sci. 2015, 334, 24–31. [Google Scholar] [CrossRef]
- Chrzanowski, W.; Szade, J.; Hart, A.D.; Knowles, J.C.; Dalby, M.J. Biocompatible, Smooth, Plasma-Treated Nickel–Titanium Surface—An Adequate Platform for Cell Growth. J. Biomater. Appl. 2012, 26, 707–731. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, X.; Hu, X.; Dong, H. Surface modification of a medical grade Co-Cr-Mo alloy by low-temperature plasma surface alloying with nitrogen and carbon. Surf. Coat. Technol. 2013, 232, 906–911. [Google Scholar] [CrossRef]
- Maleki-Ghaleh, H.; Hafezi, M.; Hadipour, M.; Nadernezhad, A.; Aghaie, E.; Behnamian, Y.; Abu Osman, N.A. Effect of Tricalcium Magnesium Silicate Coating on the Electrochemical and Biological Behavior of Ti-6Al-4V Alloys. PLoS ONE 2015, 10, e0138454. [Google Scholar] [CrossRef]
- Samanta, A.; Rane, R.; Kundu, B.; Kr. Chanda, D.; Ghosh, J.; Bysakh, S.; Jhala, G.; Joseph, A.; Mukherjee, S.; Das, M.; et al. Bio-tribological response of duplex surface engineered SS316L for hip-implant application. Appl. Surf. Sci. 2020, 507, 145009. [Google Scholar] [CrossRef]
- Zakaria, A.; Shukor, H.; Todoh, M.; Jusoff, K. Bio-Functional Coating on Ti6Al4V Surface Produced by Using Plasma Electrolytic Oxidation. Metals 2020, 10, 1124. [Google Scholar] [CrossRef]
- Karthik, C.; Pillai, R.R.; Moreno, G.H.; Sikder, P.; Ambalavanan, N.; Thomas, V. Plasma/Ozone Induced PolyNaSS Graft-Polymerization onto PEEK Biomaterial for Bio-integrated Orthopedic Implants. JOM 2024, 76, 5662–5674. [Google Scholar] [CrossRef]
- Cunningham, B.W.; Brooks, D.M.; Rolle, N.P.; Weiner, D.A.; Wang, W. An investigational time course study of titanium plasma spray on osseointegration of PEEK and titanium implants: An in vivo ovine model. Spine J. 2024, 24, 721–729. [Google Scholar] [CrossRef]
- Heimann, R.B. Osseoconductive and Corrosion-Inhibiting Plasma-Sprayed Calcium Phosphate Coatings for Metallic Medical Implants. Metals 2017, 7, 468. [Google Scholar] [CrossRef]
- Shen, B.; He, Z.; Huang, H.; He, F.; Chen, Y.; Wu, P.; Li, M.; Penkov, O.V.; Wu, H. Improved biocompatibility of durable Si-DLC periodical nanocomposite coatings modified by plasma treatment for medical implants. Appl. Surf. Sci. 2025, 695, 162907. [Google Scholar] [CrossRef]
- Takao, S.; Komasa, S.; Agariguchi, A.; Kusumoto, T.; Pezzotti, G.; Okazaki, J. Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR). Int. J. Mol. Sci. 2020, 21, 7476. [Google Scholar] [CrossRef]
- Wu, C.; Yang, M.; Ma, K.; Zhang, Q.; Bai, N.; Liu, Y. Improvement implant osseointegration through nonthermal Ar/O2 plasma. Dent. Mater. J. 2023, 42, 461–468. [Google Scholar] [CrossRef]
- Heimann, R.B. Structure, properties, and biomedical performance of osteoconductive bioceramic coatings. Surf. Coat. Technol. 2013, 233, 27–38. [Google Scholar] [CrossRef]
- Miola, M.; Ferraris, S.; Di Nunzio, S.; Robotti, P.F.; Bianchi, G.; Fucale, G.; Maina, G.; Cannas, M.; Gatti, S.; Massé, A.; et al. Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: Plasma sprayed glass-coatings. J. Mater. Sci. Mater. Med. 2009, 20, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Heimann, R.B. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties. J. Therm. Spray Technol. 2016, 25, 827–850. [Google Scholar] [CrossRef]
- Levingstone, T.J.; Ardhaoui, M.; Benyounis, K.; Looney, L.; Stokes, J.T. Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis. Surf. Coat. Technol. 2015, 283, 29–36. [Google Scholar] [CrossRef]
- Fedel, M.; Micheli, V.; Thaler, M.; Awaja, F. Effect of nitrogen plasma treatment on the crystallinity and self-bonding of polyetheretherketone (PEEK) for biomedical applications. Polym. Adv. Technol. 2020, 31, 240–247. [Google Scholar] [CrossRef]
- Borhani, S.; Hassanajili, S.; Ahmadi Tafti, S.H.; Rabbani, S. Cardiovascular stents: Overview, evolution, and next generation. Prog. Biomater. 2018, 7, 175–205. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, D.; Doble, M. Biofilm formation, bacterial adhesion and host response on polymeric implants—Issues and prevention. Biomed. Mater. 2008, 3, 034003. [Google Scholar] [CrossRef]
- Loya, M.C.; Park, E.; Chen, L.H.; Brammer, K.S.; Jin, S. Radially arrayed nanopillar formation on metallic stent wire surface via radio-frequency plasma. Acta Biomater. 2010, 6, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Samaroo, H.D.; Lu, J.; Webster, T.J. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. Int. J. Nanomed. 2008, 3, 75–82. [Google Scholar] [CrossRef]
- Lu, J.; Rao, M.P.; MacDonald, N.C.; Khang, D.; Webster, T.J. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater. 2008, 4, 192–201. [Google Scholar] [CrossRef]
- Wang, G.; Shen, Y.; Cao, Y.; Yu, Q.; Guidoin, R. Biocompatibility study of plasma-coated nitinol (NiTi alloy) stents. IET Nanobiotechnol. 2007, 1, 102–106. [Google Scholar] [CrossRef]
- Song, S.-J.; Kim, K.S.; Kim, K.H.; Li, H.J.; Kim, J.-H.; Jeong, M.H.; Kim, B.H.; Ko, Y.M.; Cho, D.L. Preparation of a biocompatible stent surface by plasma polymerization followed by chemical grafting of drug compounds. J. Mater. Chem. 2009, 19, 3248–3252. [Google Scholar] [CrossRef]
- Yin, Y.; Wise, S.G.; Nosworthy, N.J.; Waterhouse, A.; Bax, D.V.; Youssef, H.; Byrom, M.J.; Bilek, M.M.M.; McKenzie, D.R.; Weiss, A.S.; et al. Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials 2009, 30, 1675–1681. [Google Scholar] [CrossRef]
- Xie, D.; Wan, G.; Maitz, M.F.; Sun, H.; Huang, N. Deformation and corrosion behaviors of Ti–O film deposited 316L stainless steel by plasma immersion ion implantation and deposition. Surf. Coat. Technol. 2013, 214, 117–123. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Luo, R.; Maitz, M.F.; Jing, F.; Sun, H.; Huang, N. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials 2010, 31, 2072–2083. [Google Scholar] [CrossRef]
- Lewis, F.; Horny, P.; Hale, P.; Turgeon, S.; Tatoulian, M.; Mantovani, D. Study of the adhesion of thin plasma fluorocarbon coatings resisting plastic deformation for stent applications. J. Phys. D Appl. Phys. 2008, 41, 045310. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, G.; Chen, L.; Li, H.; Yu, P.; Bai, M.; Zhang, Q.; Lee, J.; Yu, Q. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings. Acta Biomater. 2009, 5, 3593–3604. [Google Scholar] [CrossRef]
- Lahann, J.; Klee, D.; Thelen, H.; Bienert, H.; Vorwerk, D.; Ho¨cker, H. Improvement of haemocompatibility of metallic stents by polymer coating. J. Mater. Sci. Mater. Med. 1999, 10, 443–448. [Google Scholar] [CrossRef]
- Su, S.-H.; Chao, R.Y.N.; Landau, C.L.; Nelson, K.D.; Timmons, R.B.; Meidell, R.S.; Eberhart, R.C. Expandable Bioresorbable Endovascular Stent. I. Fabrication and Properties. Ann. Biomed. Eng. 2003, 31, 667–677. [Google Scholar] [CrossRef]
- Enomoto, K.; Hasebe, T.; Asakawa, R.; Kamijo, A.; Yoshimoto, Y.; Suzuki, T.; Takahashi, K.; Hotta, A. Controlling the drug release rate from biocompatible polymers with micro-patterned diamond-like carbon (DLC) coating. Diam. Relat. Mater. 2010, 19, 806–813. [Google Scholar] [CrossRef]
- Hong, Y.J.; Jeong, M.H.; Kim, W.; Lim, S.Y.; Lee, S.H.; Hong, S.N.; Kim, J.H.; Ahn, Y.K.; Cho, J.G.; Park, J.C.; et al. Effect of abciximab-coated stent on in-stent intimal hyperplasia in human coronary arteries. Am. J. Cardiol. 2004, 94, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Chlanda, A.; Witkowska, J.; Morgiel, J.; Nowińska, K.; Choińska, E.; Swieszkowski, W.; Wierzchoń, T. Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological application. Micron 2018, 114, 14–22. [Google Scholar] [CrossRef]
- Chen, C.-H.; Yang, M.-R.; Wu, S.-K. Polymerized hexamethyldisilazane coated on equiatomic TiNi shape memory alloy using DC-pulsed plasma assisted chemical vapor deposition. Surf. Coat. Technol. 2008, 202, 2709–2714. [Google Scholar] [CrossRef]
- Shim, J.W.; Bae, I.H.; Park, D.S.; Lee, S.Y.; Jang, E.J.; Lim, K.S.; Park, J.K.; Kim, J.H.; Jeong, M.H. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization. J. Biomater. Appl. 2018, 32, 1083–1089. [Google Scholar] [CrossRef]
- Phan, T.; Jones, J.E.; Chen, M.; Strawn, T.L.; Khoukaz, H.B.; Ji, Y.; Kumar, A.; Bowles, D.K.; Fay, W.P.; Yu, Q. In vitro biological responses of plasma nanocoatings for coronary stent applications. J. Biomed. Mater. Res. Part A 2023, 111, 1768–1780. [Google Scholar] [CrossRef] [PubMed]
- Kyzioł, K.; Kaczmarek, Ł.; Brzezinka, G.; Kyzioł, A. Structure, characterization and cytotoxicity study on plasma surface modified Ti–6Al–4V and γ-TiAl alloys. Chem. Eng. J. 2014, 240, 516–526. [Google Scholar] [CrossRef]
- Pypen, C.M.J.M.; Plenk, H., Jr.; Ebel, M.F.; Svagera, R.; Wernisch, J. Characterization of microblasted and reactive ion etched surfaces on the commercially pure metals niobium, tantalum and titanium. J. Mater. Sci. Mater. Med. 1997, 8, 781–784. [Google Scholar] [CrossRef]
- Ou, K.-L.; Chou, H.-H.; Liu, C.-M.; Peng, P.-W. Surface modification of austenitic stainless steel with plasma nitriding for biomedical applications. Surf. Coat. Technol. 2011, 206, 1142–1145. [Google Scholar] [CrossRef]
- Hasebe, T.; Shimada, A.; Suzuki, T.; Matsuoka, Y.; Saito, T.; Yohena, S.; Kamijo, A.; Shiraga, N.; Higuchi, M.; Kimura, K.; et al. Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices. J. Biomed. Mater. Res. Part A 2006, 76, 86–94. [Google Scholar] [CrossRef]
- Hasebe, T.; Ishimaru, T.; Kamijo, A.; Yoshimoto, Y.; Yoshimura, T.; Yohena, S.; Kodama, H.; Hotta, A.; Takahashi, K.; Suzuki, T. Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films. Diam. Relat. Mater. 2007, 16, 1343–1348. [Google Scholar] [CrossRef]
- Kwok, S.C.H.; Ha, P.C.T.; McKenzie, D.R.; Bilek, M.M.M.; Chu, P.K. Biocompatibility of calcium and phosphorus doped diamond-like carbon thin films synthesized by plasma immersion ion implantation and deposition. Diam. Relat. Mater. 2006, 15, 893–897. [Google Scholar] [CrossRef]
- Sui, J.H.; Cai, W. Formation of diamond-like carbon (DLC) film on the NiTi alloys via plasma immersion ion implantation and deposition (PIIID) for improving corrosion resistance. Appl. Surf. Sci. 2006, 253, 2050–2055. [Google Scholar] [CrossRef]
- De, S.; Sharma, R.; Ali, N.; Mazumder, M.K. Enhancement of blood compatibility of implants by helium plasma treatment. In Proceedings of the Conference Record of the 2004 IEEE Industry Applications Conference, 39th IAS Annual Meeting, Seattle, WA, USA, 3–7 October 2004; Volume 932, pp. 932–936. [Google Scholar]
- Chung, T.-W.; Liu, D.-Z.; Wang, S.-Y.; Wang, S.-S. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 2003, 24, 4655–4661. [Google Scholar] [CrossRef]
- Shadpour, H.; Allbritton, N.L. In situ Roughening of Polymeric Microstructures. ACS Appl. Mater. Interfaces 2010, 2, 1086–1093. [Google Scholar] [CrossRef]
- Satriano, C.; Carnazza, S.; Guglielmino, S.; Marletta, G. Differential Cultured Fibroblast Behavior on Plasma and Ion-Beam-Modified Polysiloxane Surfaces. Langmuir 2002, 18, 9469–9475. [Google Scholar] [CrossRef]
- Yim, E.K.F.; Reano, R.M.; Pang, S.W.; Yee, A.F.; Chen, C.S.; Leong, K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 2005, 26, 5405–5413. [Google Scholar] [CrossRef]
- Chandy, T.; Das, G.S.; Wilson, R.F.; Rao, G.H.R. Use of plasma glow for surface-engineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis. Biomaterials 2000, 21, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Khor, K.A.; Gu, Y.W.; Pan, D.; Cheang, P. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti–6Al–4V composite coatings. Biomaterials 2004, 25, 4009–4017. [Google Scholar] [CrossRef]
- Bogya, E.S.; Károly, Z.; Barabás, R. Atmospheric plasma sprayed silica–hydroxyapatite coatings on magnesium alloy substrates. Ceram. Int. 2015, 41, 6005–6012. [Google Scholar] [CrossRef]
- Demnati, I.; Parco, M.; Grossin, D.; Fagoaga, I.; Drouet, C.; Barykin, G.; Combes, C.; Braceras, I.; Goncalves, S.; Rey, C. Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surf. Coat. Technol. 2012, 206, 2346–2353. [Google Scholar] [CrossRef]
- Singh, J.; Chatha, S.S.; Singh, H. In vitro assessment of plasma-sprayed reinforced hydroxyapatite coatings deposited on Ti6Al4V alloy for bio-implant applications. J. Mater. Res. 2022, 37, 2623–2634. [Google Scholar] [CrossRef]
- Ramasamy, P.; Sundharam, S. Microhardness and corrosion resistance of plasma sprayed bioceramic bilayer coated Ti-6Al-4V implants. J. Aust. Ceram. Soc. 2021, 57, 605–613. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Legutko, K.; Janus, Ł.; Sierkowska-Byczek, A.; Kuźmiak, K.; Radwan-Pragłowska, N. Electrochemical Surface Modification of Fully Biodegradable Mg-Based Biomaterials as a Sustainable Alternative to Non-Resorbable Bone Implants. Appl. Sci. 2025, 15, 2492. [Google Scholar] [CrossRef]
- Kovacı, H. Comparison of the microstructural, mechanical and wear properties of plasma oxidized Cp-Ti prepared by laser powder bed fusion additive manufacturing and forging processes. Surf. Coat. Technol. 2019, 374, 987–996. [Google Scholar] [CrossRef]
- Uhm, S.-H.; Kwon, J.-S.; Song, D.-H.; Lee, E.-J.; Jeong, W.-S.; Oh, S.; Kim, K.-N.; Choi, E.H.; Kim, K.-M. Long-Term Antibacterial Performance and Bioactivity of Plasma-Engineered Ag-NPs/TiO2 Nanotubes for Bio-Implants. J. Biomed. Nanotechnol. 2016, 12, 1890–1906. [Google Scholar] [CrossRef] [PubMed]
- Venkateswarlu, K.; Rameshbabu, N.; Chandra Bose, A.; Muthupandi, V.; Subramanian, S.; MubarakAli, D.; Thajuddin, N. Fabrication of corrosion resistant, bioactive and antibacterial silver substituted hydroxyapatite/titania composite coating on Cp Ti. Ceram. Int. 2012, 38, 731–740. [Google Scholar] [CrossRef]
- Bilek, M.M.M.; Bax, D.V.; Kondyurin, A.; Yin, Y.; Nosworthy, N.J.; Fisher, K.; Waterhouse, A.; Weiss, A.S.; dos Remedios, C.G.; McKenzie, D.R. Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proc. Natl. Acad. Sci. USA 2011, 108, 14405–14410. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-C.; Yeh, C.-L.; Li, Y.-T.; Chang, H.-H.; Lee, J.-W.; Lin, W.-L.; Chien, M.-H.; Lin, C.-P. Plasma surface modification for enhanced biointegration of zirconia implants with organosiloxane films. Surf. Interfaces 2025, 58, 105860. [Google Scholar] [CrossRef]
- Ho, M.-H.; Hou, L.-T.; Tu, C.-Y.; Hsieh, H.-J.; Lai, J.-Y.; Chen, W.-J.; Wang, D.-M. Promotion of Cell Affinity of Porous PLLA Scaffolds by Immobilization of RGD Peptides via Plasma Treatment. Macromol. Biosci. 2006, 6, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.R.; Thibeault, B.J.; Aimi, M.F.; Rao, M.P.; MacDonald, N.C. Inductively Coupled Plasma Etching of Bulk Titanium for MEMS Applications. J. Electrochem. Soc. 2005, 152, C675. [Google Scholar] [CrossRef]
- Amini, M.R.; Sheikh Hosseini, M.; Fatollah, S.; Mirpour, S.; Ghoranneviss, M.; Larijani, B.; Mohajeri-Tehrani, M.R.; Khorramizadeh, M.R. Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. J. Diabetes. Metab. Disord. 2020, 19, 895–905. [Google Scholar] [CrossRef]
- Mirpour, S.; Fathollah, S.; Mansouri, P.; Larijani, B.; Ghoranneviss, M.; Mohajeri Tehrani, M.; Amini, M.R. Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: A randomized clinical trial. Sci. Rep. 2020, 10, 10440. [Google Scholar] [CrossRef]
- Stratmann, B.; Costea, T.C.; Nolte, C.; Hiller, J.; Schmidt, J.; Reindel, J.; Masur, K.; Motz, W.; Timm, J.; Kerner, W.; et al. Effect of Cold Atmospheric Plasma Therapy vs Standard Therapy Placebo on Wound Healing in Patients with Diabetic Foot Ulcers: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2010411. [Google Scholar] [CrossRef] [PubMed]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef]
- Tsujita, H.; Nishizaki, H.; Miyake, A.; Takao, S.; Komasa, S. Effect of Plasma Treatment on Titanium Surface on the Tissue Surrounding Implant Material. Int. J. Mol. Sci. 2021, 22, 6931. [Google Scholar] [CrossRef] [PubMed]
- Hadzik, J.; Jurczyszyn, K.; Gębarowski, T.; Trytek, A.; Gedrange, T.; Kozakiewicz, M.; Dominiak, M.; Kubasiewicz-Ross, P.; Trzcionka-Szajna, A.; Szajna, E.; et al. An Experimental Anodized and Low-Pressure Oxygen Plasma-Treated Titanium Dental Implant Surface-Preliminary Report. Int. J. Mol. Sci. 2023, 24, 3603. [Google Scholar] [CrossRef] [PubMed]







| Plasma Source | Typical Operating Pressure | Plasma Temperature (K) | Electron Temperature (eV) | Plasma Density (cm−3) | Discharge Voltage/Current | |
|---|---|---|---|---|---|---|
| RF Plasma | 10−2–10−1 Torr | 300–1000 | 1–5 | 108–1012 | 100–500 V/10–500 mA | Widely used for uniform surface activation and cleaning of metals and polymers. |
| DBD Plasma | Atmospheric Pressure | 300–1000 | 1–3 | 109–1011 | 1–20 kV/<10 mA | Operates at atmospheric pressure, suitable for large-area and in situ treatments. |
| Microwave Plasma | 10−3–10−1 Torr | 400–1500 | 2–10 | 1010–1013 | 1–2 kV/100–500 mA | Provides high plasma density and energy efficiency, used for dense coatings. |
| CAP | 1 atm | 300–350 | 1–2 | 109–1011 | 1–20 kV/few mA | Enables non-thermal surface modification and sterilization of temperature-sensitive materials. |
| Sl. No. | Purpose of Study | Plasma | Reference |
|---|---|---|---|
| 1 | Surface compatibility | HMDSO | [76] |
| 2 | Stimulate bone formation | O2 plasma treatment | [77] |
| 3 | Peri-implant infection | RF sputtering | [78] |
| 4 | Fibronectin adsorption | O2 plasma treatment | [79] |
| 5 | Biological sealing | O2 plasma treatment | [80] |
| 6 | Biocompatibility and mechanical adequacy | Oxidation | [81] |
| 7 | Osseointegration | Plasma nitriding | [82] |
| 8 | Osseointegration | Air plasma | [83] |
| 9 | Spreading of osteoblastic cells | Ar plasma | [84] |
| 10 | Osseointegration | Plasma ion immersion implantation | [85] |
| 11 | Corrosion resistance and cell adhesion | Cathodic arc plasma | [86] |
| 12 | Corrosion resistance, microhardness, surface roughness | Plasma spray coating | [87] |
| 13 | Cell adhesion | RF plasma | [88] |
| 14 | Oral pathogen colonization | Ion implantation | [89] |
| 15 | Antibacterial coatings | Plasma spraying | [90] |
| 16 | Antibacterial potential | Plasma electrolytic oxidation | [91] |
| 17 | Inhibit bacterial infection | Plasma chemical vapor deposition | [92] |
| 18 | Mechanical properties, corrosion resistance, and antibacterial efficacy | Plasma electrolytic oxidation | [93] |
| 19 | Antimicrobial resistance | Ar plasma | [94] |
| 20 | Aging of the material | Atmospheric-pressure N2 plasma | [95] |
| 21 | Osteogenic properties, protein release kinetics, dissolution behavior | Plasma-sprayed HA coatings | [96] |
| 22 | Properties of Ti-Al2O3-HA composite | Spark plasma sintering | [97] |
| 23 | Adsorption of antimicrobial peptide histatin-5 | O2 plasma treatment | [98] |
| 24 | Osseointegration | O2 plasma treatment | [99] |
| 25 | Improved cell adhesion and mineralization responses | O2 PIII | [100] |
| 26 | Biocompatibility and mechanical properties | Non-thermal plasma | [101] |
| 27 | Peri-implant bone density | CAP preconditioning | [102] |
| 28 | Osseointegration | Vacuum plasma treatment | [103] |
| 29 | Faster early-stage osseointegration | Ar-O2 plasma | [104] |
| 30 | Improved implant stability measures | Vacuum plasma treatment | [105] |
| Sl. No. | Purpose of Study | Plasma Treatment | Reference |
|---|---|---|---|
| 1 | Improve the bonding strength | Suspension Plasma Spraying | [106] |
| 2 | Adhesive bond strength | Plasma spray deposition | [107] |
| 3 | Biocompatible coatings | Plasma spray | [108] |
| 4 | Enhance bond strength | Plasma spray | [109] |
| 5 | Increased crystallinity | Plasma spray | [110] |
| 6 | Bio-functionality | Plasma spray | [111] |
| 7 | Coatings with tunable dissolution | Plasma spray | [112] |
| 8 | Bonding strength | Plasma spray | [113] |
| 9 | Functionalization | Plasma spray | [114] |
| 10 | Improve the biological functions | Plasma spray | [116] |
| 11 | Enhance osseointegration | Plasma spray | [117] |
| 12 | Adhesive bond strength | Plasma spray | [118] |
| 13 | Biodegradability | Plasma electrolytic oxidation | [119] |
| 14 | Osteogenic and immunomodulatory potential | Plasma electrolytic oxidation | [120] |
| 15 | Biological response evaluation | Plasma spray | [121] |
| 16 | Soft tissue integration | Plasma spray | [122] |
| 17 | Rapid cellular acceptance | Plasma polymer functionalization | [123] |
| 18 | Tissue integration | Plasma polymerization | [124] |
| 19 | Biomimetic coating | Plasma spray deposition | [126] |
| 20 | Biocompatibility and tissue healing | Glow discharge | [127] |
| 21 | Bioactivity characteristics | Low-temperature plasma | [128] |
| 22 | Improve corrosion resistance and biocompatibility | Low-temperature plasma treatment | [129] |
| 23 | Biocompatibility | Plasma sputtering | [130] |
| 24 | Improve hardness, wear, corrosion properties | Plasma surface alloying | [131] |
| 25 | Corrosion resistance | Plasma spray | [132] |
| 26 | Cyclic fatigue resistance | Plasma nitriding | [133] |
| 27 | Improve the bio-functionality | Plasma electrolytic oxidation | [134] |
| 28 | Biomineralization | Plasma surface activation | [135] |
| 29 | Improve osseointegration | Plasma spray | [136] |
| 30 | Biocompatible coatings | Plasma spray | [137] |
| 31 | Biocompatibility | Nitrogen and Ar plasma | [138] |
| 32 | Improved cell adhesion | Non-thermal atmospheric-pressure plasma | [139] |
| 33 | Improved osseointegration | Ar/O2 plasma treatment | [140] |
| 34 | Mechanical stability | Plasma spraying | [141] |
| 35 | Bone healing, reduced bacterial colonization | Plasma spray | [142] |
| 36 | Improved bone implant fixation, mechanical stability | Plasma spray (HA/TiO2) | [143] |
| 37 | Osseointegration | Plasma spray | [144] |
| 38 | Improved cell affinity | N2/RF plasma on PEEK | [145] |
| Sl. No. | Purpose of Study | Plasma Treatment | Reference |
|---|---|---|---|
| 1 | Enhance endotheliazation | Radio-frequency plasma | [148] |
| 2 | Vascular endothelial cell adhesion | Plasma-based dry etching | [150] |
| 3 | Biocompatibility | Plasma Coating | [151] |
| 4 | Biocompatibility | Plasma polymerization | [152] |
| 5 | Biocompatibility | Plasma Coating | [153] |
| 6 | Plastic deformation and corrosion | Plasma immersion ion implantation | [154] |
| 7 | Hemocompatibility | Plasma polymerization | [155] |
| 8 | Adhesion properties | Plasma polymerization | [156] |
| 9 | Endothelialization | Low-pressure gas glow-discharge plasma | [157] |
| 10 | Improvement of hemocompatibility | Sulfur dioxide plasma | [158] |
| 11 | Platelet adhesion, inflammation | Pulsed-plasma polymerization | [159] |
| 12 | Preventing stent restenosis | Plasma polymerization | [161] |
| 13 | Adhesion strength | Glow-discharge low-temperature plasma | [162] |
| 14 | Biocompatibility | Asymmetric bipolar DC-pulsed-plasma-assisted CVD | [163] |
| 15 | Improved endothelial cell adhesion and migration | Atmospheric-pressure plasma | [164] |
| 16 | Improved endothelial cell adhesion and migration | Atmospheric-pressure plasma | [165] |
| Sl. No. | Purpose of Study | Plasma Treatment | Reference |
|---|---|---|---|
| 1 | Mechanical and surface parameters | Plasma-assisted microwave CVD | [166] |
| 2 | Cell and tissue attachment | RF CF4–oxygen plasma | [167] |
| 3 | Antibacterial properties | Plasma nitriding | [168] |
| 4 | Hemocompatibility | Plasma-enhanced chemical vapor deposition | [169] |
| 5 | Thrombogenicity | RF plasma-enhanced chemical vapor deposition | [170] |
| 6 | Biocompatibility | Plasma immersion ion implantation | [171] |
| 7 | Corrosion resistance | Plasma immersion ion implantation | [172] |
| 8 | Blood compatibility | He plasma | [173] |
| 9 | Enhanced growth of human endothelial cells | Air plasma | [174] |
| 10 | Fibronectin adhesion and cell attachment and growth | Air plasma | [175] |
| 11 | Cell sensitivity | O2 plasma | [176] |
| 12 | Morphology and motility of smooth muscle cells | O2 plasma | [177] |
| 13 | Blood compatibility | Radio-frequency glow discharge | [178] |
| 14 | Mechanical properties | Plasma spray | [179] |
| 15 | In vivo bioactivity and early bone ingrowth | Plasma spray | [180] |
| 16 | Osseointegration and bone growth | Low-energy plasma spraying | [181] |
| 17 | Performance for bio-implant applications | Plasma spray | [182] |
| 18 | Microhardness and corrosion resistance | Plasma spray | [183] |
| 19 | Enhance tissue integration, durability, and corrosion resistance | Plasma electrolytic oxidation | [184] |
| 20 | Mechanical and wear properties | Plasma oxidation | [185] |
| 21 | Antibacterial Performance and Bioactivity | Plasma electrolyte oxidation | [186] |
| 22 | Corrosion-resistant, bioactive and antibacterial | Plasma electrolytic processing | [187] |
| 23 | Surface hydrophilicity | Plasma immersion ion implantation | [188] |
| 24 | Strength and durability | Plasma polymerization | [189] |
| 25 | Cell Affinity | Ar plasma discharge | [190] |
| 26 | Fracture toughness or biocompatibility | Inductively Coupled Plasma Etching | [191] |
| 27 | Increased healing rate, reduced bacterial load | He plasma | [192] |
| 28 | Accelerated wound healing | CAP | [193] |
| 29 | Antimicrobial, wound-healing stimulation | CAP | [194] |
| 30 | Enhanced biomolecule immobilization, cell spreading and bioactivity | Plasma polymerization | [195] |
| Plasma Technique | Substrate/Application | Key Surface Effect | Reported Biological or Clinical Outcome | References |
|---|---|---|---|---|
| Oxygen plasma treatment | Ti dental implants | Generation of –OH/–COOH groups, enhanced surface energy and wettability | Promoted protein adsorption, faster osseointegration, and shorter healing time in vivo | [99] |
| Oxygen PIII | Ti dental implants, hMSCs | Increased oxidation, rutile TiO2 phase, enriched –OH groups | Improved cell adhesion, proliferation, and mineralization responses | [100] |
| Non-thermal atmospheric pressure | Bone Implants | Surface functionalization | Improved cell adhesion, higher in vitro bovine serum albumin (BSA) adsorption, increased bone formation | [139] |
| Atmospheric-pressure plasma jet treatment | Coronary stents | Enhanced hydrophilicity, increased surface roughness, and functional group incorporation | Improved endothelial cell adhesion and migration, potential for re-endothelialization | [164] |
| Non-thermal Ar/O2 plasma treatment | Ti implants in rat femoral bone | Increased hydrophilicity and surface activation | 1.3× higher bone implant contact and mineral apposition rate, improved osseointegration | [140] |
| Plasma spraying (HA, TiO2, TiN) | Orthopedic coatings | Formation of porous, bioactive ceramic surfaces | Increased bone implant integration and long-term mechanical stability | [141] |
| Non-thermal atmospheric plasma | Ti dental and orthopedic implants | Enhanced surface hydrophilicity, decreased carbon contamination | Biocompatibility and mechanical properties | [101] |
| Plasma spray | Ti alloy and SS implants for bone healing | Cell adhesion and proliferation, and antibacterial | Bone healing, reduced bacterial colonization and infection risks | [142] |
| Non-thermal gas plasma treatment | Ti Dental Implant | Enhancing osseointegration | Shorter healing times, reduced vertical bone loss | [83] |
| CAP clinical therapy (He plasma) | Diabetic foot ulcers | Antibacterial action and angiogenic stimulation | Significant wound-size reduction, increased healing rate, reduced bacterial load | [192] |
| CAP preconditioning (mini-pig) | Sand-blasted/acid-etched Ti dental implants | Surface activation, improved protein binding | Higher BIC and peri-implant bone density in pre-clinical model | [102] |
| CAP (clinical trial) | Chronic/diabetic foot ulcers (clinical patients) | ROS/RNS, antimicrobial and pro-healing signaling | Accelerated wound healing, reduced bacterial load (randomized trials) | [193] |
| CAP | Diabetic foot ulcers | Antimicrobial + wound-healing stimulation | Improved wound closure vs. placebo/standard care in RCT | [194] |
| Plasma polymerization (e.g., HMDSO, acrylic acid) | Polymer/ceramic scaffolds and coatings | Tunable organofunctional thin films, controlled hydrophilicity | Enhanced biomolecule immobilization, improved cell spreading and bioactivity | [195] |
| Plasma spraying (HA/TiO2) | Orthopedic implant coatings | Porous, bioactive ceramic layers with controlled crystallinity | Improved bone implant fixation, mechanical stability, and long-term integration | [143] |
| Plasma-sprayed HA-parameter studies | HA coatings (orthopedics) | Changes in porosity, crystallinity, thickness | Process parameters affect dissolution rate and osseointegration potential | [144] |
| Nitrogen/RF plasma on PEEK | PEEK surfaces (orthopedic/dental substitutions) | Introduction of nitrogen/amine groups, increased surface energy | Improved cell affinity, wettability; modifies crystallinity/self-bonding | [145] |
| Vacuum Plasma Treatment | Dental Implants | Impurities removal | Improved osseointegration | [103] |
| Atmospheric-pressure plasma | Coronary stents | Increased hydrophilicity and functional group incorporation | Reduced thrombogenic markers | [165] |
| Non-thermal Ar/O2 plasma | Ti implants | Surface activation, higher wettability | ~1.3× higher bone implant contact and mineral apposition rate in rat model | [196] |
| PEO | Anodized Ti/orthopedic surfaces | Oxide layer modification | Improved cellular responses in in vitro and in vivo models | [197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pillai, R.R.; Mohan, L. Plasma Surface Modification of Biomedical Implants and Devices: Emphasis on Orthopedic, Dental, and Cardiovascular Applications. Prosthesis 2025, 7, 143. https://doi.org/10.3390/prosthesis7060143
Pillai RR, Mohan L. Plasma Surface Modification of Biomedical Implants and Devices: Emphasis on Orthopedic, Dental, and Cardiovascular Applications. Prosthesis. 2025; 7(6):143. https://doi.org/10.3390/prosthesis7060143
Chicago/Turabian StylePillai, Renjith Rajan, and Lakshmi Mohan. 2025. "Plasma Surface Modification of Biomedical Implants and Devices: Emphasis on Orthopedic, Dental, and Cardiovascular Applications" Prosthesis 7, no. 6: 143. https://doi.org/10.3390/prosthesis7060143
APA StylePillai, R. R., & Mohan, L. (2025). Plasma Surface Modification of Biomedical Implants and Devices: Emphasis on Orthopedic, Dental, and Cardiovascular Applications. Prosthesis, 7(6), 143. https://doi.org/10.3390/prosthesis7060143

