An In-Vitro Acidic Media Simulation of GERD and Its Effect on Machine-Milled Ceramics’ Optical Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Grouping of Specimens
- Regarding group Z, Ceramill Zolid Gen-X white is a high-translucency zirconia material with a chemical composition primarily composed of ZrO2 (zirconia), Y2O3 (yttria), HfO2 (hafnium oxide), and other oxides. The yttria content is crucial for stabilizing the zirconia’s tetragonal phase, which contributes to its strength and durability.
- Regarding group E, IPS e.max CAD HT A3, a dental CAD/CAM material, is a lithium disilicate glass-ceramic block with a high translucency level.
- Regarding group S, VITA Suprinity PC A3, a popular dental material, is a zirconia-reinforced lithium-silicate glass ceramic. Its composition includes silica (SiO2) 56–64%, lithium oxide (Li2O) 15–21%, zirconia (ZrO2) 8–12%, and lanthanum oxide (La2O3) 0.1%. Additionally, it contains pigments and other various components.
- Regarding group C, Cerasmart 270 is a hybrid ceramic CAD/CAM block that combines the properties of high-strength ceramics and composites. It is designed to provide fast and long-lasting indirect restorations. Specifically, Cerasmart 270 A3 is a version with shade A3, which is a common shade used in dentistry. This hybrid block features a Full Coverage Silane Coating (FSC) with enhanced nanofiller technology, providing superior physical and aesthetic properties.
2.2. Specimen Preparation
2.3. Gastric-like Acidic Solution Preparation
2.4. Optical Properties Testing Parameters
2.4.1. Color Differences Determination (ΔE)
2.4.2. Translucency Parameter (ΔTP) Values Determination
2.5. Statistical Analysis
3. Results
3.1. Color Difference (ΔE)
3.2. Translucency Parameter (ΔTP)
4. Discussion
5. Conclusions
- Exposure to simulated gastric reflux conditions as in GERD produced notable alterations in the optical behavior of CAD/CAM ceramics. High-translucency zirconia (Z) showed superior color stability, whereas the hybrid ceramic (C) was the most vulnerable to discoloration and translucency reduction.
- Among the tested materials, zirconia-reinforced lithium silicate (S) and lithium disilicate (E) demonstrated moderate changes in optical properties, showing values between the highest- and lowest-performing materials. Overall, all tested materials remained within the perceptibility threshold, indicating that CAD/CAM ceramics are generally resistant to short-term acidic degradation.
- These findings carry clinical relevance for patients with gastroesophageal reflux disease (GERD) or other conditions associated with chronic intraoral acid exposure. Material selection should be made with consideration for long-term esthetic stability, particularly in patients at high erosive risk. High-translucency zirconia and lithium silicate-based ceramics may offer improved resistance to acid-induced optical deterioration, whereas hybrid ceramics may require more frequent monitoring or maintenance. Evaluation of patient-specific risk factors and appropriate recall intervals are therefore recommended to preserve the esthetic longevity of ceramic restorations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CIELAB | Commission Internationale de l’Éclairage Lab* color space |
| CIEDE2000 | Commission Internationale de l’Éclairage ΔE00 color-difference |
| ΔE | Color difference |
| ΔTP | Translucency parameter |
| GERD | Gastroesophageal Reflux Disease |
| HT | High-Translucency |
| HCl | Hydrochloric Acid |
References
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD/CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef]
- Belli, R.; Wendler, M.; de Ligny, D.; Cicconi, M.R.; Petschelt, A.; Peterlik, H.; Lohbauer, U. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent. Mater. 2017, 33, 84–98. [Google Scholar] [CrossRef]
- Lawson, N.C.; Bansal, R.; Burgess, J.O. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent. Mater. 2016, 32, e275–e283. [Google Scholar] [CrossRef]
- Albero Monteagudo, A.; Pascual, A.; Camps, I.; Grau Benítez, M. Comparative characterization of a novel CAD/CAM polymer-infiltrated-ceramic-network. J. Clin. Exp. Dent. 2015, 7, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color stainability of CAD/CAM and nanocomposite resin materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Liebermann, A.; Eichberger, M.; Güth, J.F. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J. Mech. Behav. Biomed. Mater. 2016, 55, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Loke, C.; Lee, J.; Sander, S.; Mei, L.; Farella, M. Factors affecting intra-oral pH–a review. J. Oral Rehabil. 2016, 43, 778–785. [Google Scholar] [CrossRef]
- Dundar, A.; Sengun, A. Dental approach to erosive tooth wear in gastroesophageal reflux disease. Afr. Health Sci. 2014, 14, 481–486. [Google Scholar] [CrossRef]
- Kulkarni, A.; Rothrock, J.; Thompson, J. Impact of gastric acid induced surface changes on mechanical behavior and optical characteristics of dental ceramics. J. Prosthodont. 2020, 29, 207–218. [Google Scholar] [CrossRef]
- Elsharkawy, E.E.; El-Kouedi, A.Y.; Shokry, T.E. Evaluation of the vertical marginal gap of three CAD/CAM ceramic system after cyclic loading. Al-Azhar J. Dent. Sci. 2023, 26, 317–323. [Google Scholar] [CrossRef]
- Elraggal, A.; Afifi, R.; Abdelraheem, I. Effect of erosive media on microhardness and fracture toughness of CAD/CAM dental materials. BMC Oral Health 2022, 22, 191. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, İ.; Cengiz, E. Effect of 2 bleaching agents with a content of high concentrated hydrogen peroxide on stained 2 CAD/CAM blocks and a nanohybrid composite resin: An AFM evaluation. BioMed Res. Int. 2017, 2017, 6347145. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.E.; Simões, R.; Martins, S.B.; Trindade, F.Z.; Dovigo, L.N.; Fonseca, R.G. Influence of simulated gastric juice on surface characteristics of CAD/CAM monolithic materials. J. Prosthet. Dent. 2020, 123, 483–490. [Google Scholar] [CrossRef]
- Theocharidou, A.; Kontonasaki, E.; Koukousaki, I.; Koumpouli, A.; Betsani, I.; Koidis, P. Effect of in vitro aging and acidic storage on color, translucency, and contrast ratio of monolithic zirconia and lithium disilicate ceramics. J. Prosthet. Dent. 2022, 127, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Park, J.S.; Kim, H.K. Influence of acidic solutions on surface degradation and color stability of monolithic zirconia and lithium disilicate ceramics. J. Adv. Prosthodont. 2020, 12, 55–62. [Google Scholar] [CrossRef]
- Egilmez, F.; Ergun, G.; Cekic-Nagas, I.; Vallittu, P.K.; Lassila, L.V. Does artificial aging affect mechanical properties of CAD/CAM composite materials. J. Prosthodont. Res. 2018, 62, 65–74. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Shahramian, K.; Hupa, L.; Donovan, T.E.; Vallittu, P.; Närhi, T.O. Impact of gastric acidic challenge on surface topography and optical properties of monolithic zirconia. Dent. Mater. 2015, 31, 1445–1452. [Google Scholar] [CrossRef]
- El Sokkary, A.; Elguindy, J.; El Shihi, O. Effect of surface finish and acidic pH media on the surface roughness and the color stability of zirconium reinforced lithium silicate glass ceramics (An in-vitro study). Acta Sci. Dent. Sci. 2018, 2, 21–27. [Google Scholar]
- Alghazzawi, T.F. Effects of accelerated aging on the optical properties of different CAD/CAM ceramics. BMC Oral Health 2021, 21, 229. [Google Scholar]
- Morsi, T.S.; Wahba, M.M. Effect of hydrothermal aging on translucency of different types of zirconia and lithium disilicate at variable thicknesses. Future Dent. J 2021, 7, 69–74. [Google Scholar] [CrossRef]
- Mourouzis, P.; Tsiveli, A.; Tsetseli, P.; Gogos, C.; Tolidis, K. Impact of erosion and aging simulation on chairside materials. Microsc. Res. Tech. 2023, 86, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Pandoleon, P.; Sarafidou, K.; Pouroutzidou, G.K.; Theocharidou, A.; Zachariadis, G.A.; Kontonasaki, E. Effect of thermal cycling or simulated gastric acid on the surface characteristics of dental ceramic materials. Ceramics 2024, 7, 530–546. [Google Scholar] [CrossRef]
- Omara, A.A.; Othman, H.I.; Aldamaty, M.F.; Metwally, M.F. Effect of acidic environment on color and translucency of different indirect restorative materials. BMC Oral Health 2024, 24, 472. [Google Scholar] [CrossRef]
- Makkeyah, F.; Elsahn, N.A.; Bakr, M.M.; Al Ankily, M. Effect of acidic media on Surface Topography and Color Stability of two different Glass ceramics. Eur. J. Dent. 2025, 19, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Özer, N.E.; Oğuz, E.İ. The Effect of Erosive Media on Color Stability, Gloss, and Surface Roughness of Monolithic CAD/CAM Materials Subjected to Different Polishing Methods. Sci. Rep. 2025, 15, 23774. [Google Scholar] [CrossRef]
- Schwarz, F.; Becker, K.; Fontana, F.; Schneller, R.; Pepelassi, E.; Burchardt, M.; Bielsky, A.; Karygianni, L.; Schlee, M.; Rothamel, D.; et al. Long-term erosive effects of simulated gastric acid on dental ceramics. Dent. Mater. 2021, 37, 569–577. [Google Scholar]
- Li, Z.; Chen, Y.; Zhang, X.; Guo, Y.; Sun, K.; Liu, H.; Wang, Y.; Zhao, Q.; He, L.; Peng, J.; et al. Simulating a decade of acid exposure: An in vitro protocol at pH 1.2 for CAD/CAM ceramics. Dent. Mater. 2022, 38, 1437–1445. [Google Scholar]
- Gupta, R.; Meyer, R.S. The validity of long-term acid challenge models for restorative materials. Oper. Dent. 2023, 48, 350–358. [Google Scholar] [CrossRef]
- Hjerppe, J.; Shahramian, K.; Rosqvist, E.; Lassila, L.V.; Peltonen, J.; Närhi, T.O. Gastric acid challenge of lithium disilicate–reinforced glass–ceramics and zirconia-reinforced lithium silicate glass–ceramic after polishing and glazing—Impact on surface properties. Clin. Oral Investig. 2023, 27, 6865–6877. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.D.; Andreeta, M.R.; Pegoraro, T.A.; Pegoraro, L.F.; Carvalho, R.M. Influence of curing protocol and ceramic composition on the degree of conversion of resin cement. J. Appl. Oral Sci. 2017, 25, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Mittal, S.; Sukhija, U. An in vitro evaluation to compare the surface roughness of glazed, reglazed and chair side polished surfaces of dental porcelain. Contemp. Clin. Dent. 2021, 12, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Pires-de, F.D.; Casemiro, L.A.; Garcia, L.D.; Cruvinel, D.R. Color stability of dental ceramics submitted to artificial accelerated aging after repeated firings. J. Prosthet. Dent. 2009, 101, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Tanweer, N.; Qazi, F.U.; Das, G.; Bilgrami, A.; Basha, S.; Ahmed, N.; Bahammam, H.A.; Bahammam, S.A.; Basheer, S.N.; Assiry, A.A.; et al. Effect of erosive agents on surface characteristics of nano-fluorapatite ceramic: An in-vitro study. Molecules 2022, 27, 4691. [Google Scholar] [CrossRef]
- Crespo, P.C.; Córdova, A.K.; Palacios, A.; Astudillo, D.; Delgado, B. Variability in tooth color selection by different spectrophotometers: A systematic review. Open Dent. J. 2022, 16, e187421062211180. [Google Scholar] [CrossRef]
- Lim, H.N.; Yu, B.; Lee, Y.K. Spectroradiometric and spectrophotometric translucency of ceramic materials. J. Prosthet. Dent. 2010, 104, 239–246. [Google Scholar] [CrossRef]
- Alnusayri, M.O.; Sghaireen, M.G.; Mathew, M.; Alzarea, B.; Bandela, V.; Sghaireen, M.G. Shade selection in esthetic dentistry: A review. Cureus 2022, 14, e23331. [Google Scholar] [CrossRef]
- Pîrvulescu, I.L.; Pop, D.; Moacă, E.A.; Mihali, C.V.; Ille, C.; Jivănescu, A. Effects of simulated gastric acid exposure on surface topography, mechanical and optical features of commercial CAD/CAM ceramic blocks. Appl. Sci. 2021, 11, 8703. [Google Scholar] [CrossRef]
- da Silva, A.O.; Fiorin, L.; Faria, A.C.; Ribeiro, R.F.; Rodrigues, R.C. Translucency and mechanical behavior of partially stabilized monolithic zirconia after staining, finishing procedures and artificial aging. Sci. Rep. 2022, 12, 16094. [Google Scholar] [CrossRef]
- Sayed, A.M.; Wahsh, M.; Zohdy, M. Water sorption of light-cured resin cement: The effect of Ceramic material and thickness. Ain Shams Dent. J. 2021, 22, 11–21. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Camino, R.N.; Cook, R.; Delgado, A.J.; Roulet, J.F.; Clark, W.A. Time-lasting ceramic stains and glaze: A toothbrush simulation study. J. Esthet. Restor. Dent. 2020, 32, 581–585. [Google Scholar] [CrossRef]
- El-Gawad, M.; Elmabrok, R.S. In Vitro Evaluation of Color Stability, Translucency and Flexure Strength of Different CAD/CAM Materials. Adv. Dent. J. 2024, 6, 111–121. [Google Scholar] [CrossRef]
- Dal Piva, A.M.; van Leeuwen, N.S.; da Rosa, L.S.; Kleverlaan, C.J.; Tribst, J.P. Effect of Glazing Protocol on the Surface Roughness and Optical Properties of Lithia-Based Glass-Ceramics. Coatings 2024, 14, 668. [Google Scholar] [CrossRef]
- Alnasser, M.; Finkelman, M.; Papathanasiou, A.; Suzuki, M.; Ghaffari, R.; Ali, A. Effect of acidic pH on surface roughness of esthetic dental materials. J. Prosthet. Dent. 2019, 122, 567.e1–567.e8. [Google Scholar] [CrossRef]
- Firouz, F.; Vafaee, F.; Khamverdi, Z.; Khazaei, S.; Gholiabad, S.G.; Mohajeri, M. Effect of three commonly consumed beverages on surface roughness of polished and glazed zirconia-reinforced lithium silicate glass ceramics. Front. Dent. 2019, 16, 296. [Google Scholar]
- Zhang, Y.; Wang, J.; Wu, H.; Chen, C.; Li, X.; Zhou, L.; Wu, Y.; Qian, H.; Sun, S.; Zhao, Y.; et al. Acid degradation of glass-ceramics: Microstructure versus optical changes. Dent. Mater. 2021, 37, 845–854. [Google Scholar]
- Spitznagel, F.A.; Hahnel, S.; Rosentritt, M.; Lang, R.; Hickel, R.; Ruhl, S.; Kohal, R.J.; Attin, T.; Schmidlin, P.R.; Preis, V.; et al. Resin-matrix ceramics: Mechanical behavior and hydrolytic degradation. J. Prosthodont. Res. 2022, 66, 283–292. [Google Scholar]
- Karakoca, A.; Aksoy, G.; Tanriverdi, A.; Yalcin, M.; Uludag, B.; Sari, T.; Basak, F.; Erdemir, U.; Pehlivanoglu, E.; Arslan, M.; et al. Effect of acid challenge on zirconia-reinforced lithium silicate. Oper. Dent. 2023, 48, 65–74. [Google Scholar]
- Aldamaty, M.F.; Haggag, K.; Othman, H.I. Effect of simulated gastric acid on surface roughness of different monolithic ceramics. Al-Azhar J. Dent. Sci. 2020, 23, 327–334. [Google Scholar] [CrossRef]
- Vafaei, F.; Izadi, A.; Abbasi, S.; Farhadian, M.; Bagheri, Z. Comparison of optical properties of laminate veneers made of Zolid FX and Katana UTML zirconia and lithium disilicate ceramics. Front. Dent. 2019, 16, 357. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Elnaghy, A.M. Color stability and translucency of CAD/CAM ceramics after simulated aging in acidic environments. J. Esthet. Restor. Dent. 2023, 35, 657–665. [Google Scholar] [CrossRef]
| Material/(Group) | Type/Category | Main Composition (% by Weight) | Flexural Strength (MPa) | Elastic Modulus (GPa) | Manufacturer |
|---|---|---|---|---|---|
| Ceramill Zolid Gen-X (Z) | 5Y-TZP high-translucency zirconia | ZrO2 + HfO2 + Y2O3 (>99%), trace Al2O3 | 1000 ± 100 | 210 | Amann Girrbach, Koblach, Austria |
| IPS e.max CAD (E) | Lithium disilicate glass-ceramic | SiO2 (57–80%), Li2O (11–19%), K2O, P2O5, ZrO2, ZnO, Al2O3 | 360 ± 60 | 95 | Ivoclar Vivadent, Schaan, Liechtenstein |
| VITA Suprinity (S) | Zirconia-reinforced lithium silicate (ZLS) | SiO2 (56–64%), Li2O (15–21%), ZrO2 (8–12%), P2O5, K2O, Al2O3 | 420 ± 50 | 70 | VITA Zahnfabrik, Bad Säckingen, Germany |
| Cerasmart 270 (C) | Resin-matrix hybrid ceramic | Bis-MEPP + UDMA + inorganic fillers (71 wt% SiO2–Ba glass) | 270 ± 30 | 30 | GC Corp.,Tokyo, Japan |
| Group | L* (Before) | a* (Before) | b* (Before) | L* (After) | a* (After) | b* (After) | ΔE (Mean) |
|---|---|---|---|---|---|---|---|
| Z | 82.05 ± 1.07 | 0.99 ± 0.86 | 19.99 ± 0.58 | 81.79 ± 0.17 | 1.20 ± 1.98 | 19.01 ± 0.51 | 1.31 |
| E | 80.05 ± 1.82 | 1.00 ± 1.60 | 19.00 ± 1.13 | 78.99 ± 1.46 | 1.10 ± 1.61 | 17.41 ± 1.43 | 2.02 |
| S | 81.04 ± 1.07 | 0.99 ± 0.86 | 19.99 ± 0.58 | 81.79 ± 0.77 | 1.00 ± 1.16 | 18.99 ± 0.58 | 1.95 |
| C | 80.15 ± 1.07 | 0.92 ± 0.76 | 18.79 ± 0.18 | 74.09 ± 0.17 | 0.85 ± 1.01 | 16.19 ± 0.38 | 2.59 |
| Group | ΔTP Before (Mean ± SD) | ΔTP After (Mean ± SD) | Among-Groups P |
|---|---|---|---|
| Z | 0.53 ± 0.15 a | 0.84 ± 0.13 d | <0.0004 * |
| E | 0.43 ± 0.05 b | 0.85 ± 0.21 d | - |
| S | 0.41 ± 0.04 b | 0.83 ± 0.16 d | - |
| C | 0.72 ± 0.19 c | 0.53 ± 0.11 e | 0.00312 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsayed, H.M.; Elmarakby, A.M.; Yousief, S.A.; Abd Elwahab, H.A.; Alturki, M.W.; Tawwash, E.M.H.; Albahkaly, H.S.; Rayes, K.A.; Bawazir, H.A.; Samran, H.A.; et al. An In-Vitro Acidic Media Simulation of GERD and Its Effect on Machine-Milled Ceramics’ Optical Properties. Prosthesis 2025, 7, 156. https://doi.org/10.3390/prosthesis7060156
Elsayed HM, Elmarakby AM, Yousief SA, Abd Elwahab HA, Alturki MW, Tawwash EMH, Albahkaly HS, Rayes KA, Bawazir HA, Samran HA, et al. An In-Vitro Acidic Media Simulation of GERD and Its Effect on Machine-Milled Ceramics’ Optical Properties. Prosthesis. 2025; 7(6):156. https://doi.org/10.3390/prosthesis7060156
Chicago/Turabian StyleElsayed, Hend M., Ahmed M. Elmarakby, Salah A. Yousief, Heba A. Abd Elwahab, Moayad W. Alturki, Eman M. H. Tawwash, Hajarr S. Albahkaly, Kholud A. Rayes, Hadeel A. Bawazir, Hagar A. Samran, and et al. 2025. "An In-Vitro Acidic Media Simulation of GERD and Its Effect on Machine-Milled Ceramics’ Optical Properties" Prosthesis 7, no. 6: 156. https://doi.org/10.3390/prosthesis7060156
APA StyleElsayed, H. M., Elmarakby, A. M., Yousief, S. A., Abd Elwahab, H. A., Alturki, M. W., Tawwash, E. M. H., Albahkaly, H. S., Rayes, K. A., Bawazir, H. A., Samran, H. A., Samran, A., & Elsebaey, L. M. L. (2025). An In-Vitro Acidic Media Simulation of GERD and Its Effect on Machine-Milled Ceramics’ Optical Properties. Prosthesis, 7(6), 156. https://doi.org/10.3390/prosthesis7060156

