Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (903)

Search Parameters:
Keywords = reproductive programs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2943 KB  
Review
Data-Driven Strategic Sustainability Initiatives of Beef and Dairy Genetics Consortia: A Comprehensive Landscape Analysis of the US, Brazilian and European Cattle Industries
by Karun Kaniyamattam, Megha Poyyara Saiju and Miguel Gonzalez
Sustainability 2026, 18(3), 1186; https://doi.org/10.3390/su18031186 (registering DOI) - 24 Jan 2026
Abstract
The sustainability of the beef and dairy industry requires a systems approach that integrates environmental stewardship, social responsibility, and economic viability. Over the past two decades, global genetics consortia have advanced data-driven germplasm programs (breeding and conservation programs focusing on genetic resources) to [...] Read more.
The sustainability of the beef and dairy industry requires a systems approach that integrates environmental stewardship, social responsibility, and economic viability. Over the past two decades, global genetics consortia have advanced data-driven germplasm programs (breeding and conservation programs focusing on genetic resources) to enhance sustainability across cattle systems. These initiatives employ multi-trait selection indices aligned with consumer demands and supply chain trends, targeting production, longevity, health, and reproduction, with outcomes including greenhouse gas mitigation, improved resource efficiency and operational safety, and optimized animal welfare. This study analyzes strategic initiatives, germplasm portfolios, and data platforms from leading genetics companies in the USA, Europe, and Brazil. US programs combine genomic selection with reproductive technologies such as sexed semen and in vitro fertilization to accelerate genetic progress. European efforts emphasize resource efficiency, welfare, and environmental impacts, while Brazilian strategies focus on adaptability to tropical conditions, heat tolerance, and disease resistance. Furthermore, mathematical models and decision support tools are increasingly used to balance profitability with environmental goals, reducing sustainability trade-offs through data-driven resource allocation. Industry-wide collaboration among stakeholders and regulatory bodies underscores a rapid shift toward sustainability-oriented cattle management strategies, positioning genetics and technology as key drivers of genetically resilient and sustainable breeding systems. Full article
(This article belongs to the Collection Sustainable Livestock Production and Management)
Show Figures

Figure 1

14 pages, 1541 KB  
Article
Curing Parthenogenesis-Inducing (PI) Wolbachia-Induced Reproductive Disorders in the Egg Parasitoid Telenomus remus
by I-Cheng Tu, Ching-Ting Lai and Li-Hsin Wu
Biology 2026, 15(3), 210; https://doi.org/10.3390/biology15030210 - 23 Jan 2026
Abstract
Wolbachia is an endosymbiotic bacterium widespread in invertebrates that causes various reproductive effects, including cytoplasmic incompatibility, feminization, male killing, and the induction of parthenogenesis (PI). PI-Wolbachia wRem converts Telenomus remus, an egg parasitoid of Spodoptera frugiperda, from arrhenotokous reproduction (male-producing) [...] Read more.
Wolbachia is an endosymbiotic bacterium widespread in invertebrates that causes various reproductive effects, including cytoplasmic incompatibility, feminization, male killing, and the induction of parthenogenesis (PI). PI-Wolbachia wRem converts Telenomus remus, an egg parasitoid of Spodoptera frugiperda, from arrhenotokous reproduction (male-producing) to thelytokous reproduction (female-producing). Long-term symbiosis between egg parasitoids and Wolbachia has been shown to lead to reproductive barriers and “female functional virginity,” causing progressive and potentially irreversible sex ratio imbalances. However, whether such reproductive barriers occur in T. remus remains unknown, which has important implications for biological control programs utilizing this parasitoid. To address this question, we cured wRem using tetracycline and conducted crossing experiments with naturally uninfected strains (W-). The results indicated that the cured strain (Wcure) retained normal sexual reproductive capability, with self-crossing fertilization rates comparable to those of W- strains. However, first-generation hybridization between Wcure and W- strains produced strongly male-biased offspring (male proportion: 94.3% and 85.8% for W-♂ × Wcure♀ and Wcure♂ × W-♀, respectively), indicating substantial reproductive incompatibility. Notably, an asymmetric pattern was observed between reciprocal crosses. In second-generation hybridization experiments, hybrid females (W-/Wcure) mated with W- or Wcure males showed markedly recovered sex ratios (male proportion: 14.3% and 15.6%, respectively), although total offspring numbers remained lower than in self-crossing groups. These results suggest that the reproductive incompatibility in T. remus differs from female functional virginity and is more consistent with mitonuclear incompatibility arising from population divergence. The partial recovery in second-generation hybrids indicates that surviving F1 hybrid females likely represent individuals selected for compatibility, rather than exhibiting progressive deterioration of sexual function. These findings offer insights into Wolbachia’s impact on parasitoid reproduction and highlight key considerations for biological control applications, underscoring the importance of evaluating reproductive barriers before deploying cured strains and preventing symbiont loss within populations. Full article
(This article belongs to the Special Issue Studies on Insect Genetics and Genomics)
Show Figures

Figure 1

9 pages, 1084 KB  
Article
Biological Control of Tuta absoluta Using Commercial Entomopathogenic Fungal Endophytes: Colonization Efficiency and Greenhouse Efficacy
by Christos Lymperopoulos and Spyridon Mantzoukas
Agronomy 2026, 16(2), 244; https://doi.org/10.3390/agronomy16020244 - 20 Jan 2026
Viewed by 80
Abstract
The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is one of the most destructive pests of tomato crops worldwide. Its high reproductive potential and increasing resistance to conventional insecticides have made the development of sustainable management strategies essential. Biological control using entomopathogenic fungi [...] Read more.
The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is one of the most destructive pests of tomato crops worldwide. Its high reproductive potential and increasing resistance to conventional insecticides have made the development of sustainable management strategies essential. Biological control using entomopathogenic fungi (EPF), particularly when established as endophytes, has emerged as a promising approach. This study investigated the endophytic colonization capacity and greenhouse performance of three commercially available EPF formulations: Beauveria bassiana (Velifer®), Lecanicillium lecanii (Lecan®), and a Beauveria bassianaMetarhizium anisopliae mixture (Metab®), for the suppression of T. absoluta in tomato. Our experiment was conducted under commercial greenhouse conditions using soil drench applications at manufacturer-recommended doses. Endophytic colonization was assessed through surface-sterilized leaf assays, while pest suppression was evaluated via weekly measurements of larval mine length, infestation incidence, and survival dynamics. B. bassiana (Velifer®) exhibited the highest endophytic colonization frequency and consistently reduced mine length and infestation levels compared with untreated plants. Survival analysis using Cox proportional hazards revealed significant reductions in infestation risk for Velifer® (hazard ratio, HR = 0.420), Metab® (HR = 0.480), and Lecan® (HR = 0.599), relative to the negative control, whereas the chemical positive control provided the strongest overall suppression (HR = 0.287). Our findings demonstrate that commercial EPF formulations can significantly reduce T. absoluta infestation under greenhouse conditions and represent a valuable component of integrated pest management programs. Full article
(This article belongs to the Special Issue Pests, Pesticides, Pollinators and Sustainable Farming—2nd Edition)
Show Figures

Figure 1

15 pages, 7573 KB  
Article
MED12 Dictates Epithelial Ovarian Cancer Cell Ferroptosis Sensitivity via YAP–TEAD1 Signaling
by Xiaolin Luo, Yi Ding, Zeying Wang and Jihong Liu
Int. J. Mol. Sci. 2026, 27(2), 1020; https://doi.org/10.3390/ijms27021020 - 20 Jan 2026
Viewed by 103
Abstract
Epithelial ovarian cancer (EOC) represents the most lethal malignancy arising from the female reproductive tract, largely due to the clinical challenge of chemotherapy resistance. Recent studies indicate that ferroptosis—a distinct form of programmed cell death driven by iron accumulation and lipid peroxidation, could [...] Read more.
Epithelial ovarian cancer (EOC) represents the most lethal malignancy arising from the female reproductive tract, largely due to the clinical challenge of chemotherapy resistance. Recent studies indicate that ferroptosis—a distinct form of programmed cell death driven by iron accumulation and lipid peroxidation, could potentially exploit a vulnerability in chemoresistant cancer cells. Here, we identify MED12 as a critical regulator of ferroptosis sensitivity in EOC through modulation of the YAP–TEAD1 signaling pathway. Using CRISPR/Cas9-mediated knockout and rescue experiments in EOC cell lines, we demonstrate that MED12 deficiency significantly enhances sensitivity to ferroptosis inducers (RSL3 and Erastin), as evidenced by reduced IC50 values. Transcriptomic and chromatin accessibility analyses reveal that MED12 loss activates YAP signaling through TEAD1 upregulation, increasing chromatin accessibility at YAP–TEAD1 target loci and elevating the expression of downstream effectors CYR61 and CTGF. Pharmacological inhibition of YAP with verteporfin or siRNA-mediated TEAD1 knockdown reverses ferroptosis sensitivity in MED12-deficient cells, confirming pathway specificity. These findings establish MED12 as a modulator of the YAP–TEAD1–ferroptosis axis and suggest that targeting this pathway could overcome chemoresistance in MED12-deficient EOC. Our work provides a mechanistic foundation for exploiting ferroptosis induction as a therapeutic strategy in ovarian cancer. Full article
(This article belongs to the Special Issue Advances in Ovarian Cancer Metastasis and Chemotherapy Resistance)
Show Figures

Figure 1

20 pages, 2028 KB  
Review
Advances in Boron, Iron, Manganese, and Zinc Signaling, Transport, and Functional Integration for Enhancing Cotton Nutrient Efficiency and Yield—A Review
by Unius Arinaitwe, Dalitso Noble Yabwalo, Abraham Hangamaisho, Shillah Kwikiiriza and Francis Akitwine
Int. J. Plant Biol. 2026, 17(1), 7; https://doi.org/10.3390/ijpb17010007 - 20 Jan 2026
Viewed by 118
Abstract
Micronutrients, particularly boron (B), iron (Fe), manganese (Mn), and zinc (Zn), are pivotal for cotton (Gossypium spp.) growth, reproductive success, and fiber quality. However, their critical roles are often overlooked in fertility programs focused primarily on macronutrients. This review synthesizes recent advances [...] Read more.
Micronutrients, particularly boron (B), iron (Fe), manganese (Mn), and zinc (Zn), are pivotal for cotton (Gossypium spp.) growth, reproductive success, and fiber quality. However, their critical roles are often overlooked in fertility programs focused primarily on macronutrients. This review synthesizes recent advances in the physiological, molecular, and agronomic understanding of B, Fe, Mn, and Zn in cotton production. The overarching goal is to elucidate their impact on cotton nutrient use efficiency (NUE). Drawing from the peer-reviewed literature, we highlight how these micronutrients regulate essential processes, including photosynthesis, cell wall integrity, hormone signaling, and stress remediation. These processes directly influence root development, boll retention, and fiber quality. As a result, deficiencies in these micronutrients contribute to significant yield gaps even when macronutrients are sufficiently supplied. Key genes, including Boron Transporter 1 (BOR1), Iron-Regulated Transporter 1 (IRT1), Natural Resistance-Associated Macrophage Protein 1 (NRAMP1), Zinc-Regulated Transporter/Iron-Regulated Transporter-like Protein (ZIP), and Gossypium hirsutum Zinc/Iron-regulated transporter-like Protein 3 (GhZIP3), are crucial for mediating micronutrient uptake and homeostasis. These genes can be leveraged in breeding for high-yielding, nutrient-efficient cotton varieties. In addition to molecular hacks, advanced phenotyping technologies, such as unmanned aerial vehicles (UAVs) and single-cell RNA sequencing (scRNA-seq; a technology that measures gene expression at single-cell level, enabling the high-resolution analysis of cellular diversity and the identification of rare cell types), provide novel avenues for identifying nutrient-efficient genotypes and elucidating regulatory networks. Future research directions should include leveraging microRNAs, CRISPR-based gene editing, and precision nutrient management to enhance the use efficiency of B, Fe, Mn, and Zn. These approaches are essential for addressing environmental challenges and closing persistent yield gaps within sustainable cotton production systems. Full article
Show Figures

Figure 1

14 pages, 760 KB  
Article
Two-Generation Genetic Evaluation of Female Reproductive Performance in Pacific White Shrimp (Penaeus vannamei) Under SPF Conditions
by Jiaqi Yu, Jie Kong, Sheng Luan, Jiawang Cao, Mianyu Liu, Kun Luo, Jian Tan, Ping Dai, Zhaoxin Wang, Juan Sui and Xianhong Meng
Animals 2026, 16(2), 235; https://doi.org/10.3390/ani16020235 - 13 Jan 2026
Viewed by 166
Abstract
Reproductive inefficiency remains a major constraint in Penaeus vannamei hatcheries due to high rates of non-spawning females. This study presents the first two-generational quantitative genetic analysis of female reproductive performance under standardized SPF (Specific Pathogen-Free) conditions. A total of 986 females across two [...] Read more.
Reproductive inefficiency remains a major constraint in Penaeus vannamei hatcheries due to high rates of non-spawning females. This study presents the first two-generational quantitative genetic analysis of female reproductive performance under standardized SPF (Specific Pathogen-Free) conditions. A total of 986 females across two generations (2021–2022) from 198 full-sib and 68 half-sib families were evaluated. Traits analyzed included spawning frequency (SF), mean spawning interval (MSI), number of eggs laid for the first time (NE1), average spawning (AS), total spawning (TS), and spawning success (SS). Heritability estimates for SF, SS, and TS were moderate (0.30 ± 0.06, 0.23 ± 0.06 and 0.28 ± 0.07, respectively), while MSI, NE1, and AS showed low heritability (0.10–0.16). When analyzed separately by year, heritability estimates declined substantially for most traits in the second generation. Strong positive genetic correlations were observed between SF, MSI, NE1, AS, and TS, with pairwise estimates ranging from 0.82 to 0.99, indicating that these traits are under shared genetic control. Despite not being direct selection objects, all reproductive traits exhibited relative genetic progress (246–488% per generation), which is attributable to the high selection intensity applied to the parental generation. Our findings provide a robust foundation for integrating reproductive performance into breeding programs for P. vannamei, particularly under biosecurity and commercial feed-dominated conditions. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

28 pages, 1031 KB  
Review
Grasses of Campos Rupestres: Diversity, Functions and Perspectives for Seedling Production and Ecological Restoration
by Alessandra Rodrigues Kozovits, Maurílio Assis Figueiredo and Maria Cristina Teixeira Braga Messias
Grasses 2026, 5(1), 4; https://doi.org/10.3390/grasses5010004 - 13 Jan 2026
Viewed by 204
Abstract
The Campos Rupestres, ancient and nutrient-poor mountaintop ecosystems in Brazil, harbor exceptional biodiversity and endemism but face severe threats from mining and urban expansion. Native grasses (Poaceae), represented by nearly 300 documented species—many of them poorly studied—are fundamental elements of these ecosystems. They [...] Read more.
The Campos Rupestres, ancient and nutrient-poor mountaintop ecosystems in Brazil, harbor exceptional biodiversity and endemism but face severe threats from mining and urban expansion. Native grasses (Poaceae), represented by nearly 300 documented species—many of them poorly studied—are fundamental elements of these ecosystems. They provide critical ecological services, including soil stabilization, enhancing carbon storage and nutrient cycling, regulating water availability, and resilience to disturbances. This review synthesizes current knowledge on the diversity, functions, and propagation of Campos Rupestres grasses, with emphasis on their potential in ecological restoration. Despite their ecological importance, large-scale use of native grasses remains incipient, constrained by limited knowledge of reproductive biology, low seed viability, and scarce commercial seed availability. Advances in propagation include seedling and plug production, vegetative propagation, and rescue/reintroduction strategies, which have shown promising results in post-mining restoration. However, reliance on seed collection from natural populations risks depleting already limited genetic resources, highlighting the need for ex situ production systems. Expanding research on taxonomy, ecology, and cost-effective propagation methods, alongside supportive policy and market development, is crucial for integrating native grasses as cornerstone species in restoration programs. Bridging these gaps will enhance biodiversity conservation and restoration in one of the world’s most threatened megadiverse systems. Full article
(This article belongs to the Special Issue Feature Papers in Grasses)
Show Figures

Figure 1

21 pages, 6977 KB  
Article
An Integrative Small RNA–Degradome–Transcriptome Analysis Reveals Mechanisms of Heat-Induced Anther Indehiscence in Pepper
by Gang Lei, Tao Li, Kunhua Zhou, Xinjie Yuan, Yueqin Huang, Gege Li, Yu Fang, Rong Fang and Xuejun Chen
Biology 2026, 15(2), 129; https://doi.org/10.3390/biology15020129 - 12 Jan 2026
Viewed by 187
Abstract
Heat threatens male fertility in crops, yet the regulatory basis of anther dehiscence under high temperatures remains unclear. We compared a heat-sensitive pepper cultivar (DL) with a heat-tolerant landrace (B021) across two anther stages using integrated transcriptome, small-RNA, degradome, co-expression, and enzymatic assays. [...] Read more.
Heat threatens male fertility in crops, yet the regulatory basis of anther dehiscence under high temperatures remains unclear. We compared a heat-sensitive pepper cultivar (DL) with a heat-tolerant landrace (B021) across two anther stages using integrated transcriptome, small-RNA, degradome, co-expression, and enzymatic assays. DL showed a collapse of anther dehiscence above 34–38 °C, whereas B021 retained normal dehiscence at 39 °C, and histology revealed tapetal enlargement, premature degeneration, and locule contraction only in DL. RNA-seq indicated genotype- and stage-dependent reprogramming, with DL suppressing phenylpropanoid/cell-wall, transport, and proteostasis pathways, while B021 maintained reproductive and stress-integration programs. Small-RNA profiling and degradome sequencing identified conserved miRNA families with in vivo target cleavage, and notably, miR397 targeting a laccase gene showed stronger evidence in B021, which is consistent with controlled lignification. Functional organization of differentially expressed miRNA targets highlighted modules in respiration/redox, hormone and terpenoid metabolism, vascular–cell-wall programs, and proteostasis/osmotic buffering. WGCNA modules correlated with heat-tolerance traits converged on the same processes. Enzyme assays corroborated multi-omics predictions, with SOD, CAT, and POD activities consistently induced in B021 and limited MDA accumulation. Together, the data supports a model in which tolerant anthers sustain dehiscence under heat by coordinating secondary-wall formation, auxin/jasmonate/gibberellin crosstalk, respiratory and reactive oxygen species buffering, and protein/membrane quality control, providing tractable targets for breeding heat-resilient peppers. Full article
(This article belongs to the Special Issue The Potential of Genetics and Plant Breeding in Crop Improvement)
Show Figures

Figure 1

17 pages, 14275 KB  
Article
Comparative Genomic and Expression Analysis of the PEBP Gene Family in Three Allium Species with Emphasis on Garlic (Allium sativum)
by Liang Yang, Yanqin Ma, Pei Wang, Wei Chang, Ju Li, Gaofeng Gou, Haicheng Long, Yujie Zhou, Min You, Mingjun Miao, Jian Zhong, Fengshan Li and Zhi Li
Horticulturae 2026, 12(1), 69; https://doi.org/10.3390/horticulturae12010069 - 6 Jan 2026
Viewed by 186
Abstract
Across plants, the PEBP gene family is reported to regulate storage organ formation, developmental plasticity, and floral transitioning. However, its evolutionary dynamics and functional diversification within Allium species remain poorly understood. In this study, we performed genomic and transcriptomic analyses of the PEBP [...] Read more.
Across plants, the PEBP gene family is reported to regulate storage organ formation, developmental plasticity, and floral transitioning. However, its evolutionary dynamics and functional diversification within Allium species remain poorly understood. In this study, we performed genomic and transcriptomic analyses of the PEBP gene family across three economically important Allium species, including Allium fistulosum (bunching onion), Allium sativum (garlic), and Allium cepa (onion), identifying 19, 17, and 21 PEBP genes, respectively. The genes were assigned into five subfamilies (FT-like, TFL1-like, MFT-like, BFT-like, and PEBP-like), with MFT-like members being the most abundant. Structural analysis revealed strong conservation of key motifs (e.g., GxHR and DPDxP) across species, while substantial variation in intron–exon organization suggested subfunctionalization. Collinearity analysis indicated that segmental duplication primarily drove PEBP gene expansion in garlic and onion, whereas tandem duplication was absent in bunching onion. Promoter analysis showed enrichment of light- and hormone-related cis-regulatory elements, implicating their involvement in environmental and hormonal regulation. Expression profiling demonstrated clear tissue specificity, with AsPEBP11/13/14/16/19 exhibiting significantly higher expression in normal flowers than in abnormal ones, suggesting key roles in floral morphogenesis. Together, these findings will prove useful for future breeding programs aimed at improving reproductive development and fertility in Allium species. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

19 pages, 1346 KB  
Article
AI-Based Respiratory Monitoring-Guided Evaluation of Rottlerin Therapy for PRRS in Grower–Finisher Pig Farms
by Cha Eun Yoon, Dong Hyun Cho, Hye Lim Park, Ju Yeon Song, Sangshin Park, Sang Won Lee, Yun Young Go, In-Soo Choi, Chang-Seon Song, Joong-Bok Lee, Seung-Yong Park and Yeong-Lim Kang
Viruses 2026, 18(1), 72; https://doi.org/10.3390/v18010072 - 4 Jan 2026
Viewed by 462
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major cause of economic loss in the swine industry, and highly pathogenic variants such as NADC34-like PRRSV highlight the need for antiviral strategies that complement vaccination. In this field study, we evaluated the efficacy [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major cause of economic loss in the swine industry, and highly pathogenic variants such as NADC34-like PRRSV highlight the need for antiviral strategies that complement vaccination. In this field study, we evaluated the efficacy of AlimenWOW, a rottlerin–lipid formulation, in grower–finisher pigs under commercial conditions using AI-based respiratory monitoring. A total of 2000 pigs were assigned to four groups: AlimenWOW G1 (PRRSV-stable source farm), AlimenWOW G2 (PRRSV-unstable source farm), Control 1 (antibiotic), and Control 2 (antipyretic). Respiratory Health Status (ReHS) and a derived Clinical Cough Index (CCI = 100 − ReHS) were continuously recorded with SoundTalks®, and oral fluid PRRSV load, serology, clinical outcomes, and productivity were assessed over 4 weeks. AlimenWOW G2 showed a marked improvement in ReHS from severely compromised baseline values to levels comparable with healthy status, while both control groups remained low; CCI was significantly lower in AlimenWOW G2 than in controls from day 14 onward (p ≤ 0.0001). AlimenWOW treatment was associated with reduced PRRSV titers in oral fluid, lower mortality and wasting rates, and improved feed conversion with lower feed costs compared with controls. These findings indicate that AlimenWOW, integrated with AI-based acoustic monitoring, can improve respiratory health and mitigate PRRSV-associated clinical and economic losses, supporting its use as a complementary tool in PRRSV control programs. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

23 pages, 6560 KB  
Article
Cross-Species Transcriptomic and Metabolomic Analysis Reveals Conserved and Divergent Fatty Acid Metabolic Regulatory Strategies During Mammalian Oocyte Maturation
by Mostafa Elashry, Yassin Kassim, Bingjie Hu, Hao Sheng, Guangjun Xu, Hagar Elashry and Kun Zhang
Int. J. Mol. Sci. 2026, 27(1), 397; https://doi.org/10.3390/ijms27010397 - 30 Dec 2025
Viewed by 392
Abstract
Mammalian oocyte maturation is a metabolically demanding process relying on lipid metabolism that supplies energy, structural substrates, and signaling mediators. However, a comprehensive cross-species understanding of the dynamic requirement for lipids during this process remains elusive, hindering the optimization of assisted reproductive technologies. [...] Read more.
Mammalian oocyte maturation is a metabolically demanding process relying on lipid metabolism that supplies energy, structural substrates, and signaling mediators. However, a comprehensive cross-species understanding of the dynamic requirement for lipids during this process remains elusive, hindering the optimization of assisted reproductive technologies. Utilizing an integrated single-cell transcriptomic and targeted lipidomic approach, we mapped the metabolic landscape of bovine oocyte maturation. Our analysis uncovered a global transcriptional downregulation, with 3259 genes suppressed during the transition from the germinal vesicle (GV) to the metaphase II (MII) stage. This was particularly apparent in lipid catabolism pathways (e.g., for ACAA1), while mitochondrial energy production genes (ATP6) were upregulated. Lipidomics indicated a selective depletion of saturated fatty acids (SFAs; e.g., C16:0, C18:0) in MII oocytes, while monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs) were preferentially retained. Integrated network analysis specified hexadecanoic acid (C16:0) as a central metabolic hub, which rewires its interactions from biosynthetic genes (FASN, ELOVL6) in GV oocytes to degradative enzymes (ACADVL, HADH) in MII oocytes. Expanding to a cross-species transcriptomic atlas, we identified a core set of 59 lipid metabolism genes conserved across bovine, mouse, and human oocytes. Despite this conservation, we discovered stark species-specific regulatory strategies: bovine and human oocytes significantly downregulated fatty acid degradation and elongation post-maturation, whereas murine oocytes maintain pathway activity, upregulating key regulators like Acsl3. Our work unveils an evolutionarily conserved core lipid metabolic program in mammalian oocytes that is adaptively tuned to meet species-specific physiological demands. Bovine and human oocytes prioritize catabolic flexibility, using SFAs for energy, while mouse oocytes maintain their anabolic capacity for membrane biosynthesis. These findings provide a transformative resource for the field, offering biomarkers for oocyte quality and a rationale for enhancing species-tailored lipid formulations to develop in vitro maturation systems and amend reproductive outcomes in both agriculture and medicine. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 3671 KB  
Article
Validation and Verification of Novel Three-Dimensional Crack Growth Simulation Software GmshCrack3D
by Sven Krome, Tobias Duffe, Gunter Kullmer, Britta Schramm and Richard Ostwald
Appl. Sci. 2026, 16(1), 384; https://doi.org/10.3390/app16010384 - 30 Dec 2025
Viewed by 249
Abstract
The accurate prediction of crack initiation and propagation is essential for assessing the structural integrity of mechanically joined components and other complex assemblies. To overcome the limitations of existing finite element tools, a modular Python framework has been developed to automate three-dimensional crack [...] Read more.
The accurate prediction of crack initiation and propagation is essential for assessing the structural integrity of mechanically joined components and other complex assemblies. To overcome the limitations of existing finite element tools, a modular Python framework has been developed to automate three-dimensional crack growth simulations. The program combines geometric reconstruction, adaptive remeshing, and the numerical evaluation of fracture mechanics parameters within a single, fully automated workflow. The framework builds on open-source components and remains solver-independent, enabling straightforward integration with commercial or research finite element codes. A dedicated sequence of modules performs all required steps, from mesh separation and crack insertion to local submodeling, stress and displacement mapping, and iterative crack-front update, without manual interaction. The methodology was verified using a mini-compact tension (Mini-CT) specimen as a benchmark case. The numerical results demonstrate the accurate reproduction of stress intensity factors and energy release rates while achieving high computational efficiency through localized refinement. The developed approach provides a robust basis for crack growth simulations of geometrically complex or residual stress-affected structures. Its high degree of automation and flexibility makes it particularly suited for analyzing cracks in clinched and riveted joints, supporting the predictive design and durability assessment of joined lightweight structures. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

21 pages, 7766 KB  
Article
ACmix-Swin Deep Learning of 4-Day-Old Apis mellifera Larval Transcriptomes Reveals Early Caste-Biased Regulatory Hubs
by Peixun Gong, Jinyou Li, Weixue Tian, Xiang Ding, Runlang Su and Dan Yue
Genes 2026, 17(1), 17; https://doi.org/10.3390/genes17010017 - 25 Dec 2025
Viewed by 253
Abstract
Background/Objectives: Early larval development is critical for caste and sex differentiation in honeybees. This study investigates molecular divergence in 4-day-old Apis mellifera larvae and introduces a customized deep learning model for hub-gene discovery. Methods: Genome-guided RNA-seq, DEGs, WGCNA, and splicing analyses were integrated. [...] Read more.
Background/Objectives: Early larval development is critical for caste and sex differentiation in honeybees. This study investigates molecular divergence in 4-day-old Apis mellifera larvae and introduces a customized deep learning model for hub-gene discovery. Methods: Genome-guided RNA-seq, DEGs, WGCNA, and splicing analyses were integrated. A hybrid convolution–attention model, ACmix-Swin, combined with WGAN-GP augmentation, was developed to classify larvae and prioritize caste-biased genes. Selected genes were validated by qPCR. Results: Significant caste- and sex-specific divergence was detected in cuticle formation, hormone metabolism, and reproductive signaling. ACmix-Swin achieved the highest accuracy among baseline models and consistently identified key regulators, including Vg, LOC725841, LOC412768, and LOC100576841. qPCR confirmed RNA-seq trends. Conclusions: Caste- and sex-specific transcriptional programs are established early in larval development. The ACmix-Swin framework provides an effective strategy for high-dimensional transcriptome interpretation and robust hub-gene identification. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Graphical abstract

15 pages, 890 KB  
Article
Ureaplasma Species and Human Papillomavirus Coinfection and Associated Factors Among South African Adolescent Girls and Young Women
by Sinazo Kondlo and Zizipho Z. A. Mbulawa
Microbiol. Res. 2026, 17(1), 3; https://doi.org/10.3390/microbiolres17010003 - 23 Dec 2025
Viewed by 416
Abstract
Ureaplasma species are associated with various reproductive health issues, while human papillomavirus (HPV) is associated with cervical, vaginal and vulvar cancers. Data on the association between Ureaplasma species and HPV are limited in South Africa. This study investigated the prevalence of Ureaplasma urealyticum [...] Read more.
Ureaplasma species are associated with various reproductive health issues, while human papillomavirus (HPV) is associated with cervical, vaginal and vulvar cancers. Data on the association between Ureaplasma species and HPV are limited in South Africa. This study investigated the prevalence of Ureaplasma urealyticum (U. urealyticum), Ureaplasma parvum (U. parvum), and HPV coinfection and their associated factors, among adolescent girls and young women (AGYW) in the Eastern Cape Province, South Africa. A total of 214 participants were retrospectively recruited, and secondary data on HPV, U. urealyticum, U. parvum, demographics, and sexual behavior were used. HPV was detected using the Roche Linear Array HPV Genotyping Test, while U. urealyticum and U. parvum were detected using Allplex™ sexually transmitted infection (STI) essential Assay. Statistical analyses were performed using GraphPad Prism Version 8.0.1.244. The prevalence of U. urealyticum was 43.9% (94/214) and increased significantly with age (p = 0.036, R2 = 0.8497); while U. parvum prevalence was 68.7% (147/214) and was not influenced by age. Having four to six lifetime sexual partners (PR: 1.77, 95% CI: 1.04–3.00, p = 0.043) was associated with increased risk of U. urealyticum. A proportion of 36.3% (77/212) had HPV-U. urealyticum coinfection and its risk was increased among those with 3–6 lifetime sexual partners (PR: 1.59, 95% CI: 1.10–2.53, p = 0.017), 2–4 new partners past three months (PR: 2.14, 95% CI: 1.19–2.42, p = 0.021); vaginal sexual intercourse frequency past 1-month (2–3 vaginal intercourse: PR: 1.54, 95% CI: 1.06–2.53, p = 0.037; 4–10 vaginal intercourse: PR: 1.91, 95% CI: 1.83–1.91, p = 0.005) and alcohol consumption (PR: 1.85, 95% CI: 1.20–3.28, p = 0.004). U. urealyticum positives had a significantly higher risk of HPV types targeted by Cervarix® HPV vaccine than negatives (PR: 2.56, 95% CI: 1.23–5.37, p = 0.013), Gardasil®4 (PR: 2.16, 95% CI: 1.25–3.75, p = 0.006) and Gardasil®9 (PR: 1.70, 95% CI: 1.25–2.32, p = 0.001). AGYW of Eastern Cape Province, South Africa had high prevalence of U. urealyticum-HPV and U. parvum-HPV coinfections. Ureaplasma species coinfection was associated with HPV prevalence and distribution of genotypes. The U. urealyticum prevalence and its coinfection with HPV were associated with sexual behavior. Data from this study could contribute to the design of sexual health and STI interventions and could serve as a baseline for future epidemiological studies, which include ongoing surveillance of HPV genotype prevalence to evaluate the impact and effectiveness of HPV vaccination programs in the population. Full article
Show Figures

Figure 1

37 pages, 928 KB  
Review
The Xenopus Oocyte System: Molecular Dynamics of Maturation, Fertilization, and Post-Ovulatory Fate
by Ken-Ichi Sato
Biomolecules 2026, 16(1), 22; https://doi.org/10.3390/biom16010022 - 23 Dec 2025
Viewed by 565
Abstract
The Xenopus oocyte has long served as a versatile and powerful model for dissecting the molecular underpinnings of reproductive and developmental processes. Its large size, manipulability, and well-characterized cell cycle states have enabled generations of researchers to illuminate key aspects of oocyte maturation, [...] Read more.
The Xenopus oocyte has long served as a versatile and powerful model for dissecting the molecular underpinnings of reproductive and developmental processes. Its large size, manipulability, and well-characterized cell cycle states have enabled generations of researchers to illuminate key aspects of oocyte maturation, fertilization, and early embryogenesis. This review provides an integrated overview of the cellular and molecular events that define the Xenopus oocyte’s transition from meiotic arrest to embryonic activation—or alternatively, to programmed demise if fertilization fails. We begin by exploring the architectural and biochemical landscape of the oocyte, including polarity, cytoskeletal organization, and nuclear dynamics. The regulatory networks governing meiotic resumption are then examined, with a focus on MPF (Cdk1/Cyclin B), MAPK cascades, and translational control via CPEB-mediated cytoplasmic polyadenylation. Fertilization is highlighted as a calcium-dependent trigger for oocyte activation. During fertilization in vertebrates, sperm-delivered phospholipase C zeta (PLCζ) is a key activator of Ca2+ signaling in mammals. In contrast, amphibian species such as Xenopus lack a PLCZ1 ortholog and instead appear to rely on alternative protease-mediated signaling mechanisms, including the uroplakin III–Src tyrosine kinase pathway and matrix metalloproteinase (MMP)-2 activity, to achieve egg activation. The review also addresses the molecular fate of unfertilized eggs, comparing apoptotic and necrotic mechanisms and their relevance to reproductive health. Finally, we discuss recent innovations in Xenopus-based technologies such as mRNA microinjection, genome editing, and in vitro ovulation systems, which are opening new avenues in developmental biology and translational medicine. By integrating classic findings with emerging frontiers, this review underscores the continued value of the Xenopus model in elucidating the fundamental processes of life’s origin. We conclude with perspectives on unresolved questions and future directions in oocyte and early embryonic research. Full article
(This article belongs to the Special Issue Gametogenesis and Gamete Interaction, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop