Assisted Reproductive Technologies: A New Player in the Foetal Programming of Childhood and Adult Diseases?
Abstract
:1. Introduction
2. Historical Notes
3. Concepts of ART
3.1. Different Techniques Used for ART
3.2. Health and Development in Children Conceived through ART
4. Clinical Outcomes of ART
4.1. ART and Adverse Pregnancy Outcomes
4.2. ART and Low Birth Weight
4.3. ART and Neonatal Death
4.4. Congenital Malformations
4.5. Cardiovascular (Patent Ductus Arteriosus), Urogenital, and Musculoskeletal Defects
4.6. Neuropsychiatric Sequalae of ART
5. ART and the Foetal Programming of Diseases in Childhood
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.; Lin, S.; Huang, P.; Qiu, L.; Jiang, Y.; Zhang, Y.; Meng, N.; Meng, M.; Wang, L.; Deng, W. Maternal Anxiety Affects Embryo Implantation via Impairing Adrenergic Receptor Signaling in Decidual Cells. Commun. Biol. 2022, 5, 840. [Google Scholar] [CrossRef]
- Faa, G.; Fanos, V.; Manchia, M.; Van Eyken, P.; Suri, J.S.; Saba, L. The Fascinating Theory of Fetal Programming of Adult Diseases: A Review of the Fundamentals of the Barker Hypothesis. J. Public Health Res. 2024, 13, 22799036241226817. [Google Scholar] [CrossRef]
- Edwards, R.G. Maturation in Vitro of Human Ovarian Oocytes. Lancet 1965, 286, 926–929. [Google Scholar] [CrossRef]
- Edwards, R.G.; Bavister, B.D.; Steptoe, P.C. Early Stages of Fertilization in Vitro of Human Oocytes Matured in Vitro. Nature 1969, 221, 632–635. [Google Scholar] [CrossRef]
- Edwards, R.G.; Steptoe, P.C.; Purdy, J.M. Fertilization and Cleavage in Vitro of Human Oocytes Matured in Vivo. Nature 1970, 227, 1307–1309. [Google Scholar] [CrossRef]
- Steptoe, P.C.; Edwards, R.G. Birth after the Reimplantation of a Human Embryo. Lancet 1978, 312, 366. [Google Scholar] [CrossRef]
- Edwards, R.G. The Bumpy Road to Human in Vitro Fertilization. Nat. Med. 2001, 7, 1091–1094. [Google Scholar] [CrossRef]
- Wennerholm, U.-B.; Bergh, C. Perinatal Outcome in Children Born after Assisted Reproductive Technologies. Upsala J. Med. Sci. 2020, 125, 158–166. [Google Scholar] [CrossRef]
- Pinborg, A.; Wennerholm, U.-B.; Bergh, C. Long Term Outcomes for Children Conceived by ART. Fertil. Steril. 2023, 120, 449–456. [Google Scholar] [CrossRef]
- Zaat, T.; Zagers, M.; Mol, F.; Goddijn, M.; van Wely, M.; Mastenbroek, S. Fresh versus Frozen Embryo Transfers in Assisted Reproduction. Cochrane Database Syst. Rev. 2021, 2, CD011184. [Google Scholar]
- Kleijkers, S.H.; Mantikou, E.; Slappendel, E.; Consten, D.; van Echten-Arends, J.; Wetzels, A.M.; van Wely, M.; Smits, L.J.; van Montfoort, A.P.; Repping, S. Influence of Embryo Culture Medium (G5 and HTF) on Pregnancy and Perinatal Outcome after IVF: A Multicenter RCT. Hum. Reprod. 2016, 31, 2219–2230. [Google Scholar] [CrossRef]
- Sunderam, S.; Kissin, D.M.; Crawford, S.B.; Folger, S.G.; Jamieson, D.J.; Warner, L.; Barfield, W.D. Assisted Reproductive Technology Surveillance—United States, 2012. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2015, 64, 1–29. [Google Scholar]
- Bouillon, C.; Fauque, P. Follow-up of Children Conceived by Assisted Reproductive Technologies. Arch. Pediatr. Organe Off. de La Soc. Fr. de Pediatr. 2013, 20, 575–579. [Google Scholar]
- Caserta, D.; Bordi, G.; Stegagno, M.; Filippini, F.; Podagrosi, M.; Roselli, D.; Moscarini, M. Maternal and Perinatal Outcomes in Spontaneous versus Assisted Conception Twin Pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 174, 64–69. [Google Scholar] [CrossRef]
- Qin, J.B.; Wang, H.; Sheng, X.; Xie, Q.; Gao, S. Assisted Reproductive Technology and Risk of Adverse Obstetric Outcomes in Dichorionic Twin Pregnancies: A Systematic Review and Meta-Analysis. Fertil. Steril. 2016, 105, 1180–1192. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, L.; Yang, T.; Yu, H.; Wang, H.; Qin, J. Multiple Pregnancies Achieved with IVF/ICSI and Risk of Specific Congenital Malformations: A Meta-Analysis of Cohort Studies. Reprod. Biomed. Online 2018, 36, 472–482. [Google Scholar] [CrossRef]
- Magnus, M.C.; Wilcox, A.J.; Fadum, E.A.; Gjessing, H.K.; Opdahl, S.; Juliusson, P.B.; Romundstad, L.B.; Håberg, S.E. Growth in Children Conceived by ART. Hum. Reprod. 2021, 36, 1074–1082. [Google Scholar] [CrossRef]
- Roseboom, T.J.; Eriksson, J.G. Children Conceived by ART Grow Differently in Early Life than Naturally Conceived Children but Reach the Same Height and Weight by Age 17. Reassuring? Not so Sure. Hum. Reprod. 2021, 36, 847–849. [Google Scholar] [CrossRef]
- Rozdarz, K.M.; Flatley, C.J.; Kumar, S. Intrapartum and Neonatal Outcomes in Singleton Pregnancies Following Conception by Assisted Reproduction Techniques. Aust. N. Z. J. Obstet. Gynaecol. 2017, 57, 588–592. [Google Scholar] [CrossRef]
- Jauniaux, E.; Ben-Ami, I.; Maymon, R. Do Assisted-Reproduction Twin Pregnancies Require Additional Antenatal Care? Reprod. BioMed. Online 2013, 26, 107–119. [Google Scholar] [CrossRef]
- Stavridis, K.; Pisimisi, M.; Triantafyllidou, O.; Kalampokas, T.; Vlahos, N.; Kastora, S.L. The Association of Assisted Reproductive Technology with Fetal Malpresentation: A Systematic Review and Meta-Analysis. J. Matern.-Fetal Neonatal Med. 2024, 37, 2313143. [Google Scholar] [CrossRef]
- Henningsen, A.-K.A.; Opdahl, S.; Wennerholm, U.-B.; Tiitinen, A.; Rasmussen, S.; Romundstad, L.B.; Bergh, C.; Gissler, M.; Forman, J.L.; Pinborg, A. Risk of Congenital Malformations in Live-Born Singletons Conceived after Intracytoplasmic Sperm Injection: A Nordic Study from the CoNARTaS Group. Fertil. Steril. 2023, 120, 1033–1041. [Google Scholar] [CrossRef]
- Karami, M.; Jenabi, E.; Fereidooni, B. The Association of Placenta Previa and Assisted Reproductive Techniques: A Meta-Analysis. J. Matern.-Fetal Neonatal Med. 2018, 31, 1940–1947. [Google Scholar] [CrossRef]
- Collee, J.; Brichant, G.; Chantraine, F.; Nisolle, M.; Henry, L. Étiologie de La Prééclampsie Après Traitements de Procréation Médicalement Assistée. Rev. Médicale Liège 2023, 78, 659–664. [Google Scholar]
- Haavaldsen, C.; Tanbo, T.; Eskild, A. Placental Weight in Singleton Pregnancies with and without Assisted Reproductive Technology: A Population Study of 536 567 Pregnancies. Hum. Reprod. 2012, 27, 576–582. [Google Scholar] [CrossRef]
- Davies, M.J.; Rumbold, A.R.; Moore, V.M. Assisted Reproductive Technologies: A Hierarchy of Risks for Conception, Pregnancy Outcomes and Treatment Decisions. J. Dev. Orig. Health Dis. 2017, 8, 443–447. [Google Scholar] [CrossRef]
- Simpson, J.L. Birth Defects and Assisted Reproductive Technologies. In Seminars in Fetal and Neonatal Medicine; Elsevier: Amsterdam, The Netherlands, 2014; Volume 19, pp. 177–182. [Google Scholar]
- Luke, B.; Brown, M.B.; Wantman, E.; Forestieri, N.E.; Browne, M.L.; Fisher, S.C.; Yazdy, M.M.; Ethen, M.K.; Canfield, M.A.; Watkins, S.; et al. The Risk of Birth Defects with Conception by ART. Hum. Reprod. 2021, 36, 116–129. [Google Scholar] [CrossRef]
- Iwashima, S.; Ishikawa, T.; Itoh, H. Reproductive Technologies and the Risk of Congenital Heart Defects. Hum. Fertil. 2017, 20, 14–21. [Google Scholar] [CrossRef]
- Potiris, A.; Perros, P.; Drakaki, E.; Mavrogianni, D.; Machairiotis, N.; Sfakianakis, A.; Karampitsakos, T.; Vrachnis, D.; Antonakopoulos, N.; Panagopoulos, P. Investigating the Association of Assisted Reproduction Techniques and Adverse Perinatal Outcomes. J. Clin. Med. 2024, 13, 328. [Google Scholar] [CrossRef]
- Carmichael, S.L.; Shaw, G.M.; Laurent, C.; Croughan, M.S.; Olney, R.S.; Lammer, E.J. Maternal Progestin Intake and Risk of Hypospadias. Arch. Pediatr. Adolesc. Med. 2005, 159, 957–962. [Google Scholar] [CrossRef]
- Silver, R.I.; Rodriguez, R.; Chang, T.S.K.; Gearhart, J.P. In vitro fertilization is associated with an increased risk of hypospadias. J. Urol. 1999, 161, 1954–1957. [Google Scholar] [CrossRef]
- Funke, S.; Flach, E.; Kiss, I.; Sándor, J.; Vida, G.; Bódis, J.; Ertl, T. Male Reproductive Tract Abnormalities: More Common after Assisted Reproduction? Early Hum. Dev. 2010, 86, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.K.; Lyu, S.W.; Choi, J.; Lee, D.R.; Yoon, T.K.; Song, S.-H. Does Infertility Treatment Increase Male Reproductive Tract Disorder? Urology 2013, 81, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Aliani, F.; Haghshenas, Z.; Dizaj, A.V.; Arabipoor, A.; Vesali, S.; Ashrafi, M. Birth Prevalence of Genital Anomalies among Males Conceived by Intracytoplasmic Sperm Injection Cycles: A Cross-Sectional Study. Int. J. Reprod. Biomed. 2023, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, L.; Zhang, P.; Sun, Y.; Ma, C.; Li, Y. Risk of Birth Defects in Children Conceived with Assisted Reproductive Technology: A Meta-Analysis. Medicine 2022, 101, e32405. [Google Scholar] [CrossRef] [PubMed]
- Velez, M.P.; Dayan, N.; Shellenberger, J.; Pudwell, J.; Kapoor, D.; Vigod, S.N.; Ray, J.G. Infertility and Risk of Autism Spectrum Disorder in Children. JAMA Netw. Open 2023, 6, e2343954. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.; Weng, S.-F.; Tsai, E.-M. Neurodevelopmental Disorders in Offspring Conceived via In Vitro Fertilization vs. Intracytoplasmic Sperm Injection. JAMA Netw. Open 2022, 5, e2248141. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Nygren, K.-G.; Iliadou, A.; Hultman, C.M.; Reichenberg, A. Autism and Mental Retardation among Offspring Born after in Vitro Fertilization. JAMA 2013, 310, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Jenabi, E.; Bashirian, S.; Khazaei, S.; Farhadi Nasab, A.; Maleki, A. The Association between Assisted Reproductive Technology and the Risk of Autism Spectrum Disorders among Offspring: A Meta-Analysis. Curr. Pediatr. Rev. 2023, 19, 83–89. [Google Scholar]
- Hvidtjørn, D.; Schieve, L.; Schendel, D.; Jacobsson, B.; Sværke, C.; Thorsen, P. Cerebral Palsy, Autism Spectrum Disorders, and Developmental Delay in Children Born after Assisted Conception: A Systematic Review and Meta-Analysis. Arch. Pediatr. Adolesc. Med. 2009, 163, 72–83. [Google Scholar] [CrossRef]
- Djuwantono, T.; Aviani, J.K.; Permadi, W.; Achmad, T.H.; Halim, D. Risk of Neurodevelopmental Disorders in Children Born from Different ART Treatments: A Systematic Review and Meta-Analysis. J. Neurodev. Disord. 2020, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Davidovitch, M.; Chodick, G.; Shalev, V.; Eisenberg, V.H.; Dan, U.; Reichenberg, A.; Sandin, S.; Levine, S.Z. Infertility Treatments during Pregnancy and the Risk of Autism Spectrum Disorder in the Offspring. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 86, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-R.; Jung, Y.H.; Kim, S.Y.; Choi, C.W. Neurodevelopmental Outcomes of Preterm Infants with Very Low Birth Weight Conceived with the Assistance of in Vitro Fertilization. Fertil. Steril. 2022, 117, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Diop, H.; Cabral, H.; Gopal, D.; Cui, X.; Stern, J.E.; Kotelchuck, M. Early Autism Spectrum Disorders in Children Born to Fertile, Subfertile, and ART-Treated Women. Matern. Child Health J. 2019, 23, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Malamitsi-Puchner, A. Intracytoplasmic Sperm Injection and Fetal Origins of Autism Spectrum Disorder: An Intriguing, Though Controversial Association. J. Matern.-Fetal Neonatal Med. 2022, 35, 799–805. [Google Scholar] [CrossRef]
- Faa, G.; Marcialis, M.A.; Ravarino, A.; Piras, M.; Pintus, M.C.; Fanos, V. Fetal Programming of the Human Brain: Is There a Link with Insurgence of Neurodegenerative Disorders in Adulthood? Curr. Med. Chem. 2014, 21, 3854–3876. [Google Scholar] [CrossRef]
- Faa, G.; Manchia, M.; Pintus, R.; Gerosa, C.; Marcialis, M.A.; Fanos, V. Fetal Programming of Neuropsychiatric Disorders. Birth Defects Res. Part C Embryo Today Rev. 2016, 108, 207–223. [Google Scholar] [CrossRef]
- Wang, F.-F.; Yu, T.; Chen, X.-L.; Luo, R.; Mu, D.-Z. Cerebral Palsy in Children Born after Assisted Reproductive Technology: A Meta-Analysis. World J. Pediatr. 2021, 17, 364–374. [Google Scholar] [CrossRef]
- Spangmose, A.L.; Christensen, L.H.; Henningsen, A.-K.A.; Forman, J.; Opdahl, S.; Romundstad, L.B.; Himmelmann, K.; Bergh, C.; Wennerholm, U.-B.; Tiitinen, A. Cerebral Palsy in ART Children Has Declined Substantially over Time: A Nordic Study from the CoNARTaS Group. Hum. Reprod. 2021, 36, 2358–2370. [Google Scholar] [CrossRef]
- Kaltsas, A.; Moustakli, E.; Zikopoulos, A.; Georgiou, I.; Dimitriadis, F.; Symeonidis, E.N.; Markou, E.; Michaelidis, T.M.; Tien, D.M.B.; Giannakis, I.; et al. Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring. Genes 2023, 14, 486. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Low, F.M. The Role of Developmental Plasticity and Epigenetics in Human Health. Birth Defects Res. Part C Embryo Today Rev. 2011, 93, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Waterland, R.A.; Michels, K.B. Epigenetic Epidemiology of the Developmental Origins Hypothesis. Annu. Rev. Nutr. 2007, 27, 363–388. [Google Scholar] [CrossRef]
- Naumova, A.K.; Taketo-hosotani, T. Epigenetics in Human Reproduction and Development; World Scientific: Singapore, 2016. [Google Scholar]
- Kanherkar, R.R.; Bhatia-Dey, N.; Csoka, A.B. Epigenetics across the Human Lifespan. Front. Cell Dev. Biol. 2014, 2, 49. [Google Scholar] [CrossRef]
- Barker, D.J.P. The Origins of the Developmental Origins Theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef]
- Mani, S.; Ghosh, J.; Coutifaris, C.; Sapienza, C.; Mainigi, M. Epigenetic Changes and Assisted Reproductive Technologies. Epigenetics 2020, 15, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Osman, E.; Franasiak, J.; Scott, R. Oocyte and Embryo Manipulation and Epigenetics. Semin. Reprod. Med. 2018, 36, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, Y.; Lin, J.; Xu, J.; Ding, G.; Huang, H. Genetic and Epigenetic Risks of Assisted Reproduction. Best Pract. Res. Clin. Obstet. Gynaecol. 2017, 44, 90–104. [Google Scholar] [CrossRef]
- Hargreave, M.; Jensen, A.; Hansen, M.K.; Dehlendorff, C.; Winther, J.F.; Schmiegelow, K.; Kjær, S.K. Association between Fertility Treatment and Cancer Risk in Children. JAMA 2019, 322, 2203–2210. [Google Scholar] [CrossRef]
- Spector, L.G.; Brown, M.B.; Wantman, E.; Letterie, G.S.; Toner, J.P.; Doody, K.; Ginsburg, E.; Williams, M.; Koch, L.; Schymura, M.J. Association of in Vitro Fertilization with Childhood Cancer in the United States. JAMA Pediatr. 2019, 173, e190392. [Google Scholar] [CrossRef]
- Spaan, M.; van den Belt-Dusebout, A.W.; van den Heuvel-Eibrink, M.M.; Hauptmann, M.; Lambalk, C.B.; Burger, C.W.; van Leeuwen, F.E.; PAM, O.; group S.R.K.M.L.J. van S.E. van der W.L.C.B.B.D.S.J.L.J.G.M. van G.R. van R.M.H.C.M. Risk of Cancer in Children and Young Adults Conceived by Assisted Reproductive Technology. Hum. Reprod. 2019, 34, 740–750. [Google Scholar] [CrossRef]
- Meister, T.A.; Rimoldi, S.F.; Soria, R.; Von Arx, R.; Messerli, F.H.; Sartori, C.; Scherrer, U.; Rexhaj, E. Association of Assisted Reproductive Technologies With Arterial Hypertension During Adolescence. J. Am. Coll. Cardiol. 2018, 72, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Norrman, E.; Petzold, M.; Gissler, M.; Spangmose, A.L.; Opdahl, S.; Henningsen, A.-K.; Pinborg, A.; Tiitinen, A.; Rosengren, A.; Romundstad, L.B. Cardiovascular Disease, Obesity, and Type 2 Diabetes in Children Born after Assisted Reproductive Technology: A Population-Based Cohort Study. PLoS Med. 2021, 18, e1003723. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.E.; Jelin, A.; Hoon, A.H.; Wilms Floet, A.M.; Levey, E.; Graham, E.M. Assisted Reproductive Technology: Short- and Long-term Outcomes. Dev. Med. Child Neuro 2023, 65, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Dover, G.J. The Barker Hypothesis: How Pediatricans Will Diagnose and Prevent Common Adult-Onset Diseases. Trans. Am. Clin. Climatol. Assoc. 2009, 120, 199. [Google Scholar] [PubMed]
- Alon, I.; Chebance, Z.; Massucci, F.A.; Bounartzi, T.; Ravitsky, V. Mapping International Research Output within Ethical, Legal, and Social Implications (ELSI) of Assisted Reproductive Technologies. J. Assist. Reprod. Genet. 2023, 40, 2023–2043. [Google Scholar] [CrossRef]
- Quintigliano, M.; Carone, N.; Speranza, A.M.; Tanzilli, A.; Baiocco, R.; Barone, L.; Pastorelli, C.; Lingiardi, V. Adolescent Development and the Parent–Adolescent Relationship in Diverse Family Forms Created by Assisted Reproduction. Int. J. Environ. Res. Public Health 2022, 19, 16758. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faa, G.; Manchia, M.; Fanos, V. Assisted Reproductive Technologies: A New Player in the Foetal Programming of Childhood and Adult Diseases? Pediatr. Rep. 2024, 16, 329-338. https://doi.org/10.3390/pediatric16020029
Faa G, Manchia M, Fanos V. Assisted Reproductive Technologies: A New Player in the Foetal Programming of Childhood and Adult Diseases? Pediatric Reports. 2024; 16(2):329-338. https://doi.org/10.3390/pediatric16020029
Chicago/Turabian StyleFaa, Gavino, Mirko Manchia, and Vassilios Fanos. 2024. "Assisted Reproductive Technologies: A New Player in the Foetal Programming of Childhood and Adult Diseases?" Pediatric Reports 16, no. 2: 329-338. https://doi.org/10.3390/pediatric16020029
APA StyleFaa, G., Manchia, M., & Fanos, V. (2024). Assisted Reproductive Technologies: A New Player in the Foetal Programming of Childhood and Adult Diseases? Pediatric Reports, 16(2), 329-338. https://doi.org/10.3390/pediatric16020029