Programmed Genome Elimination Is Evolutionarily Conserved Across Pelophylax Hybrids—As Evidenced by P. grafi Hybridogenetic Reproduction
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and In Vitro Crosses
2.2. Taxonomic Identification
2.3. Preparation of Mitotic and Diplotene Chromosomes
2.4. Comparative Genomic Hybridization (CGH)
2.5. FISH with Telomeric Probe
2.6. Whole-Mount DAPI Staining
2.7. Analysis of Mitotic Chromosomes, Interphase Gonocytes, Micronuclei in Gonocytes and Pre-Diplotene Meiocytes
2.8. Statistical Analysis
2.9. Image Processing
2.10. Use of Artificial Intelligence Tools
3. Results
3.1. Chromosomal Composition of Gonocytes and Oocytes in P. grafi Tadpoles During Gonadal Development (Detailed Description in Supplementary File S1)
3.1.1. Female P. perezi PP × Male P. grafi RP
3.1.2. Female P. grafi RP × Male P. perezi PP
3.1.3. Female P. perezi PP × Male P. ridibundus RR
3.1.4. Statistical Summary of All the Crosses Pooled
3.2. The Characteristics of Micronuclei in Gonocytes
3.3. Genomes Passed Down from Adult P. grafi Males and Females
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scali, V. Metasexual stick insects: Model pathways to losing sex and bringing it back. In Lost Sex: The Evolutionary Biology of Parthenogenesis; Schön, I., Martens, K., Peter, D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 317–345. [Google Scholar]
- Graf, J.-D.; Polls-Pelaz, M. Evolutionary genetics of the Rana esculenta complex. In Evolution and Ecology of Unisexual Vertebrates; Dawley, R.M., Bogart, J.P., Eds.; New York State Museum: Albany, NY, USA, 1989; pp. 289–302. [Google Scholar]
- Lamatsch, D.K.; Stöck, M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In Lost Sex: The Evolutionary Biology of Parthenogenesis; Schön, I., Martens, K., Peter, D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 399–432. [Google Scholar]
- Ogielska, M. Development and Reproduction of amphibian Species, Hybrids, and Polyploids. In Reproduction of Amphibians; Ogielska, M., Ed.; Science Publisher: Enfield, NH, USA, 2009; pp. 343–410. [Google Scholar]
- Schultz, R.J. Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat. 1969, 103, 605–619. [Google Scholar] [CrossRef]
- Tunner, G. Die klonale Struktur einer Wasserfroschpopulation. J. Zool. Syst. Evol. Res. 1974, 12, 309–314. [Google Scholar] [CrossRef]
- Berger, L. Western Palearctic water frogs (Amphibia, Ranidae): Systematics, genetics and population compositions. Experientia 1983, 39, 127–130. [Google Scholar] [CrossRef]
- Alves, M.J.; Coelho, M.M.; Collares-Pereira, M.J. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: A genetic review. Genetica 2001, 111, 375–385. [Google Scholar] [CrossRef]
- Park, J.-Y.; Kim, I.-S.; Ko, M.-H. Characteristics of rare males in the cobitid unisexual complex, Cobitis hankugensis-Iksookimia longicorpa. Folia Zool. 2011, 60, 290–294. [Google Scholar] [CrossRef]
- Suzuki, S.; Arai, K.; Munehara, H. Karyological evidence of hybridogenesis in greenlings (Teleostei: Hexagrammidae). PLoS ONE 2017, 12, e0180626. [Google Scholar] [CrossRef]
- Majtánová, Z.; Dedukh, D.; Choleva, L.; Adams, M.; Ráb, P.; Unmack, P.J.; Ezaz, T. Uniparental genome elimination in australian carp gudgeons. Genome Biol. Evol. 2021, 13, evab030. [Google Scholar] [CrossRef]
- Dudzik, A.; Dedukh, D.; Crochet, P.-A.; Rozenblut-Kościsty, B.; Rybka, H.; Doniol-Valcroze, P.; Choleva, L.; Ogielska, M.; Chmielewska, M. Cytogenetics of the hybridogenetic frog Pelophylax grafi and its parental species Pelophylax Perezi. Genome Biol. Evol. 2023, 15, evad215. [Google Scholar] [CrossRef]
- Schmidt, D.J.; Bond, N.R.; Adams, M.; Hughes, J.M. Cytonuclear evidence for hybridogenetic reproduction in natural populations of the Australian carp gudgeon (Hypseleotris: Eleotridae). Mol. Ecol. 2011, 20, 3367–3380. [Google Scholar] [CrossRef]
- Stöck, M.; Ustinova, J.; Betto-Colliard, C.; Schartl, M.; Moritz, C.; Perrin, N. Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate. Proc. R. Soc. B Biol. Sci. 2012, 279, 1293–1299. [Google Scholar]
- Arai, K.; Fujimoto, T. Genomic constitution and atypical reproduction in polyploid and unisexual lineages of the Misgurnus loach, a teleost fish. Cytogenet. Genome Res. 2013, 140, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Montes, G.; Recuero, E.; Gutiérrez-Rodríguez, J.; Gomez-Mestre, I.; Martínez-Solanot, Í. Species assignment in the Pelophylax ridibundus x P. perezi hybridogenetic complex based on 16 newly characterised microsatellite markers. Herpetol. J. 2016, 26, 99–108. [Google Scholar]
- Dubey, S.; Dufresnes, C. An extinct vertebrate preserved by its living hybridogenetic descendant. Sci. Rep. 2017, 7, 12768. [Google Scholar] [CrossRef] [PubMed]
- Dufresnes, C.; Denoël, M.; Di Santo, L.; Dubey, S. Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Sci. Rep. 2017, 7, 6506. [Google Scholar] [CrossRef] [PubMed]
- Dufresnes, C.; Mazepa, G. Hybridogenesis in Water Frogs. eLS 2020, 1, 718–726. [Google Scholar]
- Demay, J.; Ciavatti, F.; Cuevas, A.; Doniol-Valcroze, P.; Eble, A.; Leblanc, E.; Mansier, Y.; Martinossi-Allibert, I.; Nicolas, J.; Pineau, A.; et al. Distribution des grenouilles vertes du système perezi-grafi et des autres espèces du genre Pelophylax (Amphibia: Ranidae) dans leur aire méditerranéenne française à l’ouest du Rhône. Bull. Société Herpétologique Fr. 2023, 182, 1–11. [Google Scholar]
- Chmielewska, M.; Dedukh, D.; Haczkiewicz, K.; Rozenblut-Kościsty, B.; Kaźmierczak, M.; Kolenda, K.; Serwa, E.; Pietras-Lebioda, A.; Krasikova, A.; Ogielska, M. The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci. Rep. 2018, 8, 7870. [Google Scholar] [CrossRef]
- Ogielska, M.; Chmielewska, M.; Rozenblut-Kościsty, B. Pregametogenesis: The earliest stages of gonad and germline differentiation in anuran amphibians. Biology 2024, 13, 1017. [Google Scholar] [CrossRef]
- Ogielska, M. Nucleus-like bodies in gonial cells of Rana esculenta [Amphibia, Anura] tadpoles—A putative way of chromosome elimination. Zool. Pol. 1994, 39, 461–474. [Google Scholar]
- Dedukh, D.; Riumin, S.; Chmielewska, M.; Rozenblut-Kościsty, B.; Kolenda, K.; Kaźmierczak, M.; Dudzik, A.; Ogielska, M.; Krasikova, A. Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci. Rep. 2020, 10, 8720. [Google Scholar] [CrossRef]
- Dedukh, D.; Krasikova, A. Delete and survive: Strategies of programmed genetic material elimination in eukaryotes. Biol. Rev. 2022, 97, 195–216. [Google Scholar] [CrossRef]
- Graf, J.-D.; Müller, W.P. Experimental gynogenesis provides evidence of hybridogenetic reproduction in the Rana esculenta complex. Experientia 1979, 35, 1574–1576. [Google Scholar] [CrossRef]
- Tunner, H.G.; Heppich, S. Premeiotic genome exclusion during oogenesis in the common edible frog, Rana esculenta. Naturwissenschaften 1981, 68, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Heppich, S.; Tunner, H.G.; Greilhuber, J. Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor. Appl. Genet. 1982, 61, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Bucci, S.; Ragghianti, M.; Mancino, G.; Berger, L.; Hotz, H.; Uzzell, T. Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J. Exp. Zool. 1990, 255, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Ragghianti, M.; Guerrini, F.; Bucci, S.; Mancino, G.; Hotz, H.; Uzzell, T.; Guex, G.-D. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Res. 1995, 3, 497–506. [Google Scholar] [CrossRef]
- Dedukh, D.; Litvinchuk, S.; Rosanov, J.; Mazepa, G.; Saifitdinova, A.; Shabanov, D.; Krasikova, A. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS ONE 2015, 10, e0123304. [Google Scholar] [CrossRef]
- Zlotina, A.; Dedukh, D.; Krasikova, A. Amphibian and avian karyotype evolution: Insights from lampbrush chromosome studies. Genes 2017, 8, 311. [Google Scholar] [CrossRef]
- Pustovalova, E.; Choleva, L.; Shabanov, D.; Dedukh, D. The high diversity of gametogenic pathways in amphispermic water frog hybrids from Eastern Ukraine. PeerJ 2022, 10, e13957. [Google Scholar] [CrossRef]
- Choleva, L.; Doležálková-Kaštánková, M.; Labajová, V.; Sember, A.; Altmanová, M.; Lukšíková, K.; Chung Voleníková, A.; Dalíková, M.; Nguyen, P.; Pustovalova, E.; et al. Formation of hemiclonal reproduction and hybridogenesis in Pelophylax water frogs studied with species-specific cytogenomic probes. bioRxiv 2023, 277, 12. [Google Scholar]
- Marracci, S.; Michelotti, V.; Guex, G.D.; Hotz, H.; Uzzell, T.; Ragghianti, M. RrS1-like sequences of water frogs from central Europe and around the Aegean Sea: Chromosomal organization, evolution, possible function. J. Mol. Evol. 2011, 72, 368–382. [Google Scholar] [CrossRef]
- Biriuk, O.V.; Shabanov, D.A.; Korshunov, A.V.; Borkin, L.J.; Lada, G.A.; Pasynkova, R.A.; Rosanov, J.M.; Litvinchuk, S.N. Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine. J. Zool. Syst. Evol. Res. 2016, 54, 215–225. [Google Scholar] [CrossRef]
- Doležálková, M.; Sember, A.; Marec, F.; Ráb, P.; Plötner, J.; Choleva, L. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genet. 2016, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Skierska, K.; Lagner, A.; Rozenblut-Kościsty, B.; Kosiba, P.; Kolenda, K.; Ogielska, M. Population structure, mate choice, and genome transmission in naturally formed pairs in a Pelophylax lessonae–Pelophylax esculentus hybridogenetic system. Behav. Ecol. Sociobiol. 2023, 77, 92. [Google Scholar] [CrossRef]
- Dedukh, D.; Riumin, S.; Kolenda, K.; Chmielewska, M.; Rozenblut-Kościsty, B.; Kaźmierczak, M.; Ogielska, M.; Krasikova, A. Maintenance of pure hybridogenetic water frog populations: Genotypic variability in progeny of diploid and triploid parents. PLoS ONE 2022, 17, e0268574. [Google Scholar] [CrossRef]
- Zaleśna, A.; Choleva, L.; Ogielska, M.; Rábová, M.; Marec, F.; Ráb, P. Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet. Genome Res. 2011, 134, 206–212. [Google Scholar] [CrossRef]
- Koref-Santibañez, S. The karyotypes of Rana lessonae Camerano, Rana ridibunda Pallas and of the hybrid form Rana ‘esculenta’ Linne (Anura). Mitt. Zool. Mus. Berl. 1979, 55, 115–124. [Google Scholar]
- Majtánová, Z.; Choleva, L.; Symonová, R.; Ráb, P.; Kotusz, J.; Pekárik, L.; Janko, K. Asexual reproduction does not apparently increase the rate of chromosomal evolution: Karyotype stability in diploid and triploid clonal hybrid fish (Cobitis, Cypriniformes, Teleostei). PLoS ONE 2016, 11, e0146872. [Google Scholar] [CrossRef] [PubMed]
- Dedukh, D.; Mazepa, G.; Shabanov, D.; Rosanov, J.; Litvinchuk, S.; Borkin, L.; Saifitdinova, A.; Krasikova, A. Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from Eastern Ukraine. BMC Genet. 2013, 14, 26. [Google Scholar] [CrossRef]
- Berger, L.; Rybacki, M.; Hotz, H. Artificial fertilization of water frogs. Amphib. Reptil. 1994, 15, 408–413. [Google Scholar] [CrossRef]
- Chmielewska, M.; Kaźmierczak, M.; Rozenblut-Kościsty, B.; Kolenda, K.; Dudzik, A.; Dedukh, D.; Ogielska, M. Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front. Cell Dev. Biol. 2022, 10, 1008506. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, A.; Patrelle, C.; Ciavatti, F.; Gendre, T.; Sourrouille, P.; Geniez, P.; Doniol-Valcroze, P.; Crochet, P.A. A new PCR-RFLP method for the identification of parental and hybridogenetic western European Water Frogs, including the Pelophylax perezi-grafi system. Salamandra 2022, 58, 218–230. [Google Scholar]
- Gall, J.G.; Murphy, C.; Callan, H.G.; Wu, Z.A. Lampbrush chromosomes. Methods Cell Biol. 1991, 36, 149–166. [Google Scholar] [PubMed]
- Callan, H.G. Lampbrush Chromosomes; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar] [CrossRef]
- Wagner, E.; Ogielska, M. Oogenesis and ovary development in the natural hybridogenetic water frog, Rana esculenta L. II. After metamorphosis until adults. Zool. Jb Physiol. (Jena) 1993, 97, 369–382. [Google Scholar]
- Ogielska, M.; Wagner, E. Oogenesis and ovary development in the natural hybridogenetic water frog, Rana esculenta L. I Tadpole stages until metamorphosis. Zool. Jb Physiol. (Jena) 1993, 97, 349–368. [Google Scholar]
- Rozenblut-Kościsty, B.; Chmielewska, M.; Dudzik, A.; Crochet, P.-A.; Ogielska, M. Gonadal development and micronuclei formation in hybrid frogs of the Pelophylax perezi × P. grafi complex. Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, University of Wrocław, Sienkiewicza 21, Wrocław, Poland. 2025; in preparation. [Google Scholar]
- Dedukh, D.; Litvinchuk, J.; Svinin, A.; Litvinchuk, S.; Rosanov, J.; Krasikova, A. Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS ONE 2019, 14, e0224759. [Google Scholar] [CrossRef]
- Schmeller, D.S.; Seitz, A.; Crivelli, A.; Veith, M. Crossing species’ range borders: Interspecies gene exchange mediated by hybridogenesis. Proc. Biol. Sci. 2005, 272, 1625–1631. [Google Scholar] [CrossRef]
- Plötner, J. Die Westpaläarktischen Wasserfrösche. In Beiheft Zeitschrift Für Feldherpetologie; Laurenti Verlag: Bielefeld, Germany, 2005; pp. 1–160. [Google Scholar]
- Szydłowski, P.; Chmielewska, M.; Rozenblut-Kościsty, B.; Ogielska, M. The frequency of degenerating germ cells in the ovaries of water frogs (Pelophylax esculentus complex). Zoomorphology 2017, 136, 75–83. [Google Scholar] [CrossRef]
- Dedukh, D.; Majtánová, Z.; Ráb, P.; Ezaz, T.; Unmack, P.J. Gradual chromosomal lagging drive programmed genome elimination in hemiclonal fishes from the genus Hypseleotris. Sci. Rep. 2024, 14, 26866. [Google Scholar] [CrossRef]
- Gernand, D.; Rutten, T.; Varshney, A.; Rubtsova, M.; Prodanovic, S.; Brüß, C.; Kumlehn, J.; Matzk, F.; Houben, A. Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 2005, 17, 2431–2438. [Google Scholar] [CrossRef]
- Gernand, D.; Rutten, T.; Pickering, R.; Houben, A. Elimination of chromosomes in Hordeum vulgare × H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization. Cytogenet. Genome Res. 2006, 114, 169–174. [Google Scholar] [CrossRef]
- Rinaldi, V.D.; Bolcun-Filas, E.; Kogo, H.; Kurahashi, H.; Schimenti, J.C. The DNA damage checkpoint eliminates mouse oocytes with chromosome synapsis failure. Mol. Cell 2017, 67, 1026–1036.e2. [Google Scholar] [CrossRef]
- Dedukh, D.; Litvinchuk, S.; Rosanov, J.; Shabanov, D.; Krasikova, A. Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: Results from artificial crossings experiments. BMC Evol. Biol. 2017, 17, 220. [Google Scholar] [CrossRef]
- Rybacki, M.; Berger, L. Types of water frog populations. Zoosyst. Evol. 2001, 77, 51–57. [Google Scholar] [CrossRef]
- Graf, J.-D.; Karch, F.; Moreillon, M.-C. Biochemical variation in the Rana esculenta complex: A new hybrid form related to Rana perezi and Rana ridibunda. Experientia 1977, 33, 1582–1584. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.E.; Borkin, L.J.; Günther, R.; Rosanov, J.M. Two germ cell lineages with genomes of different species in one and the same animal. Hereditas 1991, 114, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ragghianti, M.; Bucci, S.; Marracci, S.; Casola, C.; Mancino, G.; Hotz, H.; Guex, G.-D.; Plötner, J.; Uzzell, T. Gametogenesis of intergroup hybrids of hemiclonal frogs. Genet. Res. 2007, 89, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Pustovalova, E.; Choleva, L.; Shabanov, D.; Dedukh, D. Genomic introgressions may affect hybridogenetic reproduction in water frog hybrids. Authorea 2024. [Google Scholar] [CrossRef]
- Thakur, J.; Packiaraj, J.; Henikoff, S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 2021, 22, 4309. [Google Scholar] [CrossRef]
- Hajkova, P. Epigenetic reprogramming in the germline: Towards the ground state of the epigenome. Phil Trans. R. Soc. B 2011, 366, 2266–2273. [Google Scholar] [CrossRef]
- Mills, W.K.; Lee, Y.C.G.; Kochendoerfer, A.M.; Dunleavy, E.M.; Karpen, G.H. RNA from a simple-tandem repeat is required for sperm maturation and male fertility in Drosophila melanogaster. eLife 2019, 8, e48940. [Google Scholar] [CrossRef]
- Wei, X.; Eickbush, D.G.; Speece, I.; Larracuente, A.M. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. eLife 2021, 10, e62375. [Google Scholar] [CrossRef]
- Hotz, H.; Uzzel, T.; Berger, L. Hemiclonal hybrid water frogs associated with the sexual host species Rana perezi. Zool. Pol. 1994, 39, 243–266. [Google Scholar]
- Tunner, H.G.; Heppich-Tunner, S. Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Naturwissenschaften 1991, 78, 32–34. [Google Scholar] [CrossRef]
- Christiansen, D.G. A microsatellite-based method for genotyping diploid and triploid water frogs of the Rana esculenta hybrid complex. Mol. Ecol. Notes 2005, 5, 190–193. [Google Scholar] [CrossRef]
- Christiansen, D.G. Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus). BMC Evol. Biol. 2009, 9, 135. [Google Scholar] [CrossRef]
- Dubey, S.; Maddalena, T.; Bonny, L.; Jeffries, D.L.; Dufresnes, C. Population genomics of an exceptional hybridogenetic system of Pelophylax water frogs. BMC Evol. Biol. 2019, 19, 164. [Google Scholar] [CrossRef]
- Bove, P.; Milazzo, P.; Barbuti, R. The role of deleterious mutations in the stability of hybridogenetic water frog complexes. BMC Evol. Biol. 2014, 14, 107. [Google Scholar] [CrossRef]
- Burriel-Carranza, B.; Molina-Duran, C.; Tamar, K.; Pérez-Sorribes, L.; López-Caro, J.; Cirac, M.; Fernandez-Guiberteau, D.; Carranza, S. Distribution and evolution of the western European water frogs (genus Pelophylax) from Catalonia, northeastern Spain. PeerJ 2025, 13, e19895. [Google Scholar] [CrossRef]
- Pekşen, Ç.; Bilgin, M.; Bilgin, C. Discordance between ventral colour and mtDNA haplotype in the water frog Rana (ridibunda) caralitana, 1988 Arıkan. Amphib.-Reptil. 2010, 31, 9–20. [Google Scholar]
- Holsbeek, G.; Jooris, R. Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex). Biol. Invasions 2010, 12, 1–13. [Google Scholar] [CrossRef]
- Doležálková-Kaštánková, M.; Dedukh, D.; Labajová, V.; Pustovalova, E.; Choleva, L. Inheritance patterns of male asexuality in hybrid males of a water frog Pelophylax esculentus. Sci. Rep. 2024, 14, 22221. [Google Scholar] [CrossRef] [PubMed]





| Male | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Female | ID | 546 | 510 | 513 | 509 | 548 | 515 | 545 | |
| Genotype | RP | PP | RR | RP | PP | RP | RP | ||
| ID | Genotype | Population | Salagou | Montpellier | Montpellier | Montpellier | Salagou | Montpellier | Salagou |
| 521 | PP | Salagou | 12 (9) | ||||||
| 532 | PP | Salagou | 6 (34) | ||||||
| 524 | RP | Salagou | |||||||
| 503 | RP | Montpellier | 18 (14) | 16 (5) | |||||
| 520 | RP | Salagou | 19 (3) | 17 (20) | |||||
| 525 | RP | Salagou | 27 (4) | ||||||
| 528 | RP | Salagou | 28 (20) | ||||||
| 531 | RP | Salagou | 24 (9) | 29 (20) | |||||
| 501 | RP | Montpellier | 26 (20) | ||||||
| 537 | PP | Salagou | 30 (10) | ||||||
| Cross no | Genome Type in Micronuclei | Gosner Stage Category | Percentage of Micronuclei [%] | ||||
|---|---|---|---|---|---|---|---|
| 31–33 | 34–36 | 37–39 | 40–42 | 43–45 | |||
| Micronuclei Count | |||||||
| 6 | P | 15 | 30 | 17 | 33 | 37 | 77.2 |
| R | 1 | 10 | 6 | 8 | 4 | 17.0 | |
| R/P mixed | 3 | 3 | 4 | 5.8 | |||
| 12 | P | 6 | 11 | 60.7 | |||
| R | 4 | 4 | 28.6 | ||||
| R/P mixed | 1 | 2 | 10.7 | ||||
| 18 | P | 1 | 2 | 8 | 64.7 | ||
| R | 1 | 1 | 3 | 29.4 | |||
| R/P mixed | 1 | 5.9 | |||||
| 19 | P | 15 | 68.2 | ||||
| R | 6 | 1 | 31.8 | ||||
| 24 | P | 6 | 28 | 4 | 61.3 | ||
| R | 5 | 17 | 1 | 37.1 | |||
| R/P mixed | 1 | 1.6 | |||||
| 30 | P | 7 | 18 | 1 | 81.2 | ||
| R | 4 | 2 | 18.8 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudzik, A.; Rozenblut-Kościsty, B.; Dedukh, D.; Crochet, P.-A.; Choleva, L.; Przewłocka-Kosmala, M.; Stryczak, Z.; Ogielska, M.; Chmielewska, M. Programmed Genome Elimination Is Evolutionarily Conserved Across Pelophylax Hybrids—As Evidenced by P. grafi Hybridogenetic Reproduction. Biology 2025, 14, 1526. https://doi.org/10.3390/biology14111526
Dudzik A, Rozenblut-Kościsty B, Dedukh D, Crochet P-A, Choleva L, Przewłocka-Kosmala M, Stryczak Z, Ogielska M, Chmielewska M. Programmed Genome Elimination Is Evolutionarily Conserved Across Pelophylax Hybrids—As Evidenced by P. grafi Hybridogenetic Reproduction. Biology. 2025; 14(11):1526. https://doi.org/10.3390/biology14111526
Chicago/Turabian StyleDudzik, Anna, Beata Rozenblut-Kościsty, Dmitrij Dedukh, Pierre-André Crochet, Lukáš Choleva, Monika Przewłocka-Kosmala, Zuzanna Stryczak, Maria Ogielska, and Magdalena Chmielewska. 2025. "Programmed Genome Elimination Is Evolutionarily Conserved Across Pelophylax Hybrids—As Evidenced by P. grafi Hybridogenetic Reproduction" Biology 14, no. 11: 1526. https://doi.org/10.3390/biology14111526
APA StyleDudzik, A., Rozenblut-Kościsty, B., Dedukh, D., Crochet, P.-A., Choleva, L., Przewłocka-Kosmala, M., Stryczak, Z., Ogielska, M., & Chmielewska, M. (2025). Programmed Genome Elimination Is Evolutionarily Conserved Across Pelophylax Hybrids—As Evidenced by P. grafi Hybridogenetic Reproduction. Biology, 14(11), 1526. https://doi.org/10.3390/biology14111526

