Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,494)

Search Parameters:
Keywords = phytochemical differences

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2432 KiB  
Article
Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs
by Anna Rusaczonek, Patryk Sankiewicz, Maria Duszyn, Mirosława Górecka, Katarzyna Chwedorzewska and Ewa Muszyńska
Agriculture 2025, 15(15), 1586; https://doi.org/10.3390/agriculture15151586 - 24 Jul 2025
Abstract
Herbs are valued for their antioxidant richness and traditional use in cuisine and medicine. This study analysed wild herbs (e.g., Achillea, Lamium) and cultivated spices (Salvia, Artemisia) for their bioactive compounds. It was found that antioxidant profiles varied notably among species, even within [...] Read more.
Herbs are valued for their antioxidant richness and traditional use in cuisine and medicine. This study analysed wild herbs (e.g., Achillea, Lamium) and cultivated spices (Salvia, Artemisia) for their bioactive compounds. It was found that antioxidant profiles varied notably among species, even within the same family. Helichrysum italicum and Salvia officinalis had the highest polyphenol levels, while Achillea millefolium and Ocimum basilicum had the lowest. Total polyphenols did not always correlate with antioxidant activity. For instance, Petroselinum hortense and Salvia rosmarinus showed high antioxidant activity despite low polyphenol levels, whereas Levisticum officinale and Artemisia dracunculus combined both. Mentha spicata, M. x citrata, Origanum vulgare, and S. officinalis were rich in carotenoids, while H. italicum showed high α-carotene but low levels of other carotenoids. Most Lamiaceae accumulated a high amount of chlorophylls and polyphenols. Cultivated herbs like M. spicata, M. x citrata, and S. officinalis exhibited stronger and more diverse properties than wild species. It can be concluded that taxonomy alone does not predict antioxidant potential. The differences observed may be attributed to species-specific metabolic pathways, ecological adaptations, or environmental factors influencing phytochemical expression. These findings highlight the importance of conducting species-level screenings in the search for plant-derived antioxidants with potential therapeutic applications. Full article
Show Figures

Figure 1

18 pages, 1816 KiB  
Article
Physical Aspects, Phytochemical Profiles, and Nutritional Properties of Lemon (Citrus limon) Slices Under Different Drying Technologies
by Zhirong Wang, Qingqing Fu, Guijie Hao, Yuanwei Gu, Tianqi Sun, Lu Gao, Bo Wang, Shuai Wang, Xiangfeng Zheng, Zhenquan Yang and Shengqi Rao
Foods 2025, 14(15), 2586; https://doi.org/10.3390/foods14152586 - 23 Jul 2025
Abstract
Dried lemon slices (LSs) have become increasingly popular as a healthful beverage when infused in hot water. This study examined the effects of freeze drying (FD), hot air drying (HAD), heat pump drying (HPD), and far-infrared drying (FID) on the quality of dried [...] Read more.
Dried lemon slices (LSs) have become increasingly popular as a healthful beverage when infused in hot water. This study examined the effects of freeze drying (FD), hot air drying (HAD), heat pump drying (HPD), and far-infrared drying (FID) on the quality of dried LSs and their brewed beverages. The results show that FD-LSs and their corresponding beverages have the most appealing appearance and maximum levels of ascorbic acid (2.47 and 0.80 mg/g, respectively), synephrine (8.15 and 0.94 mg/g, respectively), and the overwhelming majority of natural and available phenolic compounds, as well as the strongest antioxidant activity, although numerous volatile compounds in FD-LSs were in the lowest abundances. HPD-LSs exhibited similar trends to FD-LSs but contained the peak concentrations of limonene (2258.87 μg/g), γ-terpinene (704.19 μg/g), β-pinene (502.92 μg/g), and α-pinene (188.91 μg/g), which were the four most abundant volatile compounds in dried LSs. Additionally, active ingredients in HPD-LSs generally featured relative high levels of available amounts. In contrast, HAD- and FID-LSs typically displayed unfavorable coloration and low retention levels of natural and available active ingredients. Consequently, FD and HPD demonstrate superior suitability for the commercial-scale production of dried LSs. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 2893 KiB  
Review
Breast Cancer Cytochromes P450: Chemopreventive and/or Therapeutic Targets for Naturally Occurring Phytochemicals
by Hanna Szaefer, Barbara Licznerska, Hanna Sobierajska and Wanda Baer-Dubowska
Molecules 2025, 30(15), 3079; https://doi.org/10.3390/molecules30153079 - 23 Jul 2025
Abstract
Estrogens are considered the most important risk factor for the development of breast cancer. Therefore, attempts are being made to reduce their level through diminished synthesis on one hand and to protect against the formation of DNA-damaging estrogen metabolites on the other. Cytochromes [...] Read more.
Estrogens are considered the most important risk factor for the development of breast cancer. Therefore, attempts are being made to reduce their level through diminished synthesis on one hand and to protect against the formation of DNA-damaging estrogen metabolites on the other. Cytochromes P450 (CYPs) play key roles in estrogen synthesis and catabolism, leading to potentially carcinogenic metabolites. CYP19 (aromatase) catalyzes the conversion of androgens to estrogens. The estrogen receptor-dependent pathway induces cell growth. CYP1 family enzymes, particularly CYP1B1, are involved in the redox cycling of estrogen metabolites and the subsequent estrogen–DNA adducts formation. Naturally occurring phytochemicals of different classes were shown to modulate the CYP expression and activity in cell-free systems or breast cancer cells. One of the most promising CYP19 inhibitors is chrysin (flavone), while stilbenes seem to be the most effective CYP1B1 inhibitors. In most cases, their effect is not specific. Therefore, different approaches are made to find the best candidate for the drug prototype of a new therapeutic or chemopreventive agent and to improve its pharmacokinetic parameters. This review presents and discusses the possible effects on major CYPs involved in estrogen metabolism by phytochemicals from the most investigated classes, namely flavonoids, stilbenes, and glucosinolates breakdown products. Full article
Show Figures

Figure 1

16 pages, 1613 KiB  
Article
Allelopathic Effect of Salvia pratensis L. on Germination and Growth of Crops
by Marija Ravlić, Renata Baličević, Miroslav Lisjak, Željka Vinković, Jelena Ravlić, Ana Županić and Brankica Svitlica
Crops 2025, 5(4), 45; https://doi.org/10.3390/crops5040045 - 22 Jul 2025
Viewed by 29
Abstract
Salvia pratensis L. is a valuable medicinal plant rich in bioactive compounds, yet its allelopathic potential remains underexplored. This study evaluated allelopathic effects and total phenolic (TPC) and flavonoid (TFC) contents of water extracts from the dry aboveground biomass of S. pratensis. [...] Read more.
Salvia pratensis L. is a valuable medicinal plant rich in bioactive compounds, yet its allelopathic potential remains underexplored. This study evaluated allelopathic effects and total phenolic (TPC) and flavonoid (TFC) contents of water extracts from the dry aboveground biomass of S. pratensis. To assess their selectivity and potential application in sustainable weed management, extracts at five different concentrations were tested on the germination and early growth of lettuce, radish, tomato, and carrot. The results demonstrated that the phytotoxic effects of S. pratensis extracts were both concentration- and species-dependent. Higher extract concentrations significantly inhibited germination and seedling growth, while lower concentrations of extracts stimulated shoot elongation by up to 30% compared to the control. Phytochemical analysis revealed that S. pratensis extracts contain notable TPC and TFC contents, with their concentrations increasing consistently with the extract concentration. Correlation analysis showed that higher TPC and TFC contents were strongly negatively correlated with germination and seedling growth parameters. Radish exhibited the highest sensitivity to the extracts, while lettuce was the most tolerant. Further research under field conditions is needed to assess the efficacy, selectivity, and practical potential of S. pratensis extracts in sustainable crop production systems. Full article
Show Figures

Figure 1

15 pages, 2414 KiB  
Article
Male Date Palm Chlorotype Selection Based on Fertility, Metaxenia, and Transcription Aspects
by Hammadi Hamza, Mohamed Ali Benabderrahim, Achwak Boualleg, Federico Sebastiani, Faouzi Haouala and Mokhtar Rejili
Horticulturae 2025, 11(7), 865; https://doi.org/10.3390/horticulturae11070865 - 21 Jul 2025
Viewed by 183
Abstract
This study evaluated the influence of different male date palm cultivars, distinguished by their chloroplast haplotypes, on pollen quality, pollination efficiency, metaxenia effects, and gene expression during fruit development. Chloroplast DNA analysis of 37 male trees revealed multiple haplotypes, from which cultivars B25, [...] Read more.
This study evaluated the influence of different male date palm cultivars, distinguished by their chloroplast haplotypes, on pollen quality, pollination efficiency, metaxenia effects, and gene expression during fruit development. Chloroplast DNA analysis of 37 male trees revealed multiple haplotypes, from which cultivars B25, P8, C22, and B46 were selected for further investigation. Pollen viability varied significantly among cultivars, with P8 and B25 exhibiting the highest germination rates and pollen tube elongation, while C22 showed the lowest. These differences correlated with pollination success: P8 and B25 achieved fertilization rates near 99%, whereas C22 remained below 43%. Pollination outcomes also varied in fruit traits. Despite its low pollen performance, C22 induced the production of larger fruits at the Bleh (Kimri) stage, potentially due to compensatory physiological mechanisms. Phytochemical profiling revealed significant cultivar effects: fruits from B25-pollinated trees had with lower moisture and polyphenol content but the higher sugar levels and soluble solids, suggesting accelerated maturation. Ripening patterns confirmed this finding, with B25 promoting the earliest ripening and B46 causing the most delayed. Gene expression analysis supported these phenotypic differences. Fruits pollinated by P8, B25, and B46 exhibited elevated levels of cell-division-related transcripts, particularly the PdCD_1 gene (PDK_XM_008786146.4, a gene encoding a cell division control protein), which was most abundant in P8. In contrast, fruits from C22-pollinated trees had the lowest expression of growth-related genes, suggesting a shift toward cell expansion rather than division. Overall, the results show the critical role of male genotype in influencing fertilization outcomes and fruit development, offering valuable insights for targeted breeding strategies at enhancing date palm productivity and fruit quality. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Graphical abstract

16 pages, 3339 KiB  
Article
Impact of Spectral Irradiance Control on Bioactive Compounds and Color Preservation in Solar-Dried Papaya
by Diana Paola García-Moreira, Erick César López-Vidaña, Ivan Moreno and Lucía Delgadillo-Ruiz
Processes 2025, 13(7), 2311; https://doi.org/10.3390/pr13072311 - 20 Jul 2025
Viewed by 425
Abstract
The quality effects of spectral irradiance conditions during papaya (Carica papaya L.) drying were investigated using three different dryers: a solar dryer with dynamic irradiance control (SDIC), a cylindrical solar dryer (CSD), and a solar simulator dryer (SSD). This study builds upon [...] Read more.
The quality effects of spectral irradiance conditions during papaya (Carica papaya L.) drying were investigated using three different dryers: a solar dryer with dynamic irradiance control (SDIC), a cylindrical solar dryer (CSD), and a solar simulator dryer (SSD). This study builds upon previous PDLC film applications in solar drying by specifically examining its impact on phytochemical preservation and color degradation, addressing gaps in spectral-specific effects on food quality parameters. The drying conditions were as follows: a temperature of 50 °C for each method, 700 w/m2 for both SDIC and solar simulator dryers (SSD), and full solar irradiance for the cylindrical solar dryer (CSD). The cylindrical solar dryer exhibited 210 min of drying time due to higher solar irradiance than SDIC (300 min), while SSD lasted 180 min. Drying rates were highest for CSD (0.056 g H2O/g d.m. min−1), followed by SDIC (0.027 g H2O/g d.m. min−1). Color analysis revealed that CSD resulted in the most significant color degradation, followed by SSD and SDIC. This was attributed to the varying spectral composition of radiation in each method. The CSD, with a full solar spectrum, including higher UV and visible radiation, induced more pronounced color changes than SDIC, which received lower intensity radiation in these ranges. Chemical analyses showed that SSD samples had the highest antioxidant activity (1432.91 µmol TE/g dw by ABTS) and phenolic content (58.92 mg GAE/100 g), suggesting simulated conditions may better preserve certain phytochemicals. SDIC maintained better carotenoid-related color parameters while showing intermediate antioxidant levels (1084.09 µmol TE/g dw). These results demonstrate that irradiance control significantly impacts drying efficiency and quality parameters. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

27 pages, 2644 KiB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 225
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

27 pages, 395 KiB  
Review
Nature-Inspired Strategies in Cancer Management: The Potential of Plant Extracts in Modulating Tumour Biology
by Marcin Hołota and Małgorzata M. Posmyk
Int. J. Mol. Sci. 2025, 26(14), 6894; https://doi.org/10.3390/ijms26146894 - 18 Jul 2025
Viewed by 342
Abstract
Cancer is a serious group of diseases that is a huge problem on a global scale and is the second most common cause of death. Commonly used therapies do not always lead to the complete elimination of diseased cells or tissues and are [...] Read more.
Cancer is a serious group of diseases that is a huge problem on a global scale and is the second most common cause of death. Commonly used therapies do not always lead to the complete elimination of diseased cells or tissues and are also burdened with side effects that reduce the quality of life of patients. Due to these difficulties, new therapeutic approaches are still being sought. In recent years, there has been a return to interest in natural methods of treating various diseases, among which phytochemicals are particularly interesting. This article reviews plant extracts with anticancer properties with different mechanisms of action (proapoptotic, antiproliferative, antiangiogenic, immunomodulatory). In addition, plant extracts that reduce the side effects of chemotherapy and the limitations and prospects for the use of plant extracts in anticancer therapy are described. Our goal was to create an up-to-date information base that would encourage scientists to intensify research into supplementing targeted anticancer therapies with additional protective and preventive measures, in which natural mixtures of phytochemicals (plant extracts) are effective allies. At the same time, we encourage discussion on the limitations of their use in light of the orthodox principles of classical medicine and pharmacy (issues of safety, quality, drug purity, and dose precision), which are a priori correct but have not yet led to the elimination of cancer from the group of incurable diseases. Full article
Show Figures

Graphical abstract

24 pages, 1190 KiB  
Review
An Overview of Buckwheat—A Superfood with Applicability in Human Health and Food Packaging
by Alexandra Andreea Lițoiu, Adriana Păucean, Claudiu Lung, Alexandru Zmuncilă and Maria Simona Chiș
Plants 2025, 14(14), 2200; https://doi.org/10.3390/plants14142200 - 16 Jul 2025
Viewed by 775
Abstract
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, [...] Read more.
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, dietary fiber, lipids, starch, vitamins, and minerals) of the buckwheat principal species, Fagopyrum esculentum Moench (common buckwheat) and Fagopyrum tataricum (L.) Gaertn (Tartary buckwheat). Other bioactive compounds, including flavonoids (e.g., rutin, quercetin), phenolic acids, and anthocyanins, were emphasized, together with their influence on human health. These constituents confer a broad range of biological activities such as anti-inflammatory, antimicrobial, antidiabetic, antihypertensive, and hypoglycemic effects. Moreover, buckwheat is inherently gluten-free, making it a valuable alternative in formulations targeting gluten-sensitive populations. Finally, the review addresses the possibility of using starch buckwheat as a raw material in starch-based films. Further research is needed to elucidate the potential of buckwheat starch as a viable material for the development of biodegradable food packaging films. Full article
(This article belongs to the Special Issue Bioactive Plants, Phytocompounds and Plant-Derived Food)
Show Figures

Figure 1

17 pages, 504 KiB  
Article
Yield, Phytonutritional and Essential Mineral Element Profiles of Selected Aromatic Herbs: A Comparative Study of Hydroponics, Soilless and In-Soil Production Systems
by Beverly M. Mampholo, Mariette Truter and Martin M. Maboko
Plants 2025, 14(14), 2179; https://doi.org/10.3390/plants14142179 - 14 Jul 2025
Viewed by 188
Abstract
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of [...] Read more.
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of research has focused on enhancing yield, frequently overlooking the impact of production practices on the antioxidant and phytonutritional content of the produce. Thus, the study aimed to evaluate the yield, phytonutrients, and essential mineral profiling in selected aromatic herbs and their intricate role in nutritional quality when grown under different production systems. Five selected aromatic herbs (coriander, rocket, fennel, basil, and moss-curled parsley) were evaluated at harvest when grown under three production systems: in a gravel-film technique (GFT) hydroponic system and in soil, both under the 40% white shade-net structure, as well as in a soilless medium using sawdust under a non-temperature-controlled plastic tunnel (NTC). The phytonutritional quality properties (total phenolic, flavonoids, β-carotene-linoleic acid, and condensed tannins contents) as well as 1,1-diphenyl-2-picrylhydrazyl (DPPH) were assessed using spectrophotometry, while vitamin C and β-carotene were analyzed using HPLC-PDA, and leaf mineral content was evaluated using ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The results show that the health benefits vary greatly owing to the particular culinary herb. The fresh leaf mass (yield) of coriander, parsley, and rocket was not significantly affected by the production system, whereas basil was high in soil cultivation, followed by GFT. Fennel had a high yield in the GFT system compared to in-soil and in-soilless cultivation. The highest levels of vitamin C were found in basil leaves grown in GFT and in soil compared to the soilless medium. The amount of total phenolic and flavonoid compounds, β-carotene, β-carotene-linoleic acid, and DPPH, were considerably high in soil cultivation, except on condensed tannins compared to the GFT and soilless medium, which could be a result of Photosynthetic Active Radiation (PAR) values (683 μmol/m2/s) and not favoring the accumulation of tannins. Overall, the mineral content was greatly influenced by the production system. Leaf calcium and magnesium contents were highly accumulated in rockets grown in the soilless medium and the GFT hydroponic system. The results have highlighted that growing environmental conditions significantly impact the accumulation of health-promoting phytonutrients in aromatic herbs. Some have positive ramifications, while others have negative ramifications. As a result, growers should prioritize in-soil production systems over GFT (under the shade-net) and soilless cultivation (under NTC) to produce aromatic herbs to improve the functional benefits and customer health. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

23 pages, 9320 KiB  
Article
Evaluation of the Cytotoxicity, Genotoxicity and Acute Oral Toxicity of Thymus longicaulis subsp. chaubardii (Rchb.f.) Jalas
by Ayfer Beceren, Ayse Nur Hazar-Yavuz, Ozlem Bingol Ozakpinar, Duygu Taskin, Ismail Senkardes, Turgut Taskin, Ozlem Tugçe Cilingir-Kaya, Ahmad Kado, Elif Caliskan Salihi and Hatice Kubra Elcioglu
Pharmaceuticals 2025, 18(7), 1037; https://doi.org/10.3390/ph18071037 - 12 Jul 2025
Viewed by 314
Abstract
Background/Objectives: Thymus longicaulis subsp. chaubardii (TL) (Rchb.f.) Jalas is widely used in traditional Turkish medicine for respiratory, digestive and uro-genital disorders. The aim of this study was to determine its phytochemical profile and to evaluate its cytotoxic, genotoxic and acute oral toxicity [...] Read more.
Background/Objectives: Thymus longicaulis subsp. chaubardii (TL) (Rchb.f.) Jalas is widely used in traditional Turkish medicine for respiratory, digestive and uro-genital disorders. The aim of this study was to determine its phytochemical profile and to evaluate its cytotoxic, genotoxic and acute oral toxicity effects. Methods: The phenolic composition of the methanolic extract was determined by HPLC-DAD. Cytotoxicity and genotoxicity were evaluated in NIH3T3 cells using MTT, comet and micronucleus assays. Acute toxicity was evaluated in rats at doses of 300 and 2000 mg/kg body weight according to the OECD Guideline 420. Results: Rosmarinic acid (87.37 ± 5.39 µg/mg) was the major phenolic compound. TL extract showed >90% cell viability at 50–200 µg/mL, indicating no cytotoxicity. Comet assay revealed a slight increase in DNA damage at 100–200 µg/mL (p < 0.001), though significantly lower than the H2O2 group (p < 0.001). No significant (p > 0.05) effect was observed in the micronucleus assay between the treated groups. In rats, TL extract caused no mortality or behavioral changes over 14 days. No significant differences were observed in body or organ weights. Hematologically, platelet count increased (p < 0.001) and eosinophils decreased (p < 0.01 and p < 0.001). Biochemical tests showed lower ALT and AST levels (p < 0.01 and p < 0.05, respectively) and significantly decreased triglycerides in the high-dose group (p < 0.001). Histopathological examination showed no organ damage. Conclusions: The results of this study indicate that TL methanol extract is non-toxic up to 2000 mg/kg and exhibits no significant cytotoxic or genotoxic effects. These findings support its safe use and traditional medicinal value. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

15 pages, 583 KiB  
Article
Intraspecific Variability of Wormwood (Artemisia absinthium L.) Occurring in Poland in Respect of Developmental and Chemical Traits
by Olga Kosakowska, Zenon Węglarz, Agnieszka Żuchowska, Sylwia Styczyńska, Ewa Zaraś and Katarzyna Bączek
Molecules 2025, 30(14), 2915; https://doi.org/10.3390/molecules30142915 - 10 Jul 2025
Viewed by 274
Abstract
The aim of this study was to determine the intraspecific variability among 11 wild-growing populations of wormwood (Artemisia absinthium L.) originating from Central Europe and preserved in the Polish Genebank Collection. The populations were introduced into ex situ conditions, and assessed in [...] Read more.
The aim of this study was to determine the intraspecific variability among 11 wild-growing populations of wormwood (Artemisia absinthium L.) originating from Central Europe and preserved in the Polish Genebank Collection. The populations were introduced into ex situ conditions, and assessed in terms of selected developmental and chemical traits (essential oil, phenolic acids, polyphenols, and tannins content). Developmental observations and harvest of raw materials were carried out in the second year of plant vegetation, at the beginning of flowering. The populations exhibited significant differences. The greatest variability was observed in the number of shoots per plant (38–51) and dry mass of herb per plant (0.83–1.60 kg). Essential oil (EO) content ranged from 0.75 to 1.69 g/100 g dry weight (DW). A total of 41 compounds were identified in the EOs, with oxygenated monoterpenes (such as sabinyl acetate, cis-chrysanthenol, chrysantenyl acetate, 1,8-cineole, α- and β-thujone) as dominants, showing considerable variation among populations. Based on the EO profiles, several chemotypes were distinguished, mainly (1) a pure sabinyl acetate chemotype; (2) mixed chemotypes with sabinyl acetate accompanied by β-myrcene, cis-chrysanthenol, chrysanthenyl acetate, or 1,8-cineole; and (3) a thujone chemotype. The total content of phenolic acids (expressed as caffeic acid equivalent), tannins, and polyphenols (as pyrogallol equivalent) varied significantly, too (0.37–0.50; 0.10–0.26; 0.58–0.79%, respectively). The results confirm a high level of intraspecific variability in both developmental and chemical traits of A. absinthium populations originating from Poland. This diversity may be valuable for future breeding programs and for the selection of populations with desired phytochemical profiles for medicinal, food, and agricultural applications. It is worth noting that the floristic diversity among populations indicates the habitat heterogeneity, ranging from natural or semi-natural (populations 1, 6) to more anthropogenically influenced ones (populations 2, 4, 5, 7–11). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

13 pages, 674 KiB  
Review
Phytochemicals in Breast Cancer Prevention and Therapy: Mechanisms, Efficacy, and Future Prospects
by Neha Kodali, Chikezie O. Madu and Yi Lu
Curr. Issues Mol. Biol. 2025, 47(7), 527; https://doi.org/10.3390/cimb47070527 - 8 Jul 2025
Viewed by 320
Abstract
Breast cancer is one of the most common forms of cancer in women globally. Phytochemicals are naturally occurring compounds in plants that have been the focus of many research studies for their potential in cancer prevention and treatment. This review will explore the [...] Read more.
Breast cancer is one of the most common forms of cancer in women globally. Phytochemicals are naturally occurring compounds in plants that have been the focus of many research studies for their potential in cancer prevention and treatment. This review will explore the mechanisms certain phytochemicals use to interact with the cellular pathways involved in breast cancer development. Phytochemicals modulate various processes such as apoptosis, cell cycle regulation, angiogenesis, and metastasis to potentially combat breast cancer. This review will also examine different dietary sources of phytochemicals, the potential for integration of phytochemicals into breast cancer therapy, the safety, toxicity, and limitations of phytochemicals, and the future of phytochemicals in the context of breast cancer. Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment: 2nd Edition)
Show Figures

Figure 1

23 pages, 7600 KiB  
Article
Metabolomic and Transcriptomic Analyses Reveal Changes in Active Components During the Growth and Development of Comfrey (Symphytum officinale L.)
by Jia Fu, Yuqian Liu, Wenting Gou, Mengxue Liu, Nanyi Zhang, Qiang Si and Hongmei Shang
Plants 2025, 14(14), 2088; https://doi.org/10.3390/plants14142088 - 8 Jul 2025
Viewed by 366
Abstract
Comfrey (Symphytum officinale L.) is a traditional medicinal plant, and its growth period has an important effect on the accumulation of active components. Phenolic acids and flavonoids are the most important active components in comfrey, but their accumulation in comfrey has not [...] Read more.
Comfrey (Symphytum officinale L.) is a traditional medicinal plant, and its growth period has an important effect on the accumulation of active components. Phenolic acids and flavonoids are the most important active components in comfrey, but their accumulation in comfrey has not been studied. At present, most research on comfrey focuses on its roots. There is still a lack of systematic research on the comparison of active components and biological activities in the aerial parts of comfrey in different growth periods. To explore the influence of the growth period on the active components of comfrey, non-targeted metabolomics and transcriptomics were used to comprehensively analyze the active components of comfrey during the vegetative period, blooming period, and maturity period and compare the dynamic changes in phenolic acid and flavonoid accumulation during different growth periods of comfrey. The results revealed that the vegetative period presented the highest total phenol and flavonoid contents. The predominant secondary metabolites associated with phenolic acids and flavonoids were integral to the phenylpropanoid, flavonoid, and isoflavonoid biosynthetic pathways. Critical structural genes governing these metabolic processes—PAL, C4H, 4CL, CHS, FLS, and DFR—exhibited marked upregulation during the vegetative growth stage. Comprehensive transcriptomic analysis and weighted gene co-expression network analysis were used to construct a co-expression network of structural genes and transcription factors that affected the accumulation of specific metabolites, and the transcription factors related to the synthesis of flavonoids and phenols were predicted. These findings elucidate the temporal regulatory mechanisms governing the growth-phase-dependent accumulation of bioactive constituents in comfrey, advancing the understanding of phytochemical dynamics in medicinal plants. Full article
Show Figures

Figure 1

29 pages, 3238 KiB  
Review
Phytochemistry, Ethnopharmacology, and Pharmacology of Lessertia frutescens (Cancer Bush): A Comprehensive Review
by Kadidiatou O. Ndjoubi, Rajan Sharma and Ahmed A. Hussein
Plants 2025, 14(14), 2086; https://doi.org/10.3390/plants14142086 - 8 Jul 2025
Viewed by 389
Abstract
Lessertia frutescens (L.) Goldblatt & J.C.Manning (synonym Sutherlandia frutescens), commonly known as cancer bush, is one of the most prominently used South African medicinal plants, with a rich history of traditional uses among indigenous communities. Its phytochemical profile showed different metabolites such [...] Read more.
Lessertia frutescens (L.) Goldblatt & J.C.Manning (synonym Sutherlandia frutescens), commonly known as cancer bush, is one of the most prominently used South African medicinal plants, with a rich history of traditional uses among indigenous communities. Its phytochemical profile showed different metabolites such as amino acids, fatty acids, sugars, flavonoid glycosides, cycloartenol glycosides, and oleanane-type saponins. Moreover, several research studies have highlighted the promising therapeutic effects of L. frutescens in combating various cancer cell lines. Additionally, the plant demonstrated potent immunomodulatory, antioxidant, anti-inflammatory, antidiabetic, neuroprotective, antistress, and antimicrobial activities. These research findings highlight L. frutescens as a promising candidate for the development of new or complementary therapies for a range of diseases and conditions. This review analyses the chemical and biological properties of L. frutescens based on 154 articles identified through SciFinder. Of these, 78 articles, including two patents, met the inclusion criteria and were reviewed. Studies focused on agriculture and horticulture were excluded as they fell outside the scope of this research. Full article
Show Figures

Figure 1

Back to TopTop