Assessment of Phytochemicals and Antioxidant Properties of Root Extracts of Rubia cordifolia L. in Different Solvent Systems †
Abstract
:1. Introduction
2. Experiments
2.1. Plant Collection
2.2. Preparation of Extracts
2.3. Phytochemical Screening
2.4. Removal of Polyphenols from Plant Extracts
2.5. Quantification of Phenols
2.6. Quantification of Flavonoids
2.7. Antioxidant Assays
2.7.1. DPPH Assay
2.7.2. Hydrogen Peroxide Assay
2.7.3. Scavenging Activity of Nitric Oxide
2.7.4. Total Antioxidant Capacity
2.7.5. Assay of Reducing Power
2.8. Statistical Analysis
3. Results
3.1. Extracts of Plant Powders Show Presence of Several Phytochemicals
3.1.1. Qualitative Analysis of Secondary Metabolites
3.1.2. Quantification of Phenols and Flavonoids in Plant Extracts
3.2. Plant Extracts Have Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
PBS | Phosphate Buffer Saline |
PVPP | Polyvinylpolypyrrolidone |
References
- Verma, A.; Kumar, B.; Alam, P.; Singh, V.; Kumar Gupta, S. Rubia cordifolia—A Review on Pharmaconosy and Phytochemistry. Int. J. Pharm. Sci. Res. 2016, 7, 2720. [Google Scholar]
- Chen, Y.; Chen, P.; Bao, B.; Shan, M.; Zhang, K.; Cheng, F.; Cao, Y.D.; Zhang, L. Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia extract in zebrafish. J. Ethnopharmacol. 2018, 219, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Joharapurkar, A.A.; Zambad, S.P.; Wanjari, M.M.; Umathe, S.N. In vivo evaluation of antioxidant activity of alcoholic extract of Rubia cordifolia Linn. and its influence on ethanol-induced immunosuppression. Indian J. Pharmacol. 2003, 35, 232–236. [Google Scholar]
- Singh, P.; Agrawal, M.; Hishikar, R.; Joshi, U.; Maheshwari, B. Adverse drug reactions at adverse drug reaction monitoring center in Raipur: Analysis of spontaneous reports during 1 year. Indian J. Pharmacol. 2017, 49, 438–444. [Google Scholar]
- Shilpa, P.N.; Sivaramakrishnan, V.; Devaraj, S.N. Induction of Apoptosis by Methanolic Extract of Rubia cordifolia Linn in Hep-G2 Cell Line is Mediated by Reactive Oxygen Species. Asian Pac. J. Cancer Prev. 2012, 13, 2753–2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Sarma, M.D.; Amarendra, P.; Hazra, B. Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn. J. Pharm. Pharmacol. 2010, 62, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Sun, Y.; Chen, W.; Guo, X.; Guan, J.; Li, D. Anti-diarrheal and anti-inflammatory activities of aqueous extract of the aerial part of Rubia cordifolia. BMC Complement. Altern. Med. 2017, 17, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuanyuan, S.; Xuepeng, G.; Tan, J.Y.; Kang, L.; Dongyan, L.; Vikash; Yang, J.; Guang, D. In vitro antiviral activity of Rubia cordifolia aerial part extract against Rotavirus. Front. Pharmacol. 2016, 7, 1–15. [Google Scholar]
- Adwankar, M.K.; Chitnis, M.P. In vivo anti-Cancer activity of RC-18. Chemotherapy 1982, 28, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.C.; Evans, D.; Trease, G.E. Trease and Evans Pharmacognosy, 16th ed.; Saunders/Elsevier: Edinburgh, UK; New York, NY, USA, 2009. [Google Scholar]
- Ranatunge, I.; Adikary, S.; Dasanayake, P.; Fernando, C.D.; Soysa, P. Development of a Rapid and Simple Method to Remove Polyphenols from Plant Extracts. Int. J. Anal. Chem. 2017, 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, C.T.; Balachandran, I. Total phenolics and total flavonoids in selected indian medicinal plants. Indian J. Pharm. Sci. 2012, 74, 258–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhishen J, Mengcheng T, Jianming W. Determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Prabhu, K.S.; Lobo, R.; Shirwaikar, A. Free Radical Scavenging Actvity of Aqueous Extract of Sphaetanthus indicus (Linn). Pharmacologyonline 2009, 476, 468–476. [Google Scholar]
- Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese Green Tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Pandithurai, M.; Murugesan, S. Free radical scavenging activity of methanolic extract of brown alga Spatoglossum asperum. J. Chem. Pharm. Res. 2014, 6, 128–132. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on Products of Browning Reactions: Antioxidative Activities of Product of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Kudale, S.; Ghatge, S.; Desai, N. Quantification of Phytochemicals in hairy root cultures of Rubia cordifolia Linn. Int. J. 2015, 3, 903–913. [Google Scholar]
- Zhang, X.; Liu, L.-J.; Song, T.-T.; Wang, Y.-Q.; Yang, X. An approach based on antioxidant fingerprint—Efficacy relationship and TLC bioautography assay to quality evaluation of Rubia cordifolia from various sources. J. Nat. Med. 2014, 68, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Hazra, B. Evaluation of Nitric Oxide Scavenging Activity, In Vitro and Ex Vivo, of Selected Medicinal Plants Traditionally Used in Inflammatory Diseases. Phyther. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006, 900, 896–900. [Google Scholar]
Solvent | Plant Part | Effect on Cell Line/Animal Model | Reference |
---|---|---|---|
Ethanol | Root | Anti-thrombotic and anti-angiogenic effects in zebra fish | [2] |
Ethanol | Root | Antioxidant activity which prevents the ethanol-induced immunosuppression in rats | [3] |
Methanol | Root | Cardio protective effect in Wister rat | [4] |
Methanol | Root | Cytotoxic activity in HEp-2 | [5] |
Methanol | Root | Anticancer and anti-inflammatory activities in carrageenan-induced rat-paw oedema model | [6] |
Aqueous | Aerial | Anti-diarrheal and anti-inflammatory activities in male Swiss albino mice | [7] |
Aqueous | Whole plant | Inhibits the multiplication of rotavirus by promoting virus induced apoptosis in rhesus monkey kidney cell line MA-104 cells | [8] |
Chloroform | Whole plant | Anti-tumor activity on ascites leukemia, lung cancer, melanoma, and sarcoma cell lines | [9] |
Assays | Ethanol Extract | Methanol Extract | Aqueous Extract | PBS | |
---|---|---|---|---|---|
1 | Mayer’s | − | − | − | − |
2 | Dragendorff’s | + | + | + | + |
3 | Wagner’s | − | − | − | − |
4 | Hager’s | − | − | − | − |
5 | Saponins | − | − | + | − |
6 | Tannins | − | + | + | − |
7 | Phenols | + | + | + | + |
8 | Glycosides | + | − | + | − |
9 | Flavonoids | + | + | + | + |
10 | Terpenes | + | + | + | + |
11 | Steroids | − | − | − | − |
12 | Quinones | − | − | − | − |
13 | Carotenoids | − | − | − | − |
Extracts in Solvent | PVPP | Phenol content (GAE) Mean Value | ||||||
---|---|---|---|---|---|---|---|---|
Ethanol | − | 36.95 ± 0.08 a,b,c,d | ||||||
+ | 5.45 ± 0.24 | |||||||
Methanol | − | 21.55 ± 0.13 a,f,g | ||||||
+ | 6.58 ± 0.72 | |||||||
Aqueous | − | 33.39 ± 0.05 a,e | ||||||
+ | 6.80 ± 0.24 | |||||||
PBS | − | 17.66 ± 0.16 a | ||||||
+ | 6.58 ± 0.81 |
Extracts in Solvent | PVPP | Flavonoid Content (QE) Mean Value | ||||||
---|---|---|---|---|---|---|---|---|
Ethanol | − | 78.27 ± 0.41 a,d,e,f | ||||||
+ | 35.44 ± 3.3 | |||||||
Methanol | − | 86.44 ± 0.34 a,b,c | ||||||
+ | 41.55 ± 2.9 | |||||||
Aqueous | − | 41.44 ± 0.83 a,g | ||||||
+ | 21.83 ± 1.6 | |||||||
PBS | − | 36.83 ± 0.72 a | ||||||
+ | 27.38 ± 3.9 |
DPPH | Hydrogen Peroxide | Nitric Oxide | Reducing Power | Total Antioxidant | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Extracts | IC50 (µg/mL) (−PVPP) | IC50 (µg/mL) (+PVPP) | IC50 (µg/mL) (−PVPP) | IC50 (µg/mL) (+PVPP) | IC50 (µg/mL) (−PVPP) | IC50 (µg/mL) (+PVPP) | IC50 (µg/mL) (−PVPP) | IC50 (µg/mL) (+PVPP) | IC50 (µg/mL) (−PVPP) | IC50 (µg/mL) (+PVPP) |
Ethanol | 88.5 | 98.26 | 61.2 | 101.14 | 95.11 | 82.17 | 83.89 | 93.72 | 101.15 | 85.92 |
Methanol | 79.1 | 89.47 | 74.5 | 97.71 | 94.53 | 78.46 | 85.69 | 79.79 | 88.62 | 97.52 |
Aqueous | 99.97 | 85.53 | 92.97 | 80.85 | 85.23 | 84.23 | 106.36 | 77.62 | 71.86 | 85.14 |
PBS | 104.39 | 97.55 | 102.05 | 81.05 | 97.35 | 85.61 | 88.72 | 81.81 | 91.36 | 91.92 |
Ascorbic acid | 159.34 | 100.42 | 112.125 | 99.12 | 100.5 | 82.87 | 90.77 | 101.48 | 104.48 | 100.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamble, S.C.; Humbare, R.B.; Sarkar, J.; Kulkarni, A.A. Assessment of Phytochemicals and Antioxidant Properties of Root Extracts of Rubia cordifolia L. in Different Solvent Systems. Biol. Life Sci. Forum 2021, 4, 100. https://doi.org/10.3390/IECPS2020-08625
Kamble SC, Humbare RB, Sarkar J, Kulkarni AA. Assessment of Phytochemicals and Antioxidant Properties of Root Extracts of Rubia cordifolia L. in Different Solvent Systems. Biology and Life Sciences Forum. 2021; 4(1):100. https://doi.org/10.3390/IECPS2020-08625
Chicago/Turabian StyleKamble, Swapnil C., Ravikiran B. Humbare, Joyita Sarkar, and Anjali A. Kulkarni. 2021. "Assessment of Phytochemicals and Antioxidant Properties of Root Extracts of Rubia cordifolia L. in Different Solvent Systems" Biology and Life Sciences Forum 4, no. 1: 100. https://doi.org/10.3390/IECPS2020-08625
APA StyleKamble, S. C., Humbare, R. B., Sarkar, J., & Kulkarni, A. A. (2021). Assessment of Phytochemicals and Antioxidant Properties of Root Extracts of Rubia cordifolia L. in Different Solvent Systems. Biology and Life Sciences Forum, 4(1), 100. https://doi.org/10.3390/IECPS2020-08625