Journal Description
International Journal of Plant Biology
International Journal of Plant Biology
is an international, peer-reviewed, open access journal on all different subdisciplines of plant biology, published quarterly online by MDPI (from Volume 13, Issue 1 - 2022).
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, Biological Abstracts and BIOSIS Previews (Web of Science), and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19.2 days after submission; acceptance to publication is undertaken in 4.7 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
In Vitro Shoot Regeneration and Multiplication of Peruvian Rocoto Chili Pepper (Capsicum pubescens Ruiz & Pav.)
Int. J. Plant Biol. 2024, 15(4), 979-987; https://doi.org/10.3390/ijpb15040069 - 4 Oct 2024
Abstract
The rocoto (Capsicum pubescens Ruiz & Pav.) (Solanaceae) is an endemic herbaceous chili pepper from Peru. Low yields of rocoto production are due to the low availability of certified seeds or the production of superior plant seedlings. Therefore, the present study aimed
[...] Read more.
The rocoto (Capsicum pubescens Ruiz & Pav.) (Solanaceae) is an endemic herbaceous chili pepper from Peru. Low yields of rocoto production are due to the low availability of certified seeds or the production of superior plant seedlings. Therefore, the present study aimed to establish an in vitro protocol for the regeneration and multiplication of rocoto shoots. The multiplication was carried out on shoot tips excised from rocoto seedlings germinated under in vitro conditions, and then the explants were placed on Murashigue and Skoog (MS) medium supplemented with different concentrations of 6-benzylaminopurine (BAP) and Kinetin: 0.5, 1.0, 1.5 and 2.0 mg/L. For rooting, shoots were obtained from the multiplication phase and placed under different treatments made up of MS medium supplemented with different concentrations of indole butyric acid (IBA) and naphthalene acetic acid (NAA): 0.5, 1.0, 1.5 and 2.0 mg/L. In the multiplication phase, the best results were observed with MS medium supplemented with 1.0 mg/L BAP, with 82.22% shoot development, 2.93 shoots per explant and 2.75 cm shoot length. In the rooting phase, the best results were observed with MS medium supplemented with 1.5 mg/L IBA, with 91.11% root development, 9.73 roots per explant and 6.79 cm root length. Here, we show the first evidence and tool for the in vitro regeneration and multiplication of rocoto chili pepper, which could be used for the multiplication of superior genotypes, germplasm in vitro conservation and its use in plant breeding programs.
Full article
(This article belongs to the Section Plant Reproduction)
►
Show Figures
Open AccessArticle
Comparative Photosynthetic Capacity, Respiration Rates, and Nutrient Content of Micropropagated and Wild-Sourced Sphagnum
by
Anna T. Keightley, Chris D. Field, James G. Rowson and Simon J. M. Caporn
Int. J. Plant Biol. 2024, 15(4), 959-978; https://doi.org/10.3390/ijpb15040068 - 2 Oct 2024
Abstract
The rapid, effective restoration of degraded peatlands is urgently needed to reduce their current high levels of carbon loss. The re-introduction of Sphagnum moss, along with re-wetting, is key to returning carbon sequestration and retention capabilities to northern degraded bogs. Micropropagated Sphagnum has
[...] Read more.
The rapid, effective restoration of degraded peatlands is urgently needed to reduce their current high levels of carbon loss. The re-introduction of Sphagnum moss, along with re-wetting, is key to returning carbon sequestration and retention capabilities to northern degraded bogs. Micropropagated Sphagnum has already been applied in large quantities, and more is planned, for restoration projects in Britain and parts of Europe. A comparison with wild-sourced Sphagnum material is therefore pertinent to demonstrate its safety and suitability for wide-scale application. Six Sphagnum species of both micropropagated and wild-sourced origin were assessed for photosynthetic capacity, nutrient content, form parity, chlorocyst size, and chloroplast numbers. Micropropagated Sphagnum had significantly higher light-saturated photosynthesis (Pmax) rates, little color expression, an open growth habit, greater chloroplast numbers, and more numerous, smaller shoot apices than wild-sourced Sphagnum. Higher Pmax rates were associated with a lower bulk density and higher tissue nutrient concentrations. Potentially, greater chloroplast numbers in micropropagated Sphagnum facilitate higher photosynthesis rates, driving rapid growth in early-stage plants, particularly in optimum moisture conditions. Micropropagated Sphagnum can be used confidently, propagated in large quantities, and will likely establish well on application to sites where re-wetting has already occurred, therefore making it highly beneficial for the restoration of degraded bogs.
Full article
(This article belongs to the Section Plant Physiology)
►▼
Show Figures
Figure 1
Open AccessReview
Synergism or Antagonism: Do Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Work Together to Benefit Plants?
by
Noah Savastano and Harsh Bais
Int. J. Plant Biol. 2024, 15(4), 944-958; https://doi.org/10.3390/ijpb15040067 - 1 Oct 2024
Abstract
In agriculture, abiotic and biotic stress reduce yield by 51–82% and 10–16%, respectively. Applications of biological agents such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) can improve plant growth. Applications of lone PGPR and AMF also help plants resist abiotic
[...] Read more.
In agriculture, abiotic and biotic stress reduce yield by 51–82% and 10–16%, respectively. Applications of biological agents such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) can improve plant growth. Applications of lone PGPR and AMF also help plants resist abiotic and biotic stressors. The reports for dual inoculation of AMF and PGPR to benefit plants and tackle stressors are largely unknown. It is speculated that PGPR colonization in plants enhances AMF infection during dual AMF and PGPR application, although increased AMF colonization does not always correlate with the increased benefits for the plant hosts. Further research is needed regarding molecular mechanisms of communication during dual inoculations, and dual-inoculation enhancement of induced systemic resistance under pathogen stress, to understand how dual inoculations can result in enhanced plant benefits. The influence of application timing of AMF and PGPR dual inoculations on mitigating abiotic and biotic stress is also not well understood. This review documents the factors that govern and modulate the dual application of AMF and PGPR for plant benefits against stress responses, specifically abiotic (drought) stress and stress from pathogen infection.
Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
►▼
Show Figures
Figure 1
Open AccessArticle
Morphological and Taxonomic Analysis of the Quercus faginea and Quercus canariensis (Fagaceae) Complexes in Algeria
by
Ameur Bouandas, Latifa Belhoucine-Guezouli, Francesc Oliva, Bechir Suheil Gaouar Semir, Khedidja Bendjebbar, Francisco M. Vázquez Pardo and Juli Pujade-Villar
Int. J. Plant Biol. 2024, 15(4), 927-943; https://doi.org/10.3390/ijpb15040066 - 29 Sep 2024
Abstract
The valid deciduous Quercus L. species from North Africa have been largely discussed by many authors. The current species remain yet uncertain. In this study, we compare several populations of presumably Q. canariensis Willd. and Q. faginea Lam. from Algeria with pure populations
[...] Read more.
The valid deciduous Quercus L. species from North Africa have been largely discussed by many authors. The current species remain yet uncertain. In this study, we compare several populations of presumably Q. canariensis Willd. and Q. faginea Lam. from Algeria with pure populations of these species from the northeast of the Iberian Peninsula. Different morphological characters from leaves have been analyzed. Principal components analysis and a canonical analysis of principal coordinates have been used to observe the relationship between samples, groups and the seven quantitative variables. Distances among centroids have been reported and a SIMPER procedure has also been executed to better explain the different variability within and between groups. PERMANOVA has been applied to test for significant differences between the groups. For the trichomes study, ANOVA models have been used. From our analysis, we conclude that in Algeria, we have a single Q. canariensis Willd. population, different from the Iberian population we examined. It probably corresponds morphologically to Q. mirbeckii Durieu, currently considered a synonymy of Q. canariensis Willd., and for the “Q. faginea” group we have two Algerian populations: Q. faginea Lam. subsp. faginea, found in the northeast Iberian Peninsula, and Q. tlemcenensis (A.DC.) Maire and Weiller ex Greuter and Burdet. Previous results from other authors have also been discussed.
Full article
(This article belongs to the Section Plant Ecology and Biodiversity)
►▼
Show Figures
Figure 1
Open AccessArticle
Unraveling Evolutionary Dynamics: Comparative Analysis of Chloroplast Genome of Cleomella serrulata from Leaf Extracts
by
Madelynn K. Vasquez, Emma K. Stock, Kaziah J. Terrell, Julian Ramirez and John A. Kyndt
Int. J. Plant Biol. 2024, 15(3), 914-926; https://doi.org/10.3390/ijpb15030065 - 19 Sep 2024
Abstract
Cleomella serrulata is a native flowering plant found in North America. Even though this plant is of ecological and native medicinal importance, very little is known about the genomic makeup of Cleomella and the Cleomaceae family at large. Here, we report the complete
[...] Read more.
Cleomella serrulata is a native flowering plant found in North America. Even though this plant is of ecological and native medicinal importance, very little is known about the genomic makeup of Cleomella and the Cleomaceae family at large. Here, we report the complete chloroplast genome of Cleomella serrulata and provide an evolutionary comparison to other chloroplast genomes from Cleomaceae and closely related families. This study not only confirms the taxonomic placement of Cleomella as a distinct genus, but also provides phylogenetic insights that imply potential adaptive strategies and evolutionary mechanisms driving the genomic diversity of the Cleomella genus. Whole-genome-based and ANI comparisons indicate that the Cleomella species form a distinct clade that is about equidistant from the other Cleomaceae genera as it is from the genera from the nearby Capparaceae and Brassicaceae. This is the first complete chloroplast-based phylogenetic comparison of Cleomella species to other related genera and helps refine the complex taxonomic distinctions of Cleomaceae.
Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
►▼
Show Figures
Figure 1
Open AccessArticle
Influence of Fruit Load and Water Deficit on Olive Fruit Phenolic Profiling and Yield
by
Camilla Farolfi, Sergio Tombesi, Luigi Lucini, Ettore Capri and Pascual García-Pérez
Int. J. Plant Biol. 2024, 15(3), 895-913; https://doi.org/10.3390/ijpb15030064 - 11 Sep 2024
Abstract
High-density olive groves, despite their interesting production potential, have several limitations, including their high fruit load and irrigation requirements. This study aimed to evaluate the effects of fruit load and deficit irrigation on oil yield, fruit quality, and olive chemical composition in a
[...] Read more.
High-density olive groves, despite their interesting production potential, have several limitations, including their high fruit load and irrigation requirements. This study aimed to evaluate the effects of fruit load and deficit irrigation on oil yield, fruit quality, and olive chemical composition in a high-density olive grove (cv Sikitita). Our main hypothesis was that primary metabolism, as influenced by crop load and stress, could modify the accumulation of different phenolic classes. Different fruit loads were generated through flower thinning (66%, 50%, 33%, 0%), and two deficit irrigation treatments (−60%, −75%) were compared to the well-watered control (920 m3/ha). Thinning treatments had a limited effect on oil yield; on the other hand, deficit irrigation caused considerably less oil accumulation in the fruit on all sampling dates. Thinning 66% and deficit irrigation 75% were considered with the control for untargeted metabolomic analysis, including three sampling dates. A total of 233 distinct phenolic compounds were annotated. Multivariate HCA results indicated that harvest time had an impact on the phenolic profile of olive fruits, obtaining two separated clusters that grouped t1 and t2 together and apart from t3, which clustered independently. Regarding agronomic techniques, they played a differential role in the phenolic profile (supervised OPLS-DA). Fruit load mostly affected flavonoid glycosides. In contrast, the phenolic response to deficit irrigation was more heterogeneous, with phenolic acids (35%), flavonoids (25%), LMW, and other phenols (25%).
Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
►▼
Show Figures
Figure 1
Open AccessArticle
Establishing In Vitro Screening Protocols Based on Phenotypic Plasticity of Amaranthus dubius and Galinsoga parviflora Seeds for Drought, Salinity, and Heat Tolerance
by
Candyce Ann Areington, Martha M. O’Kennedy and Sershen
Int. J. Plant Biol. 2024, 15(3), 878-894; https://doi.org/10.3390/ijpb15030063 - 4 Sep 2024
Abstract
The vulnerability of commercial crops under a changing climate has led scientists to consider wild crop species as alternative food sources. The aim of this study was to identify plastic physiological and morphological traits that could be used to in vitro screen Amaranthus
[...] Read more.
The vulnerability of commercial crops under a changing climate has led scientists to consider wild crop species as alternative food sources. The aim of this study was to identify plastic physiological and morphological traits that could be used to in vitro screen Amaranthus dubius and Galinsoga parviflora seeds for drought, salinity, and heat tolerance. To establish the lethal dose/temperature, 50% (LD/T50), for each stress, seeds for both were subjected to various mannitol and NaCl stresses and a range of temperatures. Percentage seedling emergence was selected as the initial indicator of tolerance and used to establish the LD/T50 for in vitro screening for both species. Seeds of both were then screened at the LD/T50 concentrations/temperatures established, and seedlings that emerged after 21 days were measured for leaf area, root (RL), shoot length (SL), chlorophyll content (Chl), fresh, dry mass, and leaf number. Data for these were used to quantify plasticity in terms of Valladares’s phenotypic plasticity index. For A. dubius, three (viz. RL, SL, and Chl) showed some plasticity (≥0.53) and tolerance across all three stressors. For G. parviflora all traits except SL showed some plasticity (≥0.58) and tolerance across all three stressors. Both species had high phenotypic plasticity across all three stressors, which suggests that wild leafy vegetables may possess the ability to tolerate climate change-associated stressors and should be considered for future breeding programs.
Full article
(This article belongs to the Topic Tolerance to Drought and Salt Stress in Plants, 2nd volume)
►▼
Show Figures
Figure 1
Open AccessArticle
New Variants in the Chloroplast Genome Sequence of Two Colombian Individuals of the Cedar Timber Species (Cedrela odorata L.), Using Long-Read Oxford Nanopore Technology
by
Jaime Simbaqueba, Gina A. Garzón-Martínez and Nicolas Castano
Int. J. Plant Biol. 2024, 15(3), 865-877; https://doi.org/10.3390/ijpb15030062 - 21 Aug 2024
Abstract
The plant species Cedrela odorata has been largely exploited in the timber industry due to the high demand for its wood. Therefore, C. odorata has been considered a vulnerable species since 1994, under the Convention on International Trade in Endangered Species of Wild
[...] Read more.
The plant species Cedrela odorata has been largely exploited in the timber industry due to the high demand for its wood. Therefore, C. odorata has been considered a vulnerable species since 1994, under the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). C. odorata is a key timber species included in the management and conservation plans for the Amazon and Central American rainforests. These plans include the development of genetic and genomic resources to study local populations of the species in Colombia. In this study, two novel chloroplast (cp) genomes were assembled and annotated using the MinION long-read sequencing technology. The new cp genomes were screened for sequence variants (SVs), and a total of 16 SNPs were identified, presumably unique to populations from the Amazon region in Colombia. Comparative genomics with other reported cp genomes from different populations of C. odorata support the hypothesis of intraspecific diversity associated with their place of origin. These cp genome sequences of C. odorata from Colombian individuals represent valuable genomic resources for the species, suitable for identifying novel DNA fingerprinting and barcoding applications.
Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
►▼
Show Figures
Figure 1
Open AccessArticle
Minicutting Is an Efficient Method for Blueberry Propagation
by
Luiz Antonio Biasi, Jacquelini Romero Pereira, Ariane Cristina Cosmo and Ricardo Antonio Ayub
Int. J. Plant Biol. 2024, 15(3), 855-864; https://doi.org/10.3390/ijpb15030061 - 21 Aug 2024
Abstract
Minicutting has been used for several woody species, presenting greater efficiency than propagation by conventional cutting due to its high yield of propagative material and higher percentage of rooting in minicuttings. This work was carried out to evaluate the efficiency of minicutting techniques
[...] Read more.
Minicutting has been used for several woody species, presenting greater efficiency than propagation by conventional cutting due to its high yield of propagative material and higher percentage of rooting in minicuttings. This work was carried out to evaluate the efficiency of minicutting techniques for the ‘Bluegem’ blueberry and find the best concentration of IBA for rooting the minicuttings. The minigarden was installed in pots using micropropagated plants. Four collections of minicuttings were carried out between 27 October 2020 and 12 April 2021, and received the following treatments: 0; 2000; 4000; 6000; and 8000 mg L−1 of IBA. The minicutting was carried out in a mist chamber and evaluated after 60 days. The yield of minicuttings increased from the first to the third collection, decreasing in the fourth collection when the plants began to enter dormancy. The rooting of the minicuttings was influenced by the collection time and the application of IBA. Increasing IBA concentration increased the percentage of rooted minicuttings and root dry mass to concentrations close to 5000 mg L−1 on almost all collection dates. High concentrations of IBA reduced the percentage of sprouted minicuttings and leaf retention and increased mortality. It is recommended for the ‘Bluegem’ blueberry minicutting to apply 5000 mg L−1 of IBA.
Full article
(This article belongs to the Section Plant Reproduction)
►▼
Show Figures
Figure 1
Open AccessArticle
Comparative Analysis of the Fatty Acid Profiles of Selected Representatives of Chlorella-Clade to Evaluate Their Biotechnological Potential
by
Elena Krivina, Evgeny Degtyaryov, Elizaveta Tebina, Anna Temraleeva and Tatyana Savchenko
Int. J. Plant Biol. 2024, 15(3), 837-854; https://doi.org/10.3390/ijpb15030060 - 21 Aug 2024
Abstract
The objective of this study was to analyze the fatty acid composition of five strains from the genera Chlorella, Micractinium, and Meyerella and conduct an initial assessment of their biotechnological potential. It was found that the strain C. vulgaris VKM Al-335
[...] Read more.
The objective of this study was to analyze the fatty acid composition of five strains from the genera Chlorella, Micractinium, and Meyerella and conduct an initial assessment of their biotechnological potential. It was found that the strain C. vulgaris VKM Al-335 is a good producer of palmitic acid, the Micractinium strains VKM Al-332 and VKM Al-343 are rich in ω-3 fatty acids, whereas the Meyerella strains VKM Al-346 and VKM Al-428 are producers of ω-6 fatty acids. A comparison of the biotechnological potential of algae with that of higher plant leaves (wheat) demonstrates that algal fatty acids exhibit greater diversity, although it is inferior to wheat leaves in terms of polyunsaturated and ω-3 fatty acids. Correlation analysis showed that when only straight-chain fatty acids were considered, the strains were distributed on the principal component analysis plot in accordance with their genetic relationships. However, when the entire fatty acid profile, inclusive of minor branched-chain and cyclic fatty acids, was analyzed, the algae distribution was in accordance with the environmental conditions in the original habitat, suggesting a possible connection between branched-chain and cyclic fatty acids and microalgae adaptability to environmental temperature conditions.
Full article
(This article belongs to the Special Issue Microalgae as a Powerful Tool for Biopharming Development)
►▼
Show Figures
Figure 1
Open AccessArticle
Nitrate Reductase and Glutamine Synthetase Enzyme Activities and Chlorophyll in Sorghum Leaves (Sorghum bicolor) in Response to Organic Fertilization
by
Ericka Nieves-Silva, Engelberto Sandoval-Castro, Adriana Delgado-Alvarado, María D. Castañeda-Antonio and Arturo Huerta-De la Peña
Int. J. Plant Biol. 2024, 15(3), 827-836; https://doi.org/10.3390/ijpb15030059 - 20 Aug 2024
Abstract
Sorghum is a plant that mainly requires chemical nitrogen fertilization. There are organic fertilizers that can provide nutrients to plants with great benefits to the soil, such as chicken manure. To determine the influence of organic fertilization on nitrate reductase (NR), glutamine synthetase
[...] Read more.
Sorghum is a plant that mainly requires chemical nitrogen fertilization. There are organic fertilizers that can provide nutrients to plants with great benefits to the soil, such as chicken manure. To determine the influence of organic fertilization on nitrate reductase (NR), glutamine synthetase (GS), and the amount of chlorophyll, sorghum plants were grown using the following four treatments: soil (T1), soil + chicken manure 100 kg ha−1 of nitrogen (N) (T2), soil + chicken manure 200 kg ha−1 N (T3), and soil + ammonium sulfate 100 kg ha−1 N (T4). Leaves were sampled in the vegetative stage (VS), the reproductive stage (RS), and the maturation stage (MS). The highest NR activity occurred in plants with T2 and T3 in the VS. The highest GS activity was in T3 and T4 in the RS. The amount of chlorophyll a was the same in all phenological stages. However, the amount of chlorophyll b was influenced by the type of fertilization at different phenological stages. Organic fertilizers (OF) produced the highest NR activity. On the other hand, GS activity was higher with chemical fertilization (T4), which was equal to the second dose of organic fertilization (T3). Finally, chlorophyll a and b were influenced by both types of fertilization, and was different from T1.
Full article
(This article belongs to the Section Plant Physiology)
►▼
Show Figures
Figure 1
Open AccessArticle
Light Quality Influence on Growth Performance and Physiological Activity of Coleus Cultivars
by
Byoung Gyoo Park, Jae Hwan Lee, Eun Ji Shin, Eun A Kim and Sang Yong Nam
Int. J. Plant Biol. 2024, 15(3), 807-826; https://doi.org/10.3390/ijpb15030058 - 19 Aug 2024
Abstract
This study investigates the influence of different light qualities, including red, green, blue, purple, and white lights, on the growth, physiological activity, and ornamental characteristics of two Coleus cultivars. Emphasizing the importance of leveraging phenotypic plasticity in plants within controlled environments, using light
[...] Read more.
This study investigates the influence of different light qualities, including red, green, blue, purple, and white lights, on the growth, physiological activity, and ornamental characteristics of two Coleus cultivars. Emphasizing the importance of leveraging phenotypic plasticity in plants within controlled environments, using light quality is a practice prevalent in the ornamental industry. The research explores the varied responses of two Coleus cultivars to distinct light spectra. The key findings reveal the efficacy of red light in enhancing shoot and leaf parameters in C. ‘Highway Ruby’, while red and green light exhibit comparable effects on shoot width and leaf dimensions in C. ‘Wizard Jade’. White light-emitting diodes (LEDs), particularly with color temperatures of 4100 K and 6500 K, promote root length growth in the respective cultivars. Moreover, chlorophyll content and remote sensing vegetation indices, including chlorophyll content (SPAD units), the normalized difference vegetation index (NDVI), the modified chlorophyll absorption ratio index (MCARI), and the photochemical reflectance index (PRI), along with the chlorophyll fluorescence, were significantly affected by light qualities, with distinct responses observed between the cultivars. In summary, this study highlights the transformative potential of LED technology in optimizing the growth and ornamental quality of foliage plants like Coleus, setting a benchmark for light quality conditions. By leveraging LED technology, producers and nursery growers access enhanced energy efficiency and unparalleled versatility, paving the way for significant advancements in plant growth, color intensity, and two-tone variations. This presents a distinct advantage over conventional production methods, offering a more sustainable and economically viable approach for increased plant reproduction and growth development. Likewise, the specific benefits derived from this study provide invaluable insights, enabling growers to strategically develop ornamental varieties that thrive under optimized light conditions and exhibit heightened visual appeal and market desirability.
Full article
(This article belongs to the Section Plant Response to Stresses)
►▼
Show Figures
Figure 1
Open AccessArticle
Phytosterols Augment Endurance against Interactive Effects of Heat and Drought Stress on Biochemical Activities of Citrullus lanatus var. citroides (L.H. Bailey) Mansf. Ex Greb
by
Takudzwa Mandizvo, Tafadzwanashe Mabhaudhi, Jacob Mashilo and Alfred Oduor Odindo
Int. J. Plant Biol. 2024, 15(3), 783-806; https://doi.org/10.3390/ijpb15030057 - 16 Aug 2024
Abstract
Water deficit and heat are the primary abiotic stresses affecting plants. We conducted in vitro experiments to investigate how citron watermelon seedlings respond to water deficit and heat, focusing on growth, water status, reserve mobilization, hydrolase activity, and metabolite partitioning, including non-structural carbohydrate
[...] Read more.
Water deficit and heat are the primary abiotic stresses affecting plants. We conducted in vitro experiments to investigate how citron watermelon seedlings respond to water deficit and heat, focusing on growth, water status, reserve mobilization, hydrolase activity, and metabolite partitioning, including non-structural carbohydrate availability, during the vulnerable stage of seedling establishment crucial for crop production. To reveal the involvement of phytosterols (stigmasterol, sitosterol, and campesterol) in combined stress tolerance, four citron watermelon genotypes were investigated under varying osmotic potential [−0.05 MPa, −0.09 MPa and −0.19 MPa] and temperature (26 °C and 38 °C). Phytosterols were analyzed by gas chromatography–mass spectrometry (GC–MS). Seedlings subjected to osmotic stress from polyethylene glycol (PEG) exhibited reduced growth, linked to relative water content (RWC) changes, delayed starch mobilization in cotyle-dons, and decreased non-structural carbohydrate availability in roots. High temperature retarded the photosynthetic apparatus’s establishment and compromised photosynthetic pigment activity and dry matter production. The results suggest that inherent stress tolerance in citron watermelon is characterized by the increased accumulation of lipids, mainly sterols, especially in heat/drought-stressed plants. This study provides valuable information about the metabolic response of citron watermelon to combined stress and metabolites identified, which will encourage further study in transcriptome and proteomics to improve drought tolerance.
Full article
(This article belongs to the Section Plant Response to Stresses)
►▼
Show Figures
Figure 1
Open AccessArticle
Genome-Wide Association Study Reveals Marker–Trait Associations with Resistance to Pythium irregulare from Soybean Germplasm
by
Christopher Detranaltes, Jianxin Ma and Guohong Cai
Int. J. Plant Biol. 2024, 15(3), 769-782; https://doi.org/10.3390/ijpb15030056 - 15 Aug 2024
Abstract
Soybean (Glycine max (L.) Merr.) ranks as the second-largest crop by total production in the United States, despite its production experiencing significant constraints from plant pathogens, including those causing seedling diseases. Pythium irregulare Buisman stands out as a predominant driver of yield
[...] Read more.
Soybean (Glycine max (L.) Merr.) ranks as the second-largest crop by total production in the United States, despite its production experiencing significant constraints from plant pathogens, including those causing seedling diseases. Pythium irregulare Buisman stands out as a predominant driver of yield loss associated with the seedling disease complex. There is currently a lack of public or commercial varieties available to growers with adequate genetic resistance to manage this pathogen. To address the pressing need for germplasm resources and molecular markers associated with P. irregulare resistance, we conducted a screening of 208 genetically diverse soybean accessions from the United States Department of Agriculture Soybean Germplasm Collection (USDA-SGC) against two geographically and temporally distinct isolates under controlled greenhouse conditions. Disease severity was assessed through comparisons of the root weight and stand count ratios of inoculated plants to mock-inoculated controls. Employing linear mixed modeling, we identified ten accessions (PI 548520, PI 548360, PI 548362, PI 490766, PI 547459, PI 591511, PI 547460, PI 84946-2, PI 578503, FC 29333) with resistance significantly above the population average to one or both of two isolates originating from Ohio or Indiana. Previously curated genotyping data, publicly accessible via the SoyBase database, was subsequently utilized for conducting a genome-wide association study. This analysis led to the discovery of two significant marker–trait associations (MTAs) located on chromosomes 10 and 15 and accounting for 9.3% and 17.2% of the phenotypic variance, respectively. The resistant germplasm and MTAs uncovered through this study provide additional resources and tools for the genetic improvement of soybean resistance to seedling disease caused by P. irregulare.
Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
►▼
Show Figures
Figure 1
Open AccessArticle
Alteration of Photosynthetic and Antioxidant Gene Expression in Sugarcane Infected by Multiple Mosaic Viruses
by
Intan Ria Neliana, Wardatus Soleha, Suherman, Nurmalasari Darsono, Rikno Harmoko, Widhi Dyah Sawitri and Bambang Sugiharto
Int. J. Plant Biol. 2024, 15(3), 757-768; https://doi.org/10.3390/ijpb15030055 - 8 Aug 2024
Abstract
Sugarcane mosaic virus (SCMV), sugarcane streak mosaic virus (SCSMV), and sorghum mosaic virus (SrMV) are the causative pathogens of mosaic disease. This study aimed to identify mosaic virus infection and its impact on photosynthetic and antioxidant gene expression in eight commercial sugarcane cultivars
[...] Read more.
Sugarcane mosaic virus (SCMV), sugarcane streak mosaic virus (SCSMV), and sorghum mosaic virus (SrMV) are the causative pathogens of mosaic disease. This study aimed to identify mosaic virus infection and its impact on photosynthetic and antioxidant gene expression in eight commercial sugarcane cultivars grown on sugarcane plantations in East Java, Indonesia. The disease incidence and severity were observed in symptomatic leave samples, and then the virus was identified. A high incidence and severity of mosaic symptoms were observed in the PS881 and NX04 cultivars compared with the other cultivars. RT-PCR analysis detected SCSMV infection in all cultivars; double infections with SCSMV and SCMV in the PS881, PS882, and Cening cultivars; and triple infections with SCSMV, SCMV, and SrMV in the PS881 cultivar. Ascorbate peroxidase (Apx) expression was upregulated in all virus-infected cultivars and significantly increased in the triple-infected PS881 cultivar. However, catalase (Cat) expression was only slightly increased in the PS881 cultivar. The chlorophyll content was reduced, and the PsaA gene was downregulated in all cultivars. The expression of PsaA, RbcS, and Sps was significantly suppressed in the triple-infected PS881 cultivar. Moreover, the downregulation of both the RbcS and Pepc genes was concomitant with that of their protein levels.
Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
►▼
Show Figures
Figure 1
Open AccessArticle
Dominant Morphotypes of Native Arbuscular Mycorrhizal Fungi from Coffee Plantations and Their Propagation with Trap Plants
by
Rosa María Arias Mota, Yadeneyro de la Cruz Elizondo, Laura Celina Ruelas Monjardín and Yamel del Carmen Perea-Rojas
Int. J. Plant Biol. 2024, 15(3), 744-756; https://doi.org/10.3390/ijpb15030054 - 29 Jul 2024
Abstract
Coffee cultivation facilitates foreign trade, which is important to the Mexican economy, particularly to the coffee growers of Jilotepec, Veracruz. However, in this region, the soil in which the coffee plants are grown is acidic and has low nutrient availability, making plants susceptible
[...] Read more.
Coffee cultivation facilitates foreign trade, which is important to the Mexican economy, particularly to the coffee growers of Jilotepec, Veracruz. However, in this region, the soil in which the coffee plants are grown is acidic and has low nutrient availability, making plants susceptible to pests and diseases. In this context, the use of mycorrhizal fungi has gained importance, due to the benefits that they provide in terms of the transport of nutrients and the development of plants, contributing to a reduction in the use of chemical fertilizers. This work aimed to determine the dominant Arbuscular mycorrhizal fungi (AMF) in the soil of coffee farms and evaluate the potential of sorghum as a trap plant for these organisms. As a result, ten morphotypes of AMF were detected in the coffee soil, with Glomus and Acaulospora being the dominant genera. It was found that their presence was related to the pH, clay, organic matter, and total carbon of the soil from the farms. The abundance of spores increased significantly (p < 0.05) between the initial count in the soil and the final count after propagation in the sorghum trap plants. The characteristic structures of mycorrhizal colonization and a high percentage of mycorrhizal colonization of the roots of the trap plants (Sorghum vulgare) were observed at 120 days after sowing. It is concluded that Glomus sp1, Glomus sp2, Glomus sp3, Glomus sp4, Rhizophagus clarus, and Acaulospora scrobiculata are the dominant morphotypes in the considered coffee plantation soils and that sorghum has high potential for favoring the propagation of native AMF through increasing their abundance and favoring high mycorrhizal colonization.
Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
►▼
Show Figures
Figure 1
Open AccessArticle
Seed Tubers Are Not the Primary Inoculum Source in Water Yam (Dioscorea alata) Anthracnose Epidemics in the Caribbean
by
Laurent Penet, Margot Gumbau, Pauline Dentika, Fritz Poliphème, Sébastien Guyader, François Bussière, Angela T. Alleyne and Jean-Marc Blazy
Int. J. Plant Biol. 2024, 15(3), 733-743; https://doi.org/10.3390/ijpb15030053 - 28 Jul 2024
Abstract
Crop disease often leads to field epidemics with serious threats to yield. Early symptoms are sometimes difficult to identify, so the origin of primary inoculum is a critical focal point in the study of plant diseases, as it can help design management strategies
[...] Read more.
Crop disease often leads to field epidemics with serious threats to yield. Early symptoms are sometimes difficult to identify, so the origin of primary inoculum is a critical focal point in the study of plant diseases, as it can help design management strategies to reduce crop losses. Here, we investigated whether anthracnose of water yams (Dioscorea alata L.) caused by the species complex Colletotrichum gloeosporioides can start from infected seed tubers from the previous harvest. Over two years, we collected tubers with varying pathogen prevalence in the field directly from producers and conducted fungal isolations in the lab to sample C. gloeosporioides. We also proceeded to artificially inoculate tubers before planting and monitored disease development. Finally, we genotyped isolates from leaves in the fields and assessed fixation indices between plots based on plot ownership (plots with a common seed tuber origin from a single farmer) vs. samples in plots from unrelated producers in Guadeloupe, Martinique, and Barbados. We were unable to isolate the fungus from harvested tubers in either sampling survey nor did any plants grown from inoculated tubers develop any disease symptoms during growth. Also, the genetic structure of samples within each plot was independent of plot ownership, though this occurred with varying levels in the different islands. These results suggest that contaminated planting material from seed tubers is not the primary source of the disease, which is in contrast to the common perception of yam anthracnose prevalence in the Antilles.
Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
►▼
Show Figures
Figure 1
Open AccessReview
Algal Adaptation to Environmental Stresses: Lipidomics Research
by
Ksenia Chadova
Int. J. Plant Biol. 2024, 15(3), 719-732; https://doi.org/10.3390/ijpb15030052 - 22 Jul 2024
Abstract
Algal lipidomics is a new field of research that is gaining increasing popularity. The use of high-performance liquid chromatography–mass spectrometry (HPLC-MS) has made it possible to accurately determine the structure of each lipid molecule in a sample. Since algae are considered as a
[...] Read more.
Algal lipidomics is a new field of research that is gaining increasing popularity. The use of high-performance liquid chromatography–mass spectrometry (HPLC-MS) has made it possible to accurately determine the structure of each lipid molecule in a sample. Since algae are considered as a promising source of various compounds with pharmacological and biotechnological potential, including bioactive lipids and polyunsaturated fatty acids, lipidomics research of this group of organisms are of particular interest. The algae lipidome has high plasticity, which is due to the influence of abiotic and biotic environmental factors, and the observed changes in lipid composition are, as a rule, adaptive reactions. This review examines current research in the field of algal lipidomics, discusses the results of studying the influence of various environmental factors, such as temperature, light intensity, nutrient concentration, epi- and endophytic infections on the algae lipidome, and seasonal and geographical plasticity of algae lipidome; questions about the adaptation mechanisms of algae at the level of individual lipid molecular species are considered, and gaps in this area of research are noted.
Full article
(This article belongs to the Special Issue Microalgae as a Powerful Tool for Biopharming Development)
►▼
Show Figures
Figure 1
Open AccessReview
Drought Stress Tolerance in Rice: Physiological and Biochemical Insights
by
Aysha Siddika Jarin, Md. Moshiul Islam, Al Rahat, Sujat Ahmed, Pallab Ghosh and Yoshiyuki Murata
Int. J. Plant Biol. 2024, 15(3), 692-718; https://doi.org/10.3390/ijpb15030051 - 21 Jul 2024
Cited by 1
Abstract
Rice (Oryza sativa L.), an important food crop, necessitates more water to complete its life cycle than other crops. Therefore, there is a serious risk to rice output due to water-related stress. Drought stress results in morphological changes, including the inhibition of
[...] Read more.
Rice (Oryza sativa L.), an important food crop, necessitates more water to complete its life cycle than other crops. Therefore, there is a serious risk to rice output due to water-related stress. Drought stress results in morphological changes, including the inhibition of seed germination, reduced seeding growth, leaf area index, flag leaf area, increased leaf rolling, as well as the decrement of yield traits, such as plant height, plant biomass, number of tillers, and 1000-grain yield. Stress also causes the formation of reactive oxygen species (ROS) such as O2−, H2O2, and OH−, which promote oxidative stress in plants and cause oxidative damage. The process of oxidative degradation owing to water stress produces cell damage and a reduction in nutrient intake, photosynthetic rate, leaf area, RWC, WUE, and stomatal closure, which may be responsible for the decrement of the transpiration rate and plant dry matter under decreasing soil moisture. Plants have the ability to produce antioxidant species that can either be enzymatic (SOD, POD, CAT, GPX, APX) or non-enzymatic (AsA, GSH) in nature to overcome oxidative stress. During drought, several biochemical osmoprotectants, like proline, polyamines, and sugars, can be accumulated, which can enhance drought tolerance in rice. To meet the demands of an ever-growing population with diminishing water resources, it is necessary to have crop varieties that are highly adapted to dry environments, and it may also involve adopting some mitigation strategies. This study aims to assess the varying morphological, physiological, and biochemical responses of the rice plant to drought, and the various methods for alleviating drought stress.
Full article
(This article belongs to the Section Plant Response to Stresses)
►▼
Show Figures
Figure 1
Open AccessArticle
Yield and Agronomic Performance of Sweet Corn in Response to Inoculation with Azospirillum sp. under Arid Land Conditions
by
Sergio Contreras-Liza, Cristofer Yasiel Villadeza, Pedro M. Rodriguez-Grados, Edison Goethe Palomares and Carlos I. Arbizu
Int. J. Plant Biol. 2024, 15(3), 683-691; https://doi.org/10.3390/ijpb15030050 - 19 Jul 2024
Cited by 1
Abstract
Nitrogen is the most common limiting factor for crop productivity, and most maize cultivars require fertilizing. Here, we report on the possibility of partially replacing the nitrogenous fertilizer in sweet corn inoculated with a native strain of Azospirillum sp. in arid land on
[...] Read more.
Nitrogen is the most common limiting factor for crop productivity, and most maize cultivars require fertilizing. Here, we report on the possibility of partially replacing the nitrogenous fertilizer in sweet corn inoculated with a native strain of Azospirillum sp. in arid land on the coast of Peru. We performed an agronomic experiment in a crop field with arid soil under drip irrigation in Huacho (Peru) using a commercial variety of sweet corn. The treatments were two levels of nitrogen (90 and 180 kg N ha−1), one or two applications of a native strain of Azospirillum sp. (1 × 108 CFU/mL) and a control treatment with only nitrogen fertilizer. Eleven agronomic variables related to productive aspects were evaluated by performing statistical analyses and the comparison of treatment means. Inoculation with Azospirillum sp. did not significantly (p > 0.05) affect the total weight of ears, the number of ears per plant and the number of male flowers, but it significantly (p < 0.05) influenced the grain yield per hectare, the survival of plants, grain weight per plant, and the diameter and length of the cob. In some productive characteristics of sweet corn cv “Pardo”, a significant effect was found following inoculation with Azospirillum sp., which outperformed the control with only nitrogen fertilization in grain yield, suggesting that it is possible to complement the application of nitrogen to soil with the inoculation of this strain, replacing up to 50% of the levels of fertilizer application, since the benefit/cost ratio increases.
Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agronomy, Horticulturae, IJPB, Life, Plants
Effects of Climate Change on Viticulture (Grape)
Topic Editors: Arif Atak, Andreia Figueiredo, Inmaculada Pascual, Fermin MoralesDeadline: 31 December 2024
Topic in
Antioxidants, Foods, IJPB, Life, Molecules
New Insights of Natural Compounds in Antioxidant and Anti-Inflammatory Properties
Topic Editors: Jung Eun Kim, Bo Young ChungDeadline: 31 March 2025
Topic in
Agronomy, Diversity, Forests, IJPB, Plants
Plant Invasion
Topic Editors: Bruce Osborne, Panayiotis G. DimitrakopoulosDeadline: 31 July 2025
Topic in
Diversity, Forests, Genes, IJPB, Plants
Plant Chloroplast Genome and Evolution
Topic Editors: Chao Shi, Lassaâd Belbahri, Shuo WangDeadline: 31 August 2025
Conferences
Special Issues
Special Issue in
IJPB
The Role of Plant Growth-Promoting Bacteria in Enhancing Plant Health and Growth
Guest Editors: Glacy da Silva, Pedro Henrique Riboldi MonteiroDeadline: 28 February 2025
Special Issue in
IJPB
Ecophysiological Responses of Tropical Plants to Climate Change
Guest Editor: Geraldo Rogério Faustini CuzzuolDeadline: 31 March 2025
Special Issue in
IJPB
Movement Patterns in Climbing Plants
Guest Editors: Laura Ravazzolo, Silvia Guerra, Bianca Bonato, Sara AvesaniDeadline: 1 September 2025