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Abstract: Cancer is a hard-to-treat disease with a high reoccurrence rate that affects health and lives
globally. The condition has a high occurrence rate and is the second leading cause of mortality after
cardiovascular disorders. Increased research and more profound knowledge of the mechanisms
contributing to the disease’s onset and progression have led to drug discovery and development.
Various drugs are on the market against cancer; however, the drugs face challenges of chemoresistance.
The other major problem is the side effects of these drugs. Therefore, using complementary and
additional medicines from natural sources is the best strategy to overcome these issues. The naturally
occurring phytochemicals are a vast source of novel drugs against various ailments. The modes of
action by which phytochemicals show their anti-cancer effects can be the induction of apoptosis,
the onset of cell cycle arrest, kinase inhibition, and the blocking of carcinogens. This review aims
to describe different phytochemicals, their classification, the role of phytochemicals as anti-cancer
agents, the mode of action of phytochemicals, and their role in various types of cancer.

Keywords: phytochemicals; phenolic compounds; cancer therapeutics; natural products; cell signaling

1. Introduction

Cancer has emerged as a major health issue and is known to be the most prevalent
disease after cardiovascular diseases. In 2018, around 18 million cancer cases emerged
globally; this number is estimated to increase to more than 23 million new cases annually by
2030 [1]. The disease is hard to treat and has a high chance of reversal after treatment. The
presently accessible cancer treatment involves the removal by surgery and radiotherapy
of the biomass accumulated by the cancer, and the procedure is followed by chemother-
apy. The chemotherapeutic treatments include various antimetabolites, DNA-interacting
agents, hormones, and molecular targeting agents [2]. Chemotherapy is effective, yet it
faces major challenges such as chemoresistance by cancer cells, recurrence, and toxicity
exerted on normal cells, ultimately impairing life quality. Thus, many rely on comple-
mentary and alternative medicine (CAM) [3]. The primary area of research in anti-cancer
therapy is chemoprevention, focusing on numerous aspects ranging from nutritional to
pharmacological factors. To tackle the problems associated with current therapies in cancer
treatment, there is still a search for anticancer agents with enhanced efficiency and minimal
side effects [4]. A major task in cancer management is overpowering chemoresistance
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and the failure of current chemotherapies. Resistance to chemotherapy is associated with
modulated metabolism in cancer [5]. The compounds have also gained FDA approval for
administration in regulated amounts [6]. Figure 1 depicts the use of natural compounds to
treat various human ailments. Therefore, the metabolic modulations render the cancer cells
more resistant to chemotherapy and increase at an enhanced rate [7]. Resistance to drugs
in cancer is closely associated with an increase in glycolysis, even under sufficient oxygen
conditions [8]. The colon cancer cells exhibiting chemoresistance show reduced production
of ATP and increased aerobic glycolysis. Recent research focuses on identifying the genes
responsible for providing chemoresistance and finding a safe and effective method to
overcome cancer and drug resistance.
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Phytochemicals are naturally occurring chemicals derived from plants, and various
naturally occurring compounds have shown promising results in various human ailments
with no adverse effects. Phytochemicals and their derivatives are biologically active
compounds and have shown anti-cancer effects [9–12]. The development of phytochemical-
based anti-cancer agents involves the extraction, separation, and purification of different
compounds. The separated compounds are further tested on various cell lines in vitro and
in vivo. The traditional knowledge that involved the selection of plants, collection methods,
preparation of drugs, and their use was passed on from generation to generation. The drugs
were used in various forms, such as teas, powders, formulations, decoctions, etc. [13,14],
until the 18th century. The first breakthrough in drug discovery was the isolation of an
analgesic from the plant Papaver somniferum, known as morphine. Afterward, many other
drugs were derived from plants, including cocaine from Erythroxylum coca, aspirin from
Salix sp, quinine from Cinchona officinalis, digitoxin from Digitalis purpurea, and many more
having pharmacological activities [13,15,16]. Some of the most widely used anti-cancer
agents derived from plant sources are Taxol, Demecolcine, Colcemid, Paclitaxel, etc. [17].

Plants are a rich source of phytochemicals and chemical entities and have many
therapeutic applications [18]. Although modern and easy chemotherapeutic drugs offer
first-line treatment, the problem associated with them is their various side effects. Therefore,
researchers are interested in treatments with minimal side effects [19]. The phytochemicals
effectively target different cancers and minimize various hallmarks of cancer, reducing its
intensity. The chemo-protective roles of the phytochemicals are exerted by modulating the
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signaling pathways involved in cancer. This is found to have connections with the apoptosis
induction and suppression of the epithelial to mesenchymal EMT, thereby resulting in
the blockage of the metastatic behavior of cancer cells [19]. The phytochemicals interfere
with various signaling cascades such as MAPK pathway, nuclear factor kappa B (NF-κB)
signaling, PI3K-mTOR pathway, etc. [20,21]. The natural compounds also interfere with
some of the protein kinases overexpressed in cancers, such as MARKs, AMPKs, PDKs, and
SPHKs. Inhibition of these protein kinases with natural compounds provides a safe and
effective approach in cancer therapeutics [11,20,22,23].

The phytochemicals also target the cancer stem cells, affecting the cells’ sensitivity to-
ward chemotherapeutic drugs [24]. Phytochemicals have also shown modulatory metabolic
properties in cancer cells by governing different steps in the cancer signaling pathway [25].
The chemicals can also modulate the membrane potential of the mitochondrial membrane
and control the mitochondrial pathways [26]. The natural compounds have also shown
immunoprotective effects. The phytochemicals modulate the immunosuppressive behavior
of the cancer cells by modulating the T-regulatory (Treg) cells. Some of the natural products
with immune-modulatory effects are [27]. This review elaborates on the classification of
phytochemicals and the anti-cancer roles of phytochemicals.

2. Phytochemicals

Phytochemicals are very active constituents and are abundant in nature. As mentioned
above, they are grouped and have significant roles in preventing various diseases. The use
of these phytochemicals is done in a combination of multiple phytochemicals and other
drugs as well [9–14]. Phytochemicals exhibit a wide range of therapeutic roles, including
antioxidant, anti-inflammatory, anti-diabetic, analgesic, anti-cancer, neuroprotective, and
anti-microbial activities [24–47]. Phytochemicals are an essential source for the development
and discovery of new potent drugs [48]. The effects include apoptosis, alterations in
signaling pathways, cell cycle blockage, DNA damage, etc. [28].

Various anti-cancer agents originating from plant sources have found their use and ap-
proval, such as vincristine, taxol, paclitaxel, camptothecin derivatives, chinconine, etc. [29].
Various studies have shown that the compound curcumin (originating from the roots
of Curcuma longa L.) shows anticancer effects by inducing apoptosis, thereby inhibiting
the proliferation of cancer cells and resulting in cell cycle arrest in various cancer cell
lines [30]. Some organosulfur components obtained from the Allium sativum L. plant, such
as S-allylcysteine, show retarding effects on the growth of the tumor in various in vivo
models [31]. Epigallocatechin-3-gallate (EGCG) from green tea also shows anti-cancer and
anti-microbial effects and is a very vital phytochemical [32,33]. The Catharanthus roseus (L.)
plant is a rich source of alkaloids such as vinblastine and vincristine, which are used in
the current treatment of various types of cancer such as breast cancer (BC), lung cancer,
lymphomas, and leukemia [34]. Gymnemagenol is obtained from Gymnema sylvestre and
shows promising anti-cancer potential against hepatic cancer cell lines. MTT assay to
estimate the anti-proliferative activity of the phytochemical against HeLa cell lines was
performed, and gymnemagenol showed an IC50 value of 37 µg/m [35]. In another study,
baicalein, isolated from Oroxylumindicum, exhibited an antitumor effect on human cancer
cell lines by inhibiting the HL-60 cell line proliferation [36]. Antitumor activity of various
phytochemicals has been reported and is undergoing clinical trials. The compounds are
at different stages of chemical trials for cancer. Table 1 lists the phytochemicals tested
in clinical trials. Some of the phytochemicals showing therapeutic effects are shown in
Figure 2a,b.
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Figure 2. (a) Different phytochemicals used as therapeutic agents: aloe-emodlin, apigenin, baicalin,
caffeic acid, crocetin, curcumin, and ellagic acid; (b) Different phytochemicals used as therapeutic
agents: epigallocatechin-3-gallate (EGCG). luteolin, genistein, kaempferol, lupeol, Rhein, plumbagin,
vinblastine, vincristeine, resveratrol, xanthatin, quercetin, and xanthin.

Polyphenols have no exact classification, yet as they have diverse structures and are
abundant in nature. The phytochemicals are generally classified as primary and secondary
metabolites, as per their roles in plant metabolisms. The class of primary metabolites
includes common sugars, nucleic acids, and proteins, all of which play an essential role in
the basic survival of the plant. The secondary metabolites are plant chemicals that provide
extra advantages over basic survival strategies such as flowering, defense mechanisms,
anti-microbial agents, etc. [37,38].

Table 1. Some of the phytochemicals used against cancer, the methodology, and the final outcomes.

Phytochemical Cancer Interventions Effect References

Allium sativum

Colorectal, liver, and
pancreatic cancer patients

Colorectal ademas

500 mg of aged garlic extract
(GE) in 4 capsules for 12 weeks

2.4 mL GE in 3 capsules twice a
day for 1 year

Natural killer (NK) cells
increased in number

and activity.

Reduced size and number of
colon adenomas.

[40]

[41]

Camptothecin (Ct)

Patients with refractory cancer

Primary/metastatic lung
cancer patients

Ct: 3 weeks
drug-1-week rest;

Nitro-Ct: 5 day
drug- 2 days rest

6.7–26.6 µg/kg of Ct in the form
of aerosolized liposomes were

given 5 days a week for 6 weeks,
followed by a gap of 2 weeks.

Both the compounds showed
tumor regression in patients
with breast cancer, prostate

cancer, and melanomas.

3 lung patients stabilized
upon dosage.

[42]

[43]
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Table 1. Cont.

Phytochemical Cancer Interventions Effect References

Curcumin

Urinary bladder cancer,
uterine cervical neoplasm, and

intestinal metaplasia

Advanced pancreatic cancer

500 mg/day, orally, for 3 months

Dosage was 8 g/day for
one month

Improvement in 1 out of every
2 patients with bladder cancer

and 1 out of 6 patients
with intestinal

Metaplasia, and 1 out of
4 patients with uterine

cervical neoplasm.

Study was conducted on
21 patients, of whom 1 had

stable disease for >18 months
and 1 had tumor reversion.

[44]

[45]

Green tea

Patients with high-grade
prostate intraepithelial

neoplasia

Patients with adenocarcinoma
of the prostate

Esophageal cancer

Patients with colon, rectum
and pancreas cancer

Green tea catechins (600 mg)
were given daily, orally, for

one year

Tea consumption as a
daily routine

Usual green tea consumption

Non-regular tea consumption

Improved quality of life

Risk declination of prostate
cancer with increased

consumption of green tea.

Reduced risk of
Esophageal cancer.

Inverse relation was associated
with cancer and green tea

consumption.

[46]

[47]

[48]

[49]

Panax ginseng Patients with cancer of uterine,
ovary, rectum, stomach, etc

3000 mg/day of the
heat-processed ginseng for

12 weeks

Improvement of mental and
physical functioning, and

hence improved quality of life.
[50]

Isoflavones Prostate cancer (60 mg) daily for 12 months
Reducing prostate cancer

incidence for patients aged 65
or more.

[51]

Synthetic genistein Prostate cancer
54 patients with localized

prostate cancer. (30 mg) daily for
3–6 weeks

Decreasing level of serum
prostate specific antigen (PSA).

[52]

Soy isoflavone Prostate cancer

86 patients with localized
prostate cancer. (80 mg total

isoflavones, 51 mg aglucon units)
daily for 6 weeks

No significant change in
serum hormone levels, total

cholesterol, or PSA.

[53]

Flavonoid mixture Colorectal cancer

(20 mg apigenin and 20 mg
EGCG) for 3–4 years. 87 patients
with resected colorectal cancer or

polypectomy

Reducing the recurrence rate
of colon neoplasia in patients

with resected colon cancer.
[54]

Isoflavones and
curcumin Prostate cancer

Isoflavones (40 mg) and
curcumin (100 mg) daily for

6 months
decreasing level of serum PSA. [55]

Secondary metabolites mainly consist of lignans, alkaloids, terpenes, phytoalexins,
triterpenes, steroids, stilbenoids, bibenzyls, phenols, flavonoids, etc. [39]. Phenolics are
known to be the most prevalent and structurally diverse phytochemicals. Figure 3 depicts
the classification of phytochemicals.
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Figure 3. The diverse phytochemicals originating from plant sources are distinguished into five major
classes based on their chemical structure and properties. The figure illustrates the different classes
and gives examples of each type.

3. Phenolic Compounds and Their Role in Cancer Management

Phenolic compounds are the major components of phytochemicals that are widely
distributed in the plant kingdom [56]. They aid in defense mechanisms as secondary
metabolites. Additionally, phenolic compounds benefit humans in multiple ways; their
antioxidant properties are widely considered a significant benefit for humans in this dis-
ease era. Flavonoids, phenolic acids, and polyphenols are three major groups of dietary
phenolics. Flavonoids are a large group of phenols that occur ubiquitously as aglycones,
glucosides, and methylated derivatives [57]. Many thousands of flavonoids, such as those
found in fruits, vegetables, tea, and coffee, have been known to occur abundantly as a
part of our diet [58]. Flavonoids have been used successfully in treating ailments since
ancient times and have found their uses to date. Flavonoids usually occur in conjugation
with sugars and are classified further as mono-, di-, and oligo-glycosides. Flavonoids are
gaining attention due to their effect on various biological and pharmacological functions.
Some effects exerted on biological functions include cytotoxic effects against cancer cell
lines, anti-tumor effects, anti-inflammatory effects, and anti-microbial effects. Apart from
therapeutic effects, the group of phytochemicals is known for its potent antioxidant activity,
which plays a vital role in protection from the harmful effects of free radicals and reactive
oxygen species (ROS). The phenolic acids form diverse groups and are abundantly dis-
tributed, such as hydroxylbenzoic acid (HBA) and hydroxycinnamic acid (HCA), and have
one carboxylic acid functional group. HCAs are simple esters with an attached glucose or
hydroxycarboxylic acid group. The phenolic compounds produced by plants have a differ-
ent molecular structure, well known by the presence of hydroxylated aromatic rings [59].
The compounds are known for their antioxidant properties that prevent oxidative damage
against ROS, thereby playing a vital role in neurodegeneration, cardiovascular diseases
(CVDs), cancers, and many more. Tumor cells have a higher generation of ROS than normal
cells and, therefore, are targeted by these compounds [60].
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The importance of phenolic compounds is attributed to their effectiveness against the
proliferation of various human cancer cell lines (HCCL) [61,62]. Cinnamic acid (CA) is a
monocarboxylic acid derived from acrylic acid with a phenyl substituent. According to pub-
lished literature, CA reduced the cell proliferation of the melanoma cell line (HT-44) with an
IC50 value of 2.4 mM and inhibited the growth of the HT-44 cells by inhibiting the cells in the
S phase [63]. Another study showed the arrest of the G2-M phase of the cell cycle in MDA-
MB-231 and MCF-7 breast CCL when exposed to 4-Methyl-3-nitro-benzoic acid [64,65].
The efficacy of phenolics against cancer cell proliferation, migration, and invasion is well
documented in many literatures [66,67]. P-coumaric acid decreased the viability of HCT15
and HT29 colorectal cancer cell lines [68,69]. Caffeic acid and its derivatives are also found
to reduce the cell viability of cancer cell lines; caffeic and 5-caffeoylquinic acids reduced the
cell proliferation of colorectal (HT-29) and fibrosarcoma cell lines (HT-1080) by modulating
the cell cycles at various stages [70–72]. The phenol, di-caffeoylquinic acid, also reduced
the proliferation of human colon CCC (DLD-1) [73]. Ferulic acid showed inhibition of
pancreatic CCL MIA-Pa-Ca-2, and gallic acid inhibited CCL HeLa and HTB-35 [74,75].
Cinnamic acid derivatives with phenyl groups showed cytotoxicity in CCCs HT-29 (human
colorectal CCL), A-549 (human lung CCL), MDA-MB-231, and HeLa (cervical CCL). The
phenyl-substituted acids showed better efficacy in inhibiting cancer cell proliferation. At
0.1 mM concentration, the phenyl substitutes inhibited 84–92% of the cancer cells compared
to non-substituted compounds, showing maximum inhibition of up to 63% [76].

The phenolics are studied for their toxicity in normal human cell lines. Compared
to synthetic ones, naturally occurring phenolics showed less toxicity even at higher
doses [77].The phytochemical protocatechuic acid was tested for safety and toxicity. Proto-
catechuic acid showed an LD50 value of 800 mg per kg by inter-peritoneal and 3.5 g/kg by
intravenous routes [78]. A toxicity assessment of gallic acid (GA) in rats was conducted
in which the rats were fed a GA-rich diet (up to 5%) for 13 weeks and no symptoms of
toxicity were observed [79]. Similarly, p-coumaric acid also exhibited low toxicity, with an
LD50 ~ 2850 mg/kg body weight [80]. In conclusion, phenolics and their derivatives are
safe and have anti-proliferative effects on cancer cell lines. The compounds’ toxicity profile
may vary depending on the structure, administration route, and dosage.

3.1. Curcumin

Curcumin has shown great potency in chemoprevention, isolated from Curcuma longa.
The potent compound shows chemopreventive effects through ROS scavenging, signaling
pathway modulations, apoptosis induction, and tumor microenvironment regulation. Cur-
cumin is a safe and effective chemopreventive agent with low toxicity to normal cells. One
of the essential aspects of curcumin is that it is budget-friendly, yet effective. In Asian coun-
tries, curcumin is used deliberately, and the plant’s root is used as a coloring and flavoring
agent for food. The compound has many other benefits, such as being anti-inflammatory
and having potent antioxidants [81]. The phytochemical is abundant in the spice turmeric
and has a mixture of many bioactive compounds. The curcumin derivative in turmeric,
tetrahydrocurcumin, has been a great attraction for research due to its anti-cancer effects
and excellent solubility in water [82].

Curcumin fights cancer by its action on various essential signaling molecules such as
CDKs, NF-kB, tumor necrosis factor-alpha (TNF-a), and cyclooxygenase-2 (COX-2) [83,84].
It shows considerable anti-inflammatory and anti-cancer effects in different clinical and
preclinical studies. Many in vitro experiments also demonstrated diverse mechanisms by
which curcumin inhibits cancer cells. CDK overexpression is associated with cancer, and
breast and skin cancer treatment with curcumin decreases cancer progression by inhibiting
CDK4 [85]. Curcumin downregulates gene expression in cancer onset and progression,
such as VEGF, angiopoietin, MMP-9, and MMP-3 [86].
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3.2. Resveratrol

Resveratrol is chemically 3, 5, 40-trihydroxy-trans-stilbenes and is abundant in grapes,
berries, and many other plants. The compound has anti-ageing properties and has excellent
roles in managing many diseases, including cancer, diabetes, neurodegeneration, arthritis,
etc. [87]. Resveratrol modulates different signaling pathways in cancer onset, progression,
and metastasis. It is also known to induce programmed cell death, reduce inflammatory
responses, and aid in lowering the angiogenesis and conversion of a benign tumor into a
malignant tumor [88,89]. The side effects of cancer treatment are significant complications
in chemotherapy. Resveratrol has a major advantage: it eliminates the toxicity and side
effects of cancer therapies and may be used as a combinatorial treatment [90–92]. The phyto-
chemical reduces toxic heavy metals such as arsenic in renal cells. Using resveratrol inhibits
the oxidative stress induced by arsenic trioxide, and a decline in arsenic concentration
is observed in the hepatic cells [93,94]. The phytochemical is also beneficial in the treat-
ment of acetaminophen-induced liver toxicity and cisplatin-induced kidney disorders [95].
External application of the phytochemical inhibits the effects of UV-B radiation on skin
edema and reduces the production of hydrogen peroxide in mice. Extended application of
resveratrol showed a tumor reduction and delayed the onset of cancer, whereas short-term
application led to cytotoxicity against cancer growth [96,97]. Various research claims that
resveratrol treatment modulates the signaling molecules associated with oncogenesis and
shows inhibitory effects on cancer cells [98,99].

3.3. Apigenin

Apigenin is highly abundant in nature in the form of fruits and vegetables. The phy-
tochemical is a flavone derivative and has anti-angiogenic properties. The properties are
related to the modulation of signaling pathways associated with cancer induction, apopto-
sis, and cell cycle arrest [100]. Various research studies have shown the chemopreventive
roles of apigenin in in vivo models. Different animal models were studied with varia-
tions in dosage, mode, and frequency of administration of the phytochemical. The major
pathway modulated by apigenin is the phosphoinositide 3-kinase (PI3K)/Akt signaling
pathway [101]. Apigenin reduces Her2/neu protein expression in mouse models of can-
cer [102]. The phytochemical shows chemopreventive effects by stimulating apoptotic cell
death and cell cycle arrest. The natural phytochemical inhibits the progression of prostate
cancer by inhibiting the NF-kB pathway [103]. Apigenin administration in the form of a
parsley-rich diet improved antioxidant levels [104]. Other biological activities associated
with phytochemicals include reduced plasma levels and platelet aggregation [105].

3.4. Gingerol

Gingerol, a phenolic compound, is a major bioactive compound present in ginger.
According to a published study, mice treated with gingerol (5 mg/kg body weight) demon-
strated inhibition of tumor growth and metastasis of breast cancer cells to other parts of
the body by inhibiting caspase-3 expression [106]. Gingerol also inhibits metastatic lung
cancer, breast cancer proliferation, metastasis, and invasion by suppressing the AKT and
p38MAPK pathways [107].

3.5. Thymoquinone

Thymoquinone (TQ) is chemically 2-isopropyl-5-methyl-1,4-benzo-quinone and a
bioactive constituent in black cumin seed oil. The compound has been extensively studied
in in vivo models. When administered to BALB/c mice at 10 mg/kg, there is a decline
in tumor size. TQ showed anti-cancer effects by inducing apoptosis and blocking STAT3
phosphorylation in gastric cancer cells; reduced STAT3 showed a reduction in JAK2 and
c-Src activity [108]. Preclinical studies showed the potential role of TQ in combinatorial
therapy with other chemotherapeutic agents [109]. BALB/c mice with transplanted breast
cancer cells (EMT6/P cell line) were studied for inhibition by TQ along with melatonin.
and it was found that it leads to decreased tumor size and cell death induction [110].
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4. Tannins in Cancer Management

Tannins are high-molecular-weight (500–3000 Dalton), heterogeneous, and water-
soluble compounds that are abundant in plants and common in food and beverages [91].
They are highly reactive, and owing to this, they form inter- and intra-molecular hydrogen
bonds with other macromolecules such as proteins [111,112]. Tannins are classified into
two classes: hydrolysable tannins and condensed tannins. Hydrolysable tannins are further
classified into two groups. First are the gallotannins, which yield a sugar and gallic acid
(GA) upon hydrolysis, and second are the ellagitannins, which yield an additional ellagic
acid when hydrolyzed. The second class of tannins is the condensed tannins, the proantho-
cyanidins. The proanthocyanidins are highly abundant plant-derived polyphenols [112].
These compounds, unlike the hydrolysable tannins, do not hydrolyze in the presence of
weak acid. However, under acidic and alcoholic conditions, they decompose and produce
red pigments named phlobaphenes. The high structural complexity and the polymeric
nature are responsible for less attention being paid to the tannins [113]. Proanthocyanidins
and their monomers have drawn recent attention as they have various human health bene-
fits, namely, antioxidant, anti-cancer, anti-inflammatory, anti-diabetic, etc. [114]. Table 2
lists the tannins and their roles against cancer proliferation.

4.1. Epigallocatechin Gallate

Green tea is a rich source of antioxidants and a proven preventive compound for
numerous diseases. The major bioactive compound present in green tea is epigallocatechin
gallate (EGCG), made up of three bound heterocyclic rings; delocalization of electrons
leads to the scavenging of free electrons [115]. The tea catechins that contain the bioactive
compound show redox properties with ROS. EGCG also acts as a metal chelating agent and
prevents the production of ROS [116,117]. Although the compound is rich in health benefits,
it has very low bioavailability, is indigestive, and has efflux properties [118–120]. Due to
these reasons, EGCG shows a reduced effect in clinical trials. The major signaling pathways
modulated by the compound are JAK/STAT, Janus kinases (JAK), signal transducer and
activator of transcription proteins (STAT), NF-κB, MAPK, etc. [121,122]. The compounds
have proven to exhibit tumor suppression and include genes such as p53, p21, p16, and
Rb [123,124].

4.2. Gallic Acid

Tannin, or gallic acid (GA), shows anti-proliferative effects on multiple cancers such
as lung, prostate, breast, colon, and esophageal cancer [125–127] by inducing cell death
by apoptosis and other mechanisms. GA has shown antiproliferative effects on various
human prostate cancer cell lines, such as LNCaP, PC-3, etc., by modulating multiple
mechanisms [128,129]. In an in vivo study on BALB/C male nude mice, xenografts for
DU145 and 22Rv1 were administered with GA in water for 6 weeks, and this resulted in
reduced tumor size in the mouse models [114]. GA minimizes the proliferation of cancer
cells by inducing apoptosis in H446, Calu-6, A549, etc., cell lines [130]. GA also stimulates
mitogen-activated protein kinase (MAPK) inhibition, leading to apoptosis induction in
lung cancer cells; GA reduced the number of viable NCI-H460 cells through induction of
apoptosis and ultimately leading to G2/M phase arrest [131]. In another study, C57 black
mice transplanted with LL-2 cells were administered GA (1 mg/mL) ad libitum, and it
resulted in a reduction of tumor growth compared with the controls [132]. Nude NCI-H460
xenograft mice were administered GA orally, and it showed a reduction in tumor growth
and induced caspases 3, 8, and 9 in the mouse model that induced apoptosis via the caspase-
mediated mitochondrial pathway [133]. GA also induces apoptosis in human osteosarcoma
cells by modulating the MAPK pathways. The compound shows inhibitory effects on the
cancer cell lines U-2OS and HOS osteosarcoma cell lines. GA administration also inhibited
the tumor growth in xenografts in a dose-dependent manner by downregulating PCNA
and CD31 levels and thereby inducing apoptosis in the tumor cell lines [134].
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Table 2. Tannins and their roles against cancer proliferation.

Tannins Cancer Effect on Cancer Refs.

Tannic acid (TA)

Breast cancer cell lines
(MCF-7,

MDA-MB-231, BT474)

Prostate Cancer Cells
(PC-3 and LNCaP)

Head and Neck Cancer
(FaDu and YD-38)

• Growing cells remodelled collagen
caspase-mediated apoptosis

• MCF7 cells showed sensitivity to the pro-apoptotic
effect of TA.

• TA induced apoptosis in HER-2 positive cell
line BT474

• Inhibits migration, invasion and ability to
form colonies.

• Expression modulation of cytochromes CYP17A1,
3A4, 2B6, NQO1, GSTM1, and GSTP1.

• FaDu cells showed cell cycle arrest in G2/M phase.

• Apoptosis induction with increase of cell population
at sub-G1 phase.

• Both intrinsic and extrinsic cell death was triggered
and phosphorylation of kinases of ERK, AKT
and PKB

[135–137]

[138]

[139]

Ellagic acid (EA)

Human Bladder Cancer Cell
Lines (T24, UM-UC-3, 5637,

and HT-1376)

Lung Cancer cell line A549

• EA exhibits in vitro and in vivo anti-tumor activity
for human bladder cancer.

• Inhibits tumor cell proliferation; migration
and invasion.

• Down-regulation of PD-L1 and reduction
of angiogenesis.

• Inhibition of kinase-related pathways such as
PI3K/AKT, PDK3, and SPHK.

[140]

[141–143]
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Table 2. Cont.

Tannins Cancer Effect on Cancer Refs.

EGCG

Breast cancer cell line 4T1

Human esophageal squamous
carcinoma cells Eca109

Colorectal cancer (DLD-1
and SW480)

Oral squamous cell carcinoma
(HSC-3)

• EGCG induced breast cancer apoptotic cell death at
24 h

• Caspase 3, 8 and 9 activation.

• Apoptosis induction by reduced protein expression
of adenosine triphosphate binding cassette subfamily
G member 2 (ABCG2) and reduction of Bcl-2.

• Decrease in Wnt-β catenin pathway.

• Increase in Caspase 3 and 7 activities.

[144]

[145]

[146]

[147]

Gallic acid

Prostate cancer cell lines
(DU145)

Human lung cancer cells.
Calu-6 and A549

Leukemia K562 cell line

• Toxicity towards prostate cancer cells compared with
DU145 cells.

• Exhibits apoptotic effects in DU145 cells by
stimulating a pre-existing apoptotic pathway.

• Activates mitogen-activated protein kinase
(MAPK) inhibition.

• BCR/ABL kinase inhibition.
• NF-Kβ inactivation.
• Cyclooxygenase-2 (COX-2) Down-regulation.

[127]

[130]

[148]

Procyanidins

Human breast cancer cell line
MCF7

Non-small cell lung cancer
(NSCLC)

• MCF7 cell proliferation inhibition was observed in a
concentration/time-dependent manner.

• Induced cell cycle arrest and apoptosis.

• NSCLC cell proliferation inhibition was observed
• Induced cell cycle arrest and apoptosis

[149]

[150]
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Table 2. Cont.

Tannins Cancer Effect on Cancer Refs.

Green tea
catechins

Human lung cancer cell line
PC-9

Human prostate cancer
DU145 cell line

• Inhibited the proliferation of catechins in the order
EGCG > ECG (Epicatechin gallate) > EGC
(Epigallocatechin)�EC (epicatechin)

• Growth reduction of prostate cancer cells DU145

• Induction of apoptosis, ROS formation in the order
ECG > EGCG > EGC > EC

[151]

[152]

Epicatechin
(flavon-3-ol

monomer units)

Human bladder cancer
TCCSUP cell line

• 20% growth inhibition at 20 µg/mL of EC
was observed [153]

5. Alkaloids in Cancer Treatment

Alkaloids are the phytochemicals that possess the most promising anti-cancer ac-
tivities. The phytochemical class has diverse compounds derived from plants, animals,
microbes, and many more [20]. The low molecular weight alkaloids are organic nitrogenous
compounds. The compounds in this group are generally colorless and non-volatile and
exhibit a low toxic effect on human cells. The action of alkaloids for cancer cell inhibition
is to block the action of the topoisomerase enzyme, which further stalls DNA replication
and promotes cell death [22]. For these reasons, alkaloids have been used as a parent
molecule for designing and developing compounds possessing human health benefits [22].
Various alkaloids having anti-cancer effects include colchicine, vincristine, vinblastine,
morphine, etc.

Colchicine is an anti-mitotic agent that prevents microtubule elongation by binding to
tubulin and forming a tubulin-colchicine complex reversibly. However, at higher doses, the
alkaloid causes significant damage to the normal tissues and limits its use in chemother-
apy [96]. Vinblastine sulfate, USP, is obtained from the flowers of a common medicinal
plant (Catharanthus roseus spp.). The compound shows its anti-cancer effect by halting cell
growth at the metaphase [154]. The alkaloid vincristine is also used as an anti-cancer agent.
The drug is administered intravenously due to its low bioavailability [150]. Vindesine,
marketed as vindesine sulfate, gained FDA approval in 1994. Like other Vinca alkaloids,
vindesine blocks the cells in metaphase during mitosis [154]. In vitro studies show that
vindesine sulfate inhibits the malignancy and invasion of cancer cells. Vindesine sulfate
has more potency than other alkaloid drugs. Vinorelbine is also a semi-synthetic vinca
alkaloid sold under the brand name Navelbine [155]. It is a chemotherapeutic drug for
treating non-small cell lung cancer that has spread metastatically (NSCLC) [155]. Table 3
lists alkaloids with their pharmacological mechanisms.
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Table 3. Alkaloids and their therapeutic effect and pharmacological mechanism.

Alkaloid Pharmacological Mechanism Therapeutic Effect Refs.

Vinblastine
-Binds to tubulin and prevents

microtubules from binding.
-Induce apoptosis and mitotic death.

Cervical cancer
Breast cancer
Lung cancer

Head and neck cancer
Hodgkin’s lymphoma

Testicular cancer

[156,157]

Vincristine
-Binds tubulin dimer.

-Prevents microtubule structure
formation.

Acute myeloid leukemia (AML, ANLL)
Acute_lymphoblastic leukemia (ALL)

Hodgkin’s_lymphoma
Non-Hodgkin’s lymphoma

[158,159]

Vindesine Possess anti-mitotic activity
Melanoma

Lung cancers
Uterine malignancies

[154]

Vinorelbine
Exhibits broad-spectrum

antitumor activity.
Antineoplastic activity

Breast cancer
Non-small cell lung cancer

(NSCLC)
[159,160]

Vinflunine

Decreases metaphase to anaphase
transition, Prevents cancer cells from

entering mitosis.
Increases apoptosis

Metastatic Urothelial carcinoma
Transitional cell carcinoma

Breast cancer
[161]

Colchicine Microtubule destabilizers perturb the
assembly dynamics of microtubules. Gastric cancer [162,163]

Colcemid Mitotic arrest
Kinase inhibition Lung Cancer [164]

6. Terpenes in Cancer Treatment

Terpenes are highly abundant phytochemicals and are numerous. The terpenes are
found in various sources, such as plants, flowers, and insects. The compounds are responsi-
ble for the taste and fragrance of the plants. We can classify terpenes based on the number
of isoprene units and their organization [165]. Myrcene, a monoterpene, and the sesquiter-
penes β-caryophyllene and α-humulene are the terpenes most common. Myrcene extracts
have shown cytotoxic effects in cancer cell lines such as breast and colon cancer [166]. The
terpene β-cp exhibits cytotoxic potential against lung and ovarian cancer cell lines by induc-
ing cell cycle arrest and apoptosis [167,168]. The compound shows anti-proliferative effects
in a glioblastoma model. β-cp at 20 µM induces proapoptotic and antiproliferative effects
by modulating the JAK/STAT pathway in osteosarcoma cells [169]. Glycyrrhizin (Gy), a
triterpene glycoside, is the active constituent found in the licorice root of Glycyrrhiza glabra.
BALB/c nude mice xenografts of A549 cells (lung cancer) were transfected with TxA2
receptor (TPa), Gy with a dosage of 135 mg/kg, which reduced thromboxane synthase and
PCNA expression by suppressing the TxA2 pathway [170]. It has anti-cancer and antioxi-
dant activities. Gy also enhances NO production by stimulating with interferon-gamma
(IFN-γ), and high NO concentrations are associated with cancer cell death [171]. Table 4
shows some of the terpenes and the anti-cancer potential of the compounds.
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Table 4. Anti-proliferative role of terpenes in cancer.

Terpene In Vitro Effects In Vivo Effects Clinical Trials Refs.

Myrcene Cytotoxic effects on cancer cell lines
Reduced DNA damage

Carcinogenic at higher
doses N/A [172–175]

Limonene

Shown cytotoxic effects
Mediates cell cycle arrest

Decreased migration and invasion of
cancer cells

Apoptosis and autophagy induction
Inhibition of the PI3K/Akt pathway

Decreased tumor
growth and metastasis,

c-jun, and c-myc
expression

Induced apoptosis and
latency period.

Decreased the
expression of proteins

involved in tumor
progression.

[176–183]

Pinene
Reduced cell viability.

Induced apoptosis, ROS production,
and cell cycle arrest

Reduced the number
and growth of tumors. N/A [184–187]

Elemene

Induced cell cycle arrest
and apoptosis

Inhibited MAPK pathway
Reduced tumor migration and invasion

Inhibited angiogenesis

N/A

Effective agents in
chemotherapy.

Reduced toxicity of
chemotherapy.

[188–194]

Terpinene isomers Reduced proliferation and induced
apoptosis in cancer cells N/A N/A [195–198]

Valencene
Reduced cellular proliferation and acted

efficiently synergistically with
doxorubicin

N/A N/A [199,200]

Nerolidol
Exhibited cytotoxic effects and induced

apoptosis and cell cycle arrest.
Acted synergistically with doxorubicin

Inhibited cancer
growth N/A [201–205]

7. Mechanism of Action of Phytochemicals

The phytochemicals exert deleterious effects on cancer cells through various mecha-
nisms, including modulations in signaling pathways and the onset of apoptosis [206]. The
anti-cancer agents show their effects by blocking the generation of carcinogenic species
and obstructing the interaction between carcinogens and cells, thus delaying tumor forma-
tion [207]. The signaling pathways majorly associated with cancer are the mitogen-activated
protein kinase (MAPK) pathway, nuclear factor kappa B (NF-Kb), and activator of tran-
scription proteins (STAT) pathway. The signaling pathways are modulated so that they
may be overactivated or blocked and govern the metabolic pathways in various cancers.
The modulations further lead to cancer onset and proliferation, and they promote various
hallmarks of cancer such as angiogenesis, increased glycolysis, and metastasis [9]. The
signaling pathways and modulated enzymes and factors are a major target to inhibit or
activate for the therapeutic treatment of cancers [23]. The MAPK pathway is associated with
the onset of tumors such as melanomas and is a target for inhibiting the treatment of related
cancers. Various phytochemicals such as quercetin, curcumin, ellagic acid, rosmarinic
acid, etc. [208]. Refs. [209–211] are associated with halting the MAPK pathway, shown
in Figure 4. Quercitin has demonstrated inhibitory effects on human hepatoma cell lines
HepG2 by blocking the ERK pathway and phosphatidylinositol-3-kinase (PI3K)/Aurora
kinase B (AKB) pathways [212]. Gallic acid showed a deleterious effect on the invasiveness
of mouse brain endothelial cells and glioblastoma cells, U87 and U251, by blocking some
pathways involved in cancer progression [213]. NF-kB pathway has major roles in cancer
development and progression, promoting the proliferation of cancer cells, aiding metastasis,
and skipping apoptosis. The phytochemicals have shown inhibitory effects against NF-kB;
the phytochemicals involved are capsaicin, ursolic acid, gingerol, eugenol, etc. [214].
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Apoptosis is an essential process of programmed cell death and significantly elimi-
nates tumor cells [22,215]. Phytochemicals have been shown to induce apoptotic effects on
cells by upregulating caspase 3 and 9 expressions, decreasing the growth and development
of colorectal cancer and lung cancer [216]. The phytochemicals involved in apoptosis are
punicalagin and 5-methoxyangenylalkanni. Apigenin, a flavonoid derivative, is associated
with the modulation of the kinase pathway and blocks the cells in the G2/M phase. Api-
genin can inhibit the growth of HepG2 cells [217]. Esculetin induces apoptosis in various
human cancer cell lines, including HSC4, HSC4 oral squamous cell carcinoma, the leukemia
cell line U937, and melanoma cells G361 [218]. The phytochemical is also a potent inhibitor
of the Wnt-β-catenin pathway. It blocks the formation of the β-catenin-Tcf complex, sup-
pressing colon cancer cell proliferation [219]. In colon cancer, the phytochemical diosgenin
s apoptosis by increasing caspase 3 activity, inhibiting Bcl-2 [220]. The phytochemical
artabotryside A induces apoptosis in U87 cells by arresting the cell cycle at the G2/M phase
of the cell cycle [221]. Caffeic acid-induced apoptosis was induced in the breast cancer cell
T47D by activation of the Fas/FasL pathway [222]. Several other phytochemicals are known
to induce anti-cancer effects by inducing apoptosis, such as lutein, capsaicin, rhein, etc.

Cell cycle progressions are associated with activating cyclin-dependent kinases (CDKs).
The levels of CDKs are regulated by cyclin-dependent kinase inhibitors (CKIs), which
maintain the level of CDKs [223]. Various phytochemicals, such as mangiferin [224],
naringenin [225], berberine [226], fisetin [227], etc., have demonstrated inhibitory potentials
for the progression of the cell cycle. Ferulic acid from Allium cepa has been studied to
elevate the expression of genes associated with the association of centrosomes and arrest
the cell cycle at the synthesis (S) phase, which results in the inhibition of colon cancer
Caco-2 cells [228]. Withaferin A, isolated from Withaniasomnifera spp., arrests the cell cycle
at the G2/M phase by lowering CDK levels in various cancer cell lines [229]. In addition,
other phytochemicals such as capsaicin, kaempferol, and berberine induce arrest in the cell
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cycle. Cancer-related epigenetic variations are associated with chemical changes to histones
and gene expression. DNA’s hyper- and hypomethylation leads to chromatin condensation
and tumor inhibitory gene inhibition. Improper oncogene expression is also the result of
methylated cytosines [230].

8. Conclusions and Future Perspectives

Phytochemicals have emerged as a major source for developing novel leads for drug
discovery and development. An advanced approach to combining traditional knowledge
with the drug discovery process can lead to the discovery of novel compounds that can aid
in the management of various life-threatening diseases. The advancements in analytics and
bioinformatics have also facilitated the entry of new leads from plants into the evaluation
process. Cancer is a complex and hard-to-treat disease with various complications. The
conventional methods of cancer therapeutics have a lot of drawbacks, such as side effects,
chemoresistance, and reversal of cancer. The utmost need is to develop more potent
therapeutic compounds with the least toxicity. Using phytochemicals in combination
with current methods of cancer treatment can aid in reducing the effects of cancer. The
phytochemicals work on cancer cells by modulating the cell signaling mechanism and
inducing apoptosis in the cancer cells. Various phytochemicals have shown their anti-cancer
effects in in vivo, in vitro, and clinical trials.

Detailed studies at preclinical and epidemiological levels are needed to identify more
such beneficial compounds and their use against cancer alone as well as in combination
with other drugs already available.
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