Investigating the Phytochemical Profile and Antioxidant Activity of Different Solvent Extracts of Sesamum prostratum Retz.
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Profiling of Extracts of S. prostratum
2.2. Antioxidant Assay on Different Solvent Extract of S. prostratum
2.2.1. ABTS Assay on Free Radical Scavenging of S. prostratum Extracts
2.2.2. DPPH Assay
2.2.3. H2O2 Assay
3. Discussion
3.1. Phytochemical Profiling of Different Solvent Extract of S. prostratum
3.2. Antioxidant Assay
4. Materials and Methods
4.1. Collection and Preparation of Plant Samples
4.2. Continuous Hot Extraction Using Soxhlet Apparatus
4.3. GC/MS Analysis of Different Solvent Extracts
4.4. Antioxidant Assays
4.4.1. ABTS Assay
4.4.2. DPPH Assay
4.4.3. Hydrogen Peroxide (H2O2) Assay
4.4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manikandan, G.; Saranya, M.; Gayathri, S. GC-MS Analysis of Phyto-Constituents of the Essential Oil from the Leaves of Melaleuca citrina (Curtis) Dum. Cours. Adv. Zool. Bot. 2020, 8, 87–98. [Google Scholar] [CrossRef]
- Vital, P.G.; Rivera, W.L. Antimicrobial activity and Cytotoxicity of Chromolaena odorata (L.f) King and Robinson and Uncaria perrottetii (A.Rich) Merr Extracts. J. Med. Plants Res. 2009, 3, 511–518. [Google Scholar] [CrossRef]
- Gurusamy, M.; Subramanian, V.; Raju, R. Diversity and conservation status of flora in pilavakkaldam foothills of Western Ghats, Tamil Nadu, India. Indones. J. For. Res. 2022, 9, 215–237. [Google Scholar]
- Thakur, M.; Yadav, A.; Dubey, K.K. Antimicrobial Activity against Antibiotic-resistant Pathogens and Antioxidant Activity and LCMS/MS Phytochemical Content Analysis of Selected Medicinal Plants. J. Pure Appl. Microbiol. 2004, 18, 722–738. [Google Scholar] [CrossRef]
- Manikandan, G.; Vimala Rani, A.; Divya, C.; Ramasubbu, R. GC-MS analysis of phytochemical constituents in the petroleum ether leaf extracts of Millettia peguensis. Int. Res. J. Pharm. 2017, 8, 144–150. [Google Scholar] [CrossRef]
- Manikandan, G.; Pandiselvi, P.; Sobana, N.; Murugan, M. GC-MS analysis of chemical constituents in the methanolic tuber extract of Momordica cymbalaria Hook. F. Int. Res. J. Pharm. 2019, 10, 135–140. [Google Scholar] [CrossRef]
- Manikandan, G.; Ragavi, K.; Gayathri, S. GC-MS analysis of bioactive compounds and antimicrobial potential of the essential oil of Cymbopogon citratus (DC.). Res. J. Chem. Environ. 2021, 25, 54–65. [Google Scholar]
- Gurusamy, M.; Charlie, K.; Palanisamy, K.; Divya, C.; Katerere, D.R. An Attempt to Conserve A Vulnerable Tree Species of Santalum album L. through Micropropagation. Indones. J. For. Res. 2024, 11, 81–89. [Google Scholar] [CrossRef]
- Manikandan, G.; Rajalakshmi, A.; Suganya, P.; Murugalakshmi Kumari, R.; Katerere, D.R. Chemical Profiling, Antimicrobial and Anti-malarial Activity of Leaf Essential Oil of Eugenia rottleriana Wt.&Arn. (Myrtaceae). Arab. J. Med. Aromat. Plants. 2022, 8, 57–76. [Google Scholar]
- Anjana, S.; Ramasubbu, R.; Manikandan, G. Chemical signatures of essential oil: An alternative tool for the identification of the species of Syzygium Gaertn. Of Tamil Nadu. Indian For. 2020, 146, 806–814. [Google Scholar]
- Vasu, K.; Goud, J.V.; Suryam, A.; Charya, M.S. Biomolecular and phytochemical analyses of three aquatic angiosperms. Afr. J. Microbiol. Res. 2009, 3, 418–421. [Google Scholar]
- Ameen, O.A.; Hamid, A.A.; Yusuf, Q.; Njoku, O.G.; Oseni, T.O.; Jamiu, W. Quantitative and qualitative assessment of phytochemicals in methanolic extracts of hurricane weed(Phyllanthus amarus Schumach.&Thonn) Plant. J. Appl. Sci. Environ. Manag. 2021, 25, 159–165. [Google Scholar] [CrossRef]
- Lachance, P.A.; Nakat, Z.; Jeong, W.S. Antioxidants: An integrative approach. Nutrition 2001, 17, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.J.; Hsien-Jung, C.; Chun-Der, L.I.; Yaw-Huei, L.I. Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatic Forsk.) constituents. Bot. Bull. Acad. Sin. 2005, 46, 99–106. [Google Scholar]
- Joshi, T.; Mandal, S.K.; Puri, S.; Asati, V.; Deepa, P.R.; Sharma, P.K. Investigating the antioxidant activity enhancer effect of Cyamopsis tetragonoloba seed extract on phenolic phytochemicals. Front. Plant Sci. 2023, 14, 1131173. [Google Scholar] [CrossRef]
- Namiki, M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. Nutr. 2007, 47, 651–673. [Google Scholar] [CrossRef]
- Astalakshmi, N.; Gokul, T.; Gowri Sankar, K.B.; Nandhini, M. A Review on the Genus: Sesamum. J. Pharm. Negat. Results 2022, 31, 221–226. [Google Scholar]
- Astalakshmi, N.; Gokul, T.; Gowri Sankar, K.B.; Nandhini, M.; Hari Hara Sudhan, M.R.; Kumar, M.S. In Vitro Cytotoxicity Studies on Hydro-Alcoholic Aerial Parts Extract of Sesamum prostratum Retz. J. Surv. Fish. Sci. 2023, 10, 1260–1267. [Google Scholar]
- Save, S.A.; Lokhande, R.S.; Chowdhary, A.S. Determination of 1,2-Benzenedicarboxylic acid, bis (2-ethylhexyl)ester from the twigs of Thevetia peruviana as aColwell Biomarker. J. Innov. Pharm. Biol. Sci. 2015, 2, 349–362. [Google Scholar]
- Shutter, M.C.; Akhondi, H. Tetracycline; StatPearls Publishing, National Library of Medicine: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549905/ (accessed on 5 June 2023).
- Wang, C.; Su, X.; Sun, W.; Zhou, S.; Zheng, J.; Zhang, M.; Sun, M.; Xue, J.; Liu, X.; Xing, J.; et al. Efficient production of succinic acid from herbal extraction residue hydrolysate. Bioresour. Technol. 2018, 265, 443–449. [Google Scholar] [CrossRef]
- Muthaya, C.A.; Evanjaline, R.M.; Arunkumar, P. Determination of in-vitro antioxidant activity of Sesamum prostratum Ritz (Pedaliaceae) Whole Plant. World J. Pharm. Pharm. Sci. 2018, 6, 1132–1146. [Google Scholar]
- Yıldırım, A.; Mavi, A.; Oktay, M.; Kara, A.A.; Algur, Ö.F.; Bilaloǧlu, V. Comparison of antioxidant and antimicrobial activities of Tilia (Tilia arentea Desf.ex.DC) sage (Salvia triloba L.) and blacktea (Camellia sinensis L.) extract. J. Agric. Food Chem. 2000, 48, 5030–5034. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.D.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M.J. Characterization of the antioxidant properties of deodourisation aqueous extracts from selected Lamiaceae. Food Chem. 2003, 83, 255–256. [Google Scholar] [CrossRef]
- Duh, P.D.; Tu, Y.Y.; Yen, G.C. Antioxidant activity of water extract of harngJyur (Chrysanthemum morifolium Rarnat). LWT-Food Sci. Technol. 1999, 32, 269–277. [Google Scholar] [CrossRef]
- Manikandan, G.; Ramasubbu, R. Antimicrobial activity of leaf extracts of Memecylon heyneanum Benth. Ex Wight & Arn.: An endemic tree species of Southern Western Ghats. Adv. Zool. Bot. 2020, 8, 258–268. [Google Scholar] [CrossRef]
- Packiyalakshmi, D.; Athilakshmi, P.; Gayathri, S.; Karthiga, P.; Thiri Bhuvaneswari, R.; Manikandan, G. Antimicrobial potential of different solvents leaf extract of Millettia peguensis against selected pathogens. Pharma Innov. J. 2017, 6, 119–124. [Google Scholar]
- Manikandan, G.; Divya, C.; Ramasubbu, R. Antimicrobial Properties of Various Leaf Extracts of Syzygium densiflorum Wall. Ex Wight & Arn.: An Endemic and Endangered Tree Species of Western Ghats. In A Text Book of Social Relationship Between Microbes, Human and Environment; Prakash, S., Manikandan, G., Shanmugam, S.A., Eds.; Sri Kaliswari College Publishing: Sivakasi, India, 2020; pp. 149–164. [Google Scholar]
- Manikandan, G.; Ramasubbu, R. GC/MS Analysis of Phytoconstituents and Antimicrobial Evaluation Leaf Extract of Garcinia imberti Bourd. Arab. J. Med. Aromat. Plants 2023, 9, 134–159. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, A. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Lingamallu, J.R.; Kunnumpurath, K.S. Antioxidant activities of flavidin in different in-vitro model system. Bioorg. Med. Chem. 2004, 12, 5141–5146. [Google Scholar] [CrossRef]
S. No. | Compound Name | MF | MW | RT | Area % | SI |
---|---|---|---|---|---|---|
1. | 1-(2-Hydroxyethoxy)tridecane | C17H36O2 | 244 | 18.238 | 2.33 | 90 |
2. | Butane, 2,2-dimethyl- | C6H14 | 86 | 16.128 | 4.66 | 89 |
3. | 1,2-Benzenedicarboxylic acid | C24H38O4 | 390 | 34.883 | 51.44 | 89 |
4. | Stearic Acid | C18H36O2 | 284 | 26.627 | 3.81 | 82 |
5. | 16-Hydroxyhexadecanoic acid | C16H32O3 | 272 | 34.498 | 1.68 | 69 |
6. | 1,7-Diazabicyclo[2.2.0]heptane | C5H10N2 | 98 | 38.355 | 3.33 | 63 |
7. | 2-Oxo-6-(piperidine-1-sulfonyl)-benzooxazole-3- carboxylic acid cyclohexylamide | C19H25N3O5S | 407 | 39.935 | 0.63 | 60 |
8. | Hexanedioic acid, bis(2-ethoxyethyl) ester | C14H26O6 | 290 | 38.299 | 3.02 | 58 |
9. | Amyl nitrite | C5H11NO2 | 117 | 38.675 | 0.53 | 58 |
10. | 3-Methylbutyl hexadecanoate | C21H42O2 | 326 | 38.755 | 1.06 | 55 |
11. | 3,7-Bis[(trimethylsilyl)oxy]cholest-5-ene, (3.beta.,7.beta.)- | C33H62O2Si2 | 546 | 39.68 | 0.85 | 52 |
S. No. | Compound Name | MF | MW | RT | Area % | SI |
---|---|---|---|---|---|---|
1. | 2,4-Dipropyl-5,5-dimethyl-1,3-dioxane | C12H24O2 | 200 | 30.123 | 0.58 | 94 |
2. | Octadecane | C18H38 | 254 | 16.128 | 19.93 | 93 |
3. | Hexane, 3,3-dimethyl- | C8H18 | 114 | 22.132 | 3.85 | 89 |
4. | 1-(2-Hydroxyethoxy)tridecane | C15H32O2 | 244 | 23.935 | 1.7 | 89 |
5. | 2-[2-(Benzoyloxy)ethoxy]ethyl benzoate | C18H18O5 | 314 | 34.167 | 3.01 | 89 |
6. | 1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | C24H38O4 | 390 | 37.5 | 7.48 | 89 |
7. | Cyclododecanamine | C12H25N | 183 | 38.131 | 3.19 | 54 |
8. | Octadecanoicacid, 2-hydroxy-1,3-propanediyl ester | C39H76O5 | 624 | 37.88 | 1.28 | 47 |
S. No. | Compound Name | MF | MW | RT | Area % | SI |
---|---|---|---|---|---|---|
1. | 1,4-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | C24H38O4 | 390 | 37.501 | 25.7 | 91 |
2. | 1,2-benzenedicarboxylic acid | C24H38O4 | 390 | 34.881 | 20.09 | 88 |
3. | Nitrocyclopentane | C5H9NO2 | 115 | 24.56 | 0.99 | 83 |
4. | Decanoic acid | C10H20O2 | 172 | 26.627 | 2.63 | 83 |
5. | Hexane, 3-ethyl-4-methyl- | C9H20 | 128 | 39.587 | 4.23 | 77 |
6. | 2-Tetradecynal, 4-hydroxy- | C14H24O2 | 224 | 29.402 | 2.52 | 76 |
7. | Cyclohexanone, 4-(1,1-dimethylpropyl)- | C11H20O | 168 | 34.634 | 1.67 | 75 |
8. | Tetrahydropalmatine | C21H25NO4 | 355 | 37.585 | 1.44 | 56 |
9. | Furan, tetrahydro-2,5-dimethyl- | C6H12O | 100 | 37.662 | 2.73 | 54 |
10. | Succinic acid, 2,3-dichlorophenyl 2,2,3,4,4,4-hexafluorobutyl Ester | C14H10Cl2O4 | 426 | 38.174 | 0.91 | 50 |
11. | 1,2-Dimethoxy dodecane | C14H30O2 | 230 | 38.13 | 1.55 | 49 |
12. | (3S)-3-[(1′R)-1′-hydroxy-3′-methylbutyl]-8-Methoxy-3,4-dihydroisocumarin | C15H20O4 | 264 | 37.97 | 3.2 | 48 |
13. | Ethyl 5-(1-piperidinylacetyl)-10,11-dihydro-5H- dibenzo[B,F]azepin-3-ylcarbamate | C24H29N3O3 | 407 | 38.045 | 2.49 | 47 |
Free Radical Scavenging Assay | IC50 Value | ||
---|---|---|---|
Ethanol Extract | Ethyl Acetate Extract | Acetone Extract | |
ABTS | 67.5 μg/mL | 65.5 μg/mL | 82.2 μg/mL |
DPPH | 80.8 μg/mL | 102.8 μg/mL | 88.3 μg/mL |
H2O2 | 58.9 μg/mL | 42.5 μg/mL | 35.1 μg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanaraj, F.I.; Kalimuthu, J.K.; Balamurugan, P.S.; Subramani, P.; Katerere, D.R.; Gurusamy, M. Investigating the Phytochemical Profile and Antioxidant Activity of Different Solvent Extracts of Sesamum prostratum Retz. Plants 2025, 14, 519. https://doi.org/10.3390/plants14040519
Dhanaraj FI, Kalimuthu JK, Balamurugan PS, Subramani P, Katerere DR, Gurusamy M. Investigating the Phytochemical Profile and Antioxidant Activity of Different Solvent Extracts of Sesamum prostratum Retz. Plants. 2025; 14(4):519. https://doi.org/10.3390/plants14040519
Chicago/Turabian StyleDhanaraj, Felix Irudhyaraj, Jagadheesh Kumar Kalimuthu, Pavan Santhosh Balamurugan, Punitha Subramani, David R. Katerere, and Manikandan Gurusamy. 2025. "Investigating the Phytochemical Profile and Antioxidant Activity of Different Solvent Extracts of Sesamum prostratum Retz." Plants 14, no. 4: 519. https://doi.org/10.3390/plants14040519
APA StyleDhanaraj, F. I., Kalimuthu, J. K., Balamurugan, P. S., Subramani, P., Katerere, D. R., & Gurusamy, M. (2025). Investigating the Phytochemical Profile and Antioxidant Activity of Different Solvent Extracts of Sesamum prostratum Retz. Plants, 14(4), 519. https://doi.org/10.3390/plants14040519