Anatomical Structure and Phytochemical Composition of a Rare Species Fraxinus sogdiana Bunge (Oleaceae) Growing in Different Soils in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.1.1. Soils of the Temirlik River Valley
2.1.2. Section of the Middle Reaches of the Boralday River
2.2. Methods
2.2.1. Anatomical Analysis
2.2.2. Determination of Organic Compounds in Plant Extracts
2.2.3. Soil Analysis
2.2.4. Plant Species Identification
3. Results
3.1. Comparative Analysis of the Anatomical–Morphological Structure of the Leaf of F. sogdiana
3.2. Comparative Analysis of the Anatomo-Morphological Structure of the Stem of F. sogdiana
3.3. Comparative Analysis of the Anatomo-Morphological Structure of F. sogdiana Roots
- (1)
- The main feature identified in the anatomical structure of leaves of F. sogdiana from the area of the Temirlik River is the presence of large and frequent special motor cells in the upper and lower epidermis.
- (2)
- In the Temirlik River area, the leaf mesophyll is looser, consisting of two rows of columnar mesophyll cells and two rows of spongy mesophyll cells with large intercellular spaces filled with air. The conductive bundles are smaller and have a well-developed sclerenchyma surrounding them; the conductive bundle of endoderm consisting of alternating large and small round-shaped cells is clearly visible.
- (1)
- Primary and secondary rays alternate among the cells of the central cylinder in plants from the Boralday region;
- (2)
- The peripheral part of the pith is very well delineated, representing a perimedullary zone composed of smaller and thicker-walled cells;
- (3)
- The pith is represented by a pronounced small-cell-hoarding parenchyma.
3.4. Organic Compounds in Plant Extracts
Soil Conditions in the Valleys of the Temirlik and Boralday Rivers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | Anatomical features |
ue | upper epidermis |
pa | palisade parenchyma |
me | mesophyll |
sp | sponge parenchyma |
le | lower epidermis |
tr | trachea |
th | tracheid |
x | xylem |
ph | phloem |
co | cortex |
pe | periderm |
tc | trichom |
pi | pith |
sc | sclerenchyma |
Appendix A
№ | Retention Time, min | Compounds | Probability of Identification, % | Percentage Content, % |
---|---|---|---|---|
1 | 5.46 | 2-Cyclopenten-1-one | 81 | 0.11 |
2 | 6.18 | 2-Cyclopenten-1-one, 3,4-dimethyl- | 87 | 0.15 |
3 | 6.47 | 2-Cyclopenten-1-one, 2-hydroxy- | 89 | 0.59 |
4 | 6.78 | Benzaldehyde | 96 | 1.97 |
5 | 6.95 | Butanoic acid, 4-hydroxy- | 93 | 0.21 |
6 | 7.32 | Glycerin | 78 | 1.30 |
7 | 7.63 | 2H-Pyran-2-one | 77 | 0.38 |
8 | 7.84 | Benzyl alcohol | 92 | 0.42 |
9 | 8.11 | 2-Hydroxy-gamma-butyrolactone | 73 | 0.79 |
10 | 8.36 | Benzaldehyde, 3-methyl- | 80 | 0.15 |
11 | 8.57 | Benzoic acid, methyl ester | 86 | 0.52 |
12 | 9.14 | Phenylethyl Alcohol | 83 | 0.27 |
13 | 9.51 | Maltol | 81 | 0.50 |
14 | 9.69 | Phenol, 4-ethyl- | 70 | 0.35 |
15 | 9.95 | Cyclopropyl carbinol | 78 | 0.32 |
16 | 10.63 | Catechol | 61 | 0.37 |
17 | 10.85 | 2(3H)-Furanone, 5-acetyldihydro- | 64 | 0.22 |
18 | 10.98 | Benzofuran, 2,3-dihydro- | 84 | 0.34 |
19 | 11.13 | 2-Propenal, 3-(2-furanyl)- | 83 | 1.07 |
20 | 11.72 | Phenol, 3-(diethylamino)- | 76 | 0.38 |
21 | 11.87 | 3,6-Dianhydro-α-d-glucopyranose | 80 | 0.38 |
22 | 12.26 | Acetic acid, 2-oxa-7-thia-tricyclo [4.3.1.0(3,8)]dec-10-yl ester | 61 | 0.13 |
23 | 12.88 | 2-Methoxy-4-vinylphenol | 81 | 0.50 |
24 | 13.41 | 2H-Pyran-5-carboxylic acid, 2-oxo-, methyl ester | 82 | 1.03 |
25 | 13.79 | 3-Pyridinecarboxylic acid, 5-ethenyl-, methyl ester | 77 | 0.17 |
26 | 14.80 | Benzoic acid, 4-formyl-, methyl ester | 92 | 6.30 |
27 | 15.65 | 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | 74 | 0.08 |
28 | 16.75 | Benzeneethanol, 4-hydroxy- | 89 | 27.59 |
29 | 18.17 | N-Acetyltyramine | 78 | 0.28 |
30 | 18.45 | 3,4-Dihydroxyphenylacetylformic acid | 68 | 0.29 |
31 | 19.49 | Homovanillyl alcohol | 73 | 0.58 |
32 | 19.70 | 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl- | 75 | 0.19 |
33 | 20.11 | N-Acetyltyramine | 82 | 0.75 |
34 | 20.53 | Benzene, 1,1′-tetradecylidenebis- | 68 | 0.63 |
35 | 21.52 | 2-Hexadecene, 3,7,11,15-tetramethyl- | 71 | 0.17 |
36 | 21.72 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 88 | 1.57 |
37 | 21.99 | Acethydrazide, 2-(2-benzothiazolylthio)-N2-(3-fluorobenzylideno)- | 63 | 0.30 |
38 | 23.12 | 2-Pentadecanone, 6,10,14-trimethyl- | 71 | 0.37 |
39 | 23.88 | 5a,9,9-Trimethyloctahydro-2H,4H-cyclopropa[e][3]benzoxepine-2,4-dione | 66 | 0.20 |
40 | 24.39 | 2H-Pyran-2-one, 5-ethylidenetetrahydro-4-(2-hydroxyethyl)- | 73 | 1.71 |
41 | 25.15 | 5-Chlorovaleric acid, hexadecyl ester | 61 | 0.74 |
42 | 26.01 | 5,5,8a-Trimethyl-3,5,6,7,8,8a-hexahydro-2H-chromene | 70 | 0.76 |
43 | 26.18 | Deoxyqinghaosu | 65 | 0.25 |
44 | 26.30 | Hexadecanoic acid | 83 | 0.71 |
45 | 26.44 | Hexadecanoic acid, ethyl ester | 90 | 0.86 |
46 | 26.81 | Acetic acid, 2-(2,2,6-trimethyl-7-oxa-bicyclo [4.1.0]hept-1-yl)-propenyl ester | 70 | 0.62 |
47 | 27.24 | Benzoic acid, 3-formyl-4,6-dihydroxy-2,5-dimethyl-, methyl ester | 64 | 1.02 |
48 | 28.81 | Phytol | 91 | 6.70 |
49 | 29.51 | 9,12,15-Octadecatrienoic acid, methyl ester | 71 | 0.20 |
50 | 30.10 | Ethyl Oleate | 81 | 0.46 |
51 | 30.29 | Octadecanoic acid, ethyl ester | 86 | 1.80 |
52 | 30.67 | 9,12,15-Octadecatrienoic acid | 87 | 3.17 |
53 | 31.64 | Drometrizole | 86 | 0.35 |
54 | 32.73 | 17-Pentatriacontene | 67 | 0.08 |
55 | 33.77 | Methyl 19-methyl-eicosanoate | 60 | 0.08 |
56 | 34.55 | Hexanedioic acid, bis(2-ethylhexyl) ester | 75 | 0.17 |
57 | 35.82 | Tetratetracontane | 66 | 0.15 |
58 | 36.41 | γ-Sitosterol | 85 | 3.72 |
59 | 37.53 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 84 | 1.40 |
60 | 37.89 | Diisooctyl phthalate | 86 | 0.59 |
61 | 38.84 | Octacosane | 76 | 0.21 |
62 | 40.47 | Squalene | 93 | 1.40 |
63 | 40.67 | Octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 86 | 9.97 |
64 | 41.11 | 9,12,15-Octadecatrienoic acid, 2,3-dihydroxypropyl ester | 72 | 1.84 |
65 | 41.80 | Distearin | 66 | 1.90 |
66 | 43.04 | Tetratriacontane | 91 | 2.99 |
67 | 45.71 | γ-Tocopherol | 89 | 0.98 |
68 | 46.24 | β-Sitosterol acetate | 70 | 0.31 |
69 | 46.47 | Hexatriacontane | 72 | 1.24 |
70 | 47.42 | Vitamin E | 84 | 1.17 |
71 | 51.92 | Stigmasterol | 63 | 0.52 |
Appendix B
№ | Retention Time, min | Compounds | Probability of Identification, % | Percentage Content, % |
---|---|---|---|---|
1 | 5.18 | Acetic acid | 84 | 2.56 |
2 | 5.47 | 2-Propanone, 1-hydroxy- | 92 | 2.20 |
3 | 5.59 | Propanoic acid, 2-hydroxy-, ethyl ester | 86 | 0.22 |
4 | 6.21 | 2-Butenal, 2-ethenyl- | 89 | 1.01 |
5 | 6.48 | 2-Cyclopenten-1-one | 81 | 0.14 |
6 | 7.25 | 2-Cyclopenten-1-one, 2-methyl- | 79 | 0.10 |
7 | 7.29 | Ethanone, 1-(2-furanyl)- | 84 | 0.15 |
8 | 7.45 | 2-Cyclopenten-1-one, 3,4-dimethyl- | 67 | 0.18 |
9 | 7.84 | 1,2-Cyclopentanedione | 87 | 0.49 |
10 | 8.19 | Benzaldehyde | 90 | 1.18 |
11 | 8.29 | Mesitylene | 68 | 0.27 |
12 | 8.44 | Butanoic acid, 4-hydroxy- | 96 | 0.49 |
13 | 8.66 | 2-Cyclopenten-1-one, 3,4-dimethyl- | 78 | 0.25 |
14 | 8.85 | 1,2,3-Butanetriol | 79 | 1.71 |
15 | 9.01 | 1,2,4-Butanetriol | 64 | 0.55 |
16 | 9.26 | 2H-Pyran-2-one | 60 | 1.12 |
17 | 9.61 | 2-Cyclopenten-1-one, 2,3-dimethyl- | 79 | 0.24 |
18 | 9.67 | 2-Cyclopenten-1-one, 2,3,4-trimethyl- | 78 | 0.27 |
19 | 9.84 | 2-Hydroxy-gamma-butyrolactone | 76 | 1.03 |
20 | 11.01 | Phenylethyl Alcohol | 85 | 0.44 |
21 | 11.42 | Maltol | 68 | 0.24 |
22 | 11.91 | Cyclopropyl carbinol | 69 | 0.30 |
23 | 13.05 | Benzofuran, 2,3-dihydro- | 83 | 1.07 |
24 | 13.19 | 2-Propenal, 3-(2-furanyl)- | 85 | 1.40 |
25 | 13.71 | Phenol, 3-(diethylamino)- | 72 | 0.52 |
26 | 13.98 | 3,6-Dianhydro-α-d-glucopyranose | 81 | 0.35 |
27 | 15.04 | 2-Methoxy-4-vinylphenol | 85 | 0.38 |
28 | 15.58 | 2H-Pyran-5-carboxylic acid, 2-oxo-, methyl ester | 89 | 0.89 |
29 | 15.97 | 3-Pyridinecarboxylic acid, 5-ethenyl-, methyl ester | 80 | 0.30 |
30 | 16.99 | Benzoic acid, 4-formyl-, methyl ester | 91 | 7.95 |
31 | 18.96 | Benzeneethanol, 4-hydroxy- | 89 | 35.54 |
32 | 19.89 | 2(5H)-Furanone, 4-methyl-3-(2-methyl-2-propenyl)- | 75 | 0.45 |
33 | 20.39 | Tyramine, N-formyl- | 70 | 0.21 |
34 | 20.67 | Benzenepropanoic acid, 3,4-dihydroxy-, methyl ester | 63 | 0.27 |
35 | 22.35 | N-Acetyltyramine | 82 | 0.54 |
36 | 22.77 | Benzene, 1,1′-tetradecylidenebis- | 70 | 0.72 |
37 | 23.97 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 88 | 1.39 |
38 | 25.38 | 2-Pentadecanone, 6,10,14-trimethyl- | 78 | 0.27 |
39 | 28.43 | Deoxyqinghaosu | 63 | 0.28 |
40 | 28.56 | Hexadecanoic acid | 84 | 1.06 |
41 | 28.70 | Hexadecanoic acid, ethyl ester | 89 | 1.14 |
42 | 29.07 | Acetic acid, 2-(2,2,6-trimethyl-7-oxa-bicyclo [4.1.0] hept-1-yl)-propenyl ester | 70 | 1.02 |
43 | 29.49 | 2-Propenoic acid, 3-(3-hydroxy-2,6,6-trimethyl-1-cyclohexen-1-yl)-, methyl ester | 66 | 0.64 |
44 | 30.77 | Dibutyl phthalate | 87 | 0.34 |
45 | 31.08 | Phytol | 89 | 14.20 |
46 | 31.78 | 9,12,15-Octadecatrienoic acid, methyl ester | 76 | 0.33 |
47 | 32.36 | Ethyl Oleate | 85 | 0.70 |
48 | 32.54 | Linoleic acid ethyl ester | 70 | 0.85 |
49 | 32.92 | Ethyl 9,12,15-octadecatrienoate | 88 | 3.11 |
50 | 33.90 | Drometrizole | 86 | 0.33 |
51 | 36.81 | Hexanedioic acid, bis(2-ethylhexyl) ester | 66 | 0.14 |
52 | 38.59 | γ-Sitosterol | 76 | 2.74 |
53 | 39.78 | Glycerol 1-palmitate | 72 | 0.71 |
54 | 40.15 | Diisooctyl phthalate | 90 | 0.93 |
55 | 42.73 | Squalene | 88 | 0.83 |
56 | 45.28 | Tetratetracontane | 83 | 0.81 |
57 | 47.97 | γ-Tocopherol | 89 | 1.04 |
58 | 48.50 | Stigmast-5-en-3-ol, oleate | 69 | 0.41 |
59 | 49.67 | dl-α-Tocopherol | 82 | 0.48 |
60 | 54.18 | Stigmasterol | 65 | 0.46 |
Appendix C
№ | Retention Time, min | Compounds | Probability of Identification, % | Percentage Content, % |
---|---|---|---|---|
1 | 5.33 | Furfural | 86 | 0.22 |
2 | 5.45 | 2-Cyclopenten-1-one | 82 | 0.22 |
3 | 6.01 | Pentanoic acid | 61 | 0.36 |
4 | 6.04 | Ethanone, 1-(2-furanyl)- | 87 | 0.32 |
5 | 6.38 | 2-Cyclopenten-1-one, 2-hydroxy- | 68 | 0.44 |
6 | 6.71 | Benzaldehyde | 84 | 0.37 |
7 | 6.78 | Mesitylene | 81 | 0.51 |
8 | 6.82 | Butanoic acid, 4-hydroxy- | 75 | 0.35 |
9 | 7.03 | 2-Cyclopenten-1-one, 3,4-dimethyl- | 77 | 0.92 |
10 | 7.12 | 5-Methylene-1,3a,4,5,6,6a-hexahydropentalen-1-ol | 60 | 0.33 |
11 | 7.53 | p-Cresol | 72 | 0.33 |
12 | 7.61 | Benzyl alcohol | 67 | 0.93 |
13 | 7.71 | 2-Cyclopenten-1-one, 2,3-dimethyl- | 71 | 0.72 |
14 | 7.75 | 2-Cyclopenten-1-one, 2,3,4-trimethyl- | 84 | 1.04 |
15 | 8.30 | 2-Cyclopenten-1-one, 3,4,5-trimethyl- | 72 | 0.49 |
16 | 8.36 | 2-(2-Isopropenyl-5-methyl-cyclopentyl)-acetamide | 69 | 0.60 |
17 | 8.70 | Phenylethyl Alcohol | 87 | 1.97 |
18 | 8.86 | Phenol, 2,5-dimethyl- | 60 | 0.95 |
19 | 9.64 | p-Propargyloxytoluene | 61 | 0.86 |
20 | 10.15 | Benzofuran, 2,3-dihydro- | 84 | 1.53 |
21 | 10.67 | Phenol, 2,4,5-trimethyl- | 62 | 1.09 |
22 | 10.82 | 1,4:3,6-Dianhydro-α-d-glucopyranose | 73 | 1.03 |
23 | 11.08 | 5-Hydroxymethylfurfural | 87 | 3.34 |
24 | 11.62 | 2-Methoxy-4-vinylphenol | 62 | 0.80 |
25 | 11.79 | 1-Naphthalenol, 4-methyl- | 67 | 0.80 |
26 | 13.38 | Benzoic acid, 4-formyl-, methyl ester | 81 | 0.46 |
27 | 14.92 | Benzeneethanol, 4-hydroxy- | 73 | 1.01 |
28 | 18.49 | Acetic acid, chloro-, octadecyl ester | 72 | 0.97 |
29 | 19.57 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 88 | 2.02 |
30 | 20.78 | 2-Ethylhexyl salicylate | 79 | 0.68 |
31 | 20.90 | 2-Pentadecanone, 6,10,14-trimethyl- | 68 | 0.64 |
32 | 22.27 | Benzoic acid, heptyl ester | 65 | 0.61 |
33 | 22.77 | Benzoic acid, pentyl ester | 66 | 0.62 |
34 | 24.08 | Hexadecanoic acid, ethyl ester | 86 | 1.90 |
35 | 24.45 | Ether, (2-ethyl-1-cyclodecen-1-yl)methyl methyl | 61 | 0.47 |
36 | 26.13 | Phthalic acid, butyl isohexyl ester | 73 | 0.42 |
37 | 26.40 | Phytol, acetate | 90 | 12.45 |
38 | 26.75 | 1-Tricosanol | 70 | 0.43 |
39 | 27.69 | Ethyl Oleate | 65 | 1.76 |
40 | 27.87 | Octadecanoic acid, ethyl ester | 68 | 1.55 |
41 | 28.24 | Ethyl 9,12,15-octadecatrienoate | 88 | 2.11 |
42 | 29.23 | Drometrizole | 79 | 0.88 |
43 | 31.78 | Hexacosane | 70 | 0.41 |
44 | 31.95 | Hexanedioic acid, bis(2-ethylhexyl) ester | 89 | 3.68 |
45 | 32.52 | 2-Propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester | 90 | 2.11 |
46 | 34.91 | Octacosane | 77 | 0.65 |
47 | 35.44 | Diisooctyl phthalate | 83 | 0.67 |
48 | 36.64 | Tetracosanoic acid, methyl ester | 76 | 1.18 |
49 | 38.03 | Squalene | 95 | 10.34 |
50 | 39.48 | Hexacosanoic acid, methyl ester | 68 | 1.10 |
51 | 40.52 | Tetratriacontane | 91 | 19.76 |
52 | 43.26 | γ-Tocopherol | 88 | 2.35 |
53 | 43.93 | Tetratetracontane | 86 | 6.42 |
54 | 44.96 | Vitamin E | 82 | 1.84 |
References
- Plants of the World Online. Available online: https://powo.science.kew.org/results?f=species_f&q=Fraxinus (accessed on 24 February 2023).
- Barstow, M.; Oldfield, S.; Westwood, M.; Jerome, D.; Beech, E.; Rivers, M. The Red List of Fraxinus; Botanic Gardens Conservation International: San Marino, CA, USA, 2018; ISBN 9781905164677. [Google Scholar]
- Pavlov, N.V. Flora of Kazakhstan. In Alma-Ata: Academy of Sciences of the Kazakh SSR; M.I.T. Press: Cambridge, MA, USA, 1964; Volume 7, pp. 91–94. [Google Scholar]
- Wang, R.; Zhang, J.; Zhang, D.; Dong, L.; Qin, G.; Wang, S. Impacts of climate change on forest growth in saline-alkali land of yellow river delta, North China. Dendrochronologia 2022, 74, 125975. [Google Scholar] [CrossRef]
- Helluy, M.; Gavinet, J.; Prévosto, B.; Fernandez, C. Influence of light, water stress and shrub cover on sapling survival and height growth: The case of A. unedo, F. ornus and S. domestica under Mediterranean climate. Eur. J. For. Res. 2021, 140, 635–647. [Google Scholar] [CrossRef]
- Allahnouri, M.; Aghbash, F.G.; Pazhouhan, I. Traffic effects on leaf macro- and micro-morphological traits. Folia Oecol. 2018, 45, 92–101. [Google Scholar] [CrossRef]
- Dineva, S.B. Comparative studies of the leaf morphology and structure of white ash Fraxinus americana L. and London plane tree Platanus acerifolia Willd growing in polluted area. Dendrobiology 2004, 52, 3–8. [Google Scholar]
- Jia, S.; McLaughlin, N.B.; Gu, J.; Li, X.; Wang, Z. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica. Tree Physiol. 2013, 33, 579–589. [Google Scholar] [CrossRef]
- Alameda, D.; Villar, R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ. Exp. Bot. 2012, 79, 49–57. [Google Scholar] [CrossRef]
- Alves, E.S.; Angyalossy-Alfonso, V. Ecological trends in the wood anatomy of some Brazilian species. 2. Axial parenchyma, rays and fibres. Iawa J. 2002, 23, 391–418. [Google Scholar] [CrossRef]
- Kitin, P.B.; Fujii, T.; Abe, H.; Funada, R. Anatomy of the vessel network within and between tree rings of Fraxinus lanuginosa (Oleaceae). Am. J. Bot. 2004, 91, 779–788. [Google Scholar] [CrossRef]
- Bak Erşen, F.; Merev, N. Ecological wood anatomy of Fraxinus L. in Turkey (Oleaceae): Intraspecific and interspecific variation. Turk. J. Bot. 2016, 40, 356–372. [Google Scholar] [CrossRef]
- Long, H.; Yao, S.; Tian, W.; Hou, J.; Lei, M.; Zhang, Z.; Wu, W. A simple and effective method for identification of Fraxini Cortex from different sources by multi-mode fingerprint combined with chemometrics. J. Sep. Sci. 2022, 45, 788–803. [Google Scholar] [CrossRef]
- Lee, M.; Yang, C.; Park, S.; Song, G.; Lim, W. Fraxetin induces cell death in colon cancer cells via mitochondria dysfunction and enhances therapeutic effects in 5-fluorouracil resistant cells. J. Cell. Biochem. 2022, 123, 469–480. [Google Scholar] [CrossRef]
- Idrees, M.; Khan, S.; Memon, N.H.; Zhang, Z. Effect of the phytochemical agents against the SARS-CoV and some of them selected for application to COVID-19: A mini-review. Curr. Pharm. Biotechnol. 2021, 22, 444–450. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, A.; Wu, J.; Yuan, F.; Guan, D.; Jin, C.; Zhang, Y.; Gong, C. Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Sci. Rep. 2020, 10, 10038. [Google Scholar] [CrossRef]
- Filiptsova, G.G.; Smolich, I.I. Biochemistry of Plants: Course of Lectures; BSU: Minsk, Belarus, 2004; 136p. (In Russian) [Google Scholar]
- Gerasimov, I.P. Natural Conditions and Natural Resources of the USSR. Kazakhstan; Nauka: Moscow, Russia, 1969; 482p. [Google Scholar]
- Kerimbay, B.S.; Janaleyeva, K.M.; Kerimbay, N.N. Tourist and recreational potential of landscapes of the specially protected natural area of Sharyn of the Republic of Kazakhstan. Geo J. Tour. Geosites 2020, 28, 67–79. [Google Scholar] [CrossRef]
- Soil-Geographical Zoning of the USSR (in Connection with the Agricultural Use of Land); AN SSSR: Moscow, Russia, 1962; 422p.
- Rachkovskaya, E.I.; Safronova, I.N. The new map of botanical-geographic subdivision of Kazakhstan and Middle Asia within the limits of the desert region. Geobot. Mapp. 1992, 33–49. [Google Scholar] [CrossRef]
- Akzhigitova, N.I.; Brekle, Z.V.; Volkova, E.A.; Winkler, G.; Vuhrer, B.; Kurochkina, L.Y.; Makulbekova, G.B.; Ogar, J.Y.; Rachkovskaya, E.I.; Safronova, I.N.; et al. Botanical Geography of Kazakhstan and Central Asia (within the Desert Region); Boston-Spectrum: St. Petersburg, Russia, 2003; 424p. [Google Scholar]
- Sokolov, S.I.; Assing, I.A.; Kurmangaliyev, A.B.; Serpikov, S.K. Pochvy Alma-Atinskoi Oblasti [Soils of Alma-Ata Region]; Science Kazakh SSR: Alma-Ata, Kazakhstan, 1962; Volume 4, 424p. [Google Scholar]
- Zhikhareva, G.A.; Kurmangaliyev, A.B.; Sokolov, A.A. Pochvy Chimkentskoy Oblasti [Soils of Chimkent Region]; Science Kazakh SSR: Alma-Ata, Kazakhstan, 1969; Volume 12, 409p. [Google Scholar]
- Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://www.plantsoftheworldonline.org/ (accessed on 1 February 2023).
- Prozina, M.N. Botanicheskaya Mikrotekhnika. [Botanical Microtechniques]; Vysshaya Shkola: Moscow, Russia, 1960. [Google Scholar]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill, Inc.: London, UK, 1940; 530p. [Google Scholar]
- Permyakov, A.I. Mikrotehnika; Moscow State University: Moscow, Russia, 1988; 56p, ISBN 5-211-00683-6. [Google Scholar]
- Barykina, R.P.; Veselova, T.D.; Devyatov, A.G. Handbook of Botanical Microtechnology (Basics and Methods); Publishing House Moscow State University: Moscow, Russia, 2004; 313p, ISBN 5-211-06103-9. [Google Scholar]
- RStudio. RStudio: Integrated Development for (2015) R; RStudio, PBC: Boston, MA, USA, 2015; Available online: http://www.rstudio.com/ (accessed on 24 February 2023).
- Bobkov, Y.U.G.; Babayan, E.A.; Macknowski, M.D.; Oboymakova, A.N.; Bulyaev, V.M.; Gus’kova, L.S.; Lepakhin, V.K.; Lyubimov, B.I.; Natradze, A.G.; Sokolov, S.D.; et al. The State Pharmacopoeia of the USSR, 11th ed.; Science: Moscow, Russia, 1987; Volume 1, 334p. [Google Scholar]
- Tumanova, I.V. The State Pharmacopoeia of the USSR, 11th ed.; Medicine: Moscow, Russia, 1990; Volume 1, 250p. [Google Scholar]
- Soil Survey. In Guide to Field Research and Soil Mapping; AN SSSR: Moscow, Russia; Kolos: Moscow, Russia, 1959; 340p.
- Rode, A.A. A System of Research Methods in Soil Science; Nauka: Moscow, Russia, 1971; 92p. [Google Scholar]
- Zonn, S.V. Modern Problems of Soil Genesis and Geography; Nauka: Moscow, Russia, 1983; 168p. [Google Scholar]
- Rozanov, B.G. The Soil Morphology; Academic Project: Moscow, Russia, 2004; 432p, ISBN 5-8291-0451-2. [Google Scholar]
- Yegorov, V.V.; Ivanova, Y.e.N.; Fridland, V.M. Classification and Diagnostics of Soils of the USSR; Kolos: Moscow, Russia, 1977; 223p. [Google Scholar]
- Shishov, L.L.; Tonkonogov, V.D.; Lebedeva, I.I.; Gerasimova, M.I. Classification and Diagnostics of Soils; Oikumena: Smolensk, Russia, 2004; 342p, ISBN 5-93520-044-9. [Google Scholar]
- Ostrikova, K.T. Field Determinant of Russian Soils; V.V. Dokuchaev Soil Science Institute: Moscow, Russia, 2008; 182p. [Google Scholar]
- Agrochemical Methods of Soil Research; Nauka: Moscow, Russia, 1965; 436p.
- Permitina, V.N.; Dimeeva, L.A.; Kozybaeva, F.E.; Usen, K.; Islamgulova, A.F.; Kurmantaeva, A.A.; Kaliev, B.S.; Iskakov, R.T.; Beiseeva, G.B.; Azhikina, N.Z.; et al. Edaphic conditions for the growth of rare communities of turanga (Populus pruinosa Schrenk) in the Altyn-Emel National Park. In Proceedings of the Let’s Save the Soil for Our Descendants: Materials of the Scientific-Practical Conference, Almaty, Kazakhstan, 5 December 2022; pp. 133–138. [Google Scholar]
- Vesselova, P.V.; Makhmudova, K.; Kudabayeva, G.M.; Osmonali, B.; lMikhalev, V. Current growth conditions of Populus diversifolia Schrenk and Populus pruinosa Schrenk in the Syr-Darya valley. Online J. Biol. Sci. 2022, 22, 425–438. [Google Scholar] [CrossRef]
- Pavlov, N.V. Flora of Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1956–1966; Volumes 1–9. [Google Scholar]
- Baytenov, M.S. Illustrated Guide for Identification of the Plants of Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1969–1972; Volumes 1–2. [Google Scholar]
- Islam, M.T.; Ayatollahi, S.A.; Zihad, S.N.K.; Sifat, N.; Khan, M.R.; Paul, A.; Sharifi-Rad, J. Phytol anti-inflammatory activity: Pre-clinical assessment and possible mechanism of action elucidation. Cell. Mol. Biol. 2020, 66, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Gurupadayya, B.M.; Choezom, L.; Vikram, P.R. Determination of phytocomponents and validation of squalene in ethanolic extract of Clerodendrum serratum Linn roots—Using gas chromatography-mass spectroscopy and GC-FID technique. J. Anal. Sci. Technol. 2021, 12, 31. [Google Scholar] [CrossRef]
- Indrayanto, G.; Mugihardjo, A.S.; Soeharjono, A.R.; Tanudjojo, W.; Susanti, S.; Yuwono, M.; Ebel, S. Benzoic acid. In Analytical Profiles of Drug Substances and Excipients; Academic Press: Cambridge, MA, USA, 1999; Volume 26, pp. 1–46. [Google Scholar] [CrossRef]
- Al-Gara, N.I.; Abu-Serag, N.A.; Shaheed, K.A.A.; Al Bahadly, Z.K. Analysis of bioactive phytochemical compound of (Cyperus alternifolius L.) by using gas chromatography–mass spectrometry. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 571, p. 012047. [Google Scholar] [CrossRef]
- Manilal, A.; Tsalla, T.; Zerdo, Z.; Ameya, G.; Merdekios, B.; John, S.E. Evaluating the antibacterial and anticandidal potency of mangrove, Avicennia marina. Asian Pac. J. Trop. Dis. 2016, 6, 136–140. [Google Scholar] [CrossRef]
- Sirikhansaeng, P.; Tanee, T.; Sudmoon, R.; Chaveerach, A. Major phytochemical as γ-sitosterol disclosing and toxicity testing in Lagerstroemia species. Evid.-Based Complement. Altern. Med. 2017, 2017, 7209851. [Google Scholar] [CrossRef]
- Pu, Z.H.; Zhang, Y.Q.; Yin, Z.Q.; Jiao, X.U.; Jia, R.Y.; Yang, L.U.; Fan, Y. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3, 4-diyl ester from neem oil. Agric. Sci. China 2010, 9, 1236–1240. [Google Scholar] [CrossRef]
- Ma, J.; Xu, R.R.; Lu, Y.; Ren, D.F.; Lu, J. Composition, antimicrobial and antioxidant activity of supercritical fluid extract of Elsholtzia ciliata. J. Essent. Oil Bear. Plants 2018, 21, 556–562. [Google Scholar] [CrossRef]
- Guerrero, R.V.; Vargas, R.A.; Petricevich, V.L. Chemical compounds and biological activity of an extract from Bougainvillea x buttiana (var. rose) holttum and standl. Int. J. Pharm. Pharm. Sci. 2017, 9, 42–46. [Google Scholar] [CrossRef]
- Rhetso, T.; Shubharani, R.; Roopa, M.S.; Sivaram, V. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don. Future J. Pharm. Sci. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Zheng, Q.Y.; Zhang, G.S.; Zhao, B.Q.; Wang, X.C. Xylem anatomical characteristics of Fraxinus mandshurica and relationship with climate in different slope positions. J. Appl. Ecol. 2021, 32, 3428–3436. [Google Scholar] [CrossRef]
- Zhu, K.; Yuan, F.; Wang, A.; Yang, H.; Guan, D.; Jin, C.; Zhang, H.; Zhang, Y.; Wu, J. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains. Plant Physiol. Biochem. 2019, 144, 22–34. [Google Scholar] [CrossRef]
- Merkle, S.A.; Koch, J.L.; Tull, A.R.; Dassow, J.E.; Carey, D.W.; Barnes, B.F.; Gandhi, K.J. Application of somatic embryogenesis for development of emerald ash borer-resistant white ash and green ash varietals. New For. 2022, 17, 1–24. [Google Scholar] [CrossRef]
- Kirby, K.J.; Bazely, D.R.; Goldberg, E.A.; Hall, J.E.; Isted, R.; Perry, S.C.; Thomas, R.C. Five decades of ground flora changes in a temperate forest: The good, the bad and the ambiguous in biodiversity terms. For. Ecol. Manag. 2022, 505, 119896. [Google Scholar] [CrossRef]
- Shad, A.A.; Ahmad, S.; Ullah, R.; AbdEl-Salam, N.M.; Fouad, H.; Rehman, N.U.; Saeed, W. Phytochemical and biological activities of four wild medicinal plants. Sci. World J. 2014, 2014, 857363. [Google Scholar] [CrossRef]
- Egbuna, C.; Kumar, S.; Ifemeje, J.C.; Kurhekar, J.V. (Eds.) Phytochemistry: Pharmacognosy, Nanomedicine, and Contemporary Issues; CRC Press: Boca Raton, FL, USA, 2018; Volume 2, ISBN 978-0-429-42619-3. [Google Scholar]
- Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem. 2013, 1, 168–182. [Google Scholar]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Nguyen, Q.N.; Shin, H.; Kang, K.S.; Lee, S. In vitro anti-inflammatory activities and phenolic acid analysis of tree sprout extracts. Korean J. Pharmacogn. 2021, 52, 257–266. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Han, A.R.; Han, A.; Kim, H.S. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total Environ. 2021, 779, 146466. [Google Scholar] [CrossRef] [PubMed]
- Kovda, V.A. Fundamentals of the Doctrine of Soils. General Theory of the Soil-Forming Process, 1st ed.; Nauka: Moscow, Russia, 1969; 447p. [Google Scholar]
Turkestan Region | Almaty Region | |||||||
---|---|---|---|---|---|---|---|---|
Cell Types | Mean (µm) | STD | n | Mean (µm) | STD | n | ||
Leaf | Epidermis | Width | 18.20 | 5231 | 15 | 20.77 | 7.87 | 15 |
Length | 13.24 | 3708 | 15 | 12.37 | 2.36 | 15 | ||
Mesophyll | Length | 78.53 * | 8095 | 15 | 97.63 * | 10.50 | 15 | |
Trachea | Diameter | 8.46 * | 3027 | 15 | 4.58 * | 1.67 | 15 |
Turkestan Region | Almaty Region | |||||||
---|---|---|---|---|---|---|---|---|
Cell Types | Mean (µm) | STD | n | Mean (µm) | STD | n | ||
Stem | Pith | Diameter | 45 | 14 | 15 | 37 | 8 | 15 |
Trachea | Diameter | 37 * | 9 | 15 | 19 * | 6 | 15 | |
Tracheid | Diameter | 10 * | 3 | 15 | 7 * | 1 | 15 | |
Phloem | Width | 8 * | 1 | 15 | 7 * | 2 | 15 | |
Length | 17 * | 2 | 15 | 14 * | 2 | 15 | ||
Cortex | Width | 17 | 3 | 15 | 18 | 3 | 15 | |
Length | 3 | 5 | 15 | 33 | 4 | 15 |
Fraxinus sogdiana B. Turkestan Region | Fraxinus sogdiana B. Almaty Region | |||||||
---|---|---|---|---|---|---|---|---|
Cell Types | Mean (µm) | STD | n | Mean (µm) | STD | n | ||
Root | Trachea | Diameter | 39 | 12 | 15 | 40 | 15 | 15 |
Tracheid | Diameter | 15 * | 2 | 15 | 11 * | 3 | 15 | |
Phloem | Width | 15 * | 2 | 15 | 10 * | 2 | 15 | |
Length | 22 | 4 | 15 | 19 | 5 | 15 | ||
Schlerencyma | Diameter | 15 | 3 | 15 | 15 | 4 | 15 | |
Cortex | Width | 23 | 4 | 15 | 25 | 7 | 15 | |
Length | 43 | 10 | 15 | 48 | 14 | 15 |
Fraxinus sogdiana | Fraxinus pennsylvanica | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
№ | Organic Compounds | RT, Area Percentage, (%) | Formula | Pharmacological Properties | References | |||||
Almaty Region | Turkestan Region | Turkestan Region | ||||||||
1 | Phytol | 28.81 | 6.70 (%) | 31.08 | 14.20 (%) | 26.40 | 12.45 (%) | C20H40O | Phytol is a constituent that exhibits several pharmacological effects, such as anticancer, antioxidant, and antimicrobial. | [45] |
2 | Squalene | 40.47 | 1.40 (%) | 42.73 | 0.83 (%) | 38.03 | 10.34 (%) | C30H50 | Squalene has nutritional, medicinal, and pharmaceutical health benefits, hence possessing antioxidant and cytoprotective effects. | [46] |
3 | Benzoic acid, 4-formyl-, methyl ester | 14.80 | 6.30 (%) | 16.99 | 7.95 (%) | 13.38 | 0.46 (%) | C9H8O3 | Benzoic acid possesses anti-bacterial and anti-fungal properties. At a concentration of 0.1%, benzoic acid is a moderately effective preservative providing that the pH of the formulation (medicines, cosmetics, or foods) does not exceed 5.0. As ointment, benzoic acid is used for the treatment of fungal infections. Methyl ester is an anti-inflammatory agent | [47,48] |
4 | Benzeneethanol, 4-hydroxy- | 16.75 | 27.59 (%) | 18.96 | 35.54 (%) | 14.92 | 1.01 (%) | C8H10O2 | Antibiotic and antimicrobial activity | [49] |
5 | 9,12,15-Octadecatrienoic acid | 30.67 | 3.17 (%) | 31.78 | 0.33 (%) | - | - | C18H30O2 | Antioxidant, antimicrobial (antiviral, antibacterial and antifungal) | [48] |
6 | γ-Sitosterol | 36.41 | 3.72 (%) | 38.59 | 2.74 (%) | - | - | C29H50O | γ-sitosterol, an epimer of β-sitosterol, has antihyperglycemic activity by increasing insulin secretion in response to glucose, as confirmed by immunohistochemical studies of the pancreas. | [50] |
7 | Octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 40.67 | 9.97 (%) | - | - | - | - | C21H42O4 | Antioxidant and antibacterial activity | [48,51] |
8 | Tetratriacontane | 43.04 | 2.99 (%) | - | - | 40.52 | 19.76 (%) | C34H70 | Antioxidant and antibacterial activity | [52] |
9 | Ethyl 9,12,15-octadecatrienoate | - | - | 32.92 | 3.11 (%) | 28.24 | 2.11 (%) | C20H34O2 | Anti-inflammatory activity | [53] |
10 | Tetratetracontane | 35.82 | 0.15 (%) | 45.28 | 0.81 (%) | 43.93 | 6.42 (%) | C44H90 | Antibacterial activity | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldibekova, A.; Kurmanbayeva, M.; Aksoy, A.; Permitina, V.; Dimeyeva, L.; Zverev, N. Anatomical Structure and Phytochemical Composition of a Rare Species Fraxinus sogdiana Bunge (Oleaceae) Growing in Different Soils in Kazakhstan. Diversity 2023, 15, 769. https://doi.org/10.3390/d15060769
Aldibekova A, Kurmanbayeva M, Aksoy A, Permitina V, Dimeyeva L, Zverev N. Anatomical Structure and Phytochemical Composition of a Rare Species Fraxinus sogdiana Bunge (Oleaceae) Growing in Different Soils in Kazakhstan. Diversity. 2023; 15(6):769. https://doi.org/10.3390/d15060769
Chicago/Turabian StyleAldibekova, Almagul, Meruyert Kurmanbayeva, Ahmet Aksoy, Valeria Permitina, Liliya Dimeyeva, and Nikolai Zverev. 2023. "Anatomical Structure and Phytochemical Composition of a Rare Species Fraxinus sogdiana Bunge (Oleaceae) Growing in Different Soils in Kazakhstan" Diversity 15, no. 6: 769. https://doi.org/10.3390/d15060769
APA StyleAldibekova, A., Kurmanbayeva, M., Aksoy, A., Permitina, V., Dimeyeva, L., & Zverev, N. (2023). Anatomical Structure and Phytochemical Composition of a Rare Species Fraxinus sogdiana Bunge (Oleaceae) Growing in Different Soils in Kazakhstan. Diversity, 15(6), 769. https://doi.org/10.3390/d15060769