Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,863)

Search Parameters:
Keywords = environment control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 633 KiB  
Review
Passenger Service Time at the Platform–Train Interface: A Review of Variability, Design Factors, and Crowd Management Implications Based on Laboratory Experiments
by Sebastian Seriani, Vicente Aprigliano, Vinicius Minatogawa, Alvaro Peña, Ariel Lopez and Felipe Gonzalez
Appl. Sci. 2025, 15(15), 8256; https://doi.org/10.3390/app15158256 - 24 Jul 2025
Abstract
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd [...] Read more.
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd management strategies. This review synthesizes findings from empirical and experimental research to clarify the main factors influencing PST and their implications for platform-level interventions. Key contributors to PST variability include door width, gap dimensions, crowd density, and user characteristics such as mobility impairments. Design elements—such as platform edge doors, yellow safety lines, and vertical handrails—affect flow efficiency and spatial dynamics during boarding and alighting. Advanced tracking and simulation tools (e.g., PeTrack and YOLO-based systems) are identified as essential for evaluating pedestrian behavior and supporting Level of Service (LOS) analysis. To complement traditional LOS metrics, the paper introduces Level of Interaction (LOI) and a multidimensional LOS framework that captures spatial conflicts and user interaction zones. Control strategies such as platform signage, seating arrangements, and visual cues are also reviewed, with experimental evidence showing that targeted design interventions can reduce PST by up to 35%. The review highlights a persistent gap between academic knowledge and practical implementation. It calls for greater integration of empirical evidence into policy, infrastructure standards, and operational contracts. Ultimately, it advocates for human-centered, data-informed approaches to PTI planning that enhance efficiency, inclusivity, and resilience in high-demand transit environments. Full article
(This article belongs to the Special Issue Research Advances in Rail Transport Infrastructure)
22 pages, 1486 KiB  
Article
Research on the Data-Driven Identification of Control Parameters for Voltage Ride-Through in Energy Storage Systems
by Liming Bo, Jiangtao Wang, Xu Zhang, Yimeng Su, Xueting Cheng, Zhixuan Zhang, Shenbing Ma, Jiyu Wang and Xiaoyu Fang
Appl. Sci. 2025, 15(15), 8249; https://doi.org/10.3390/app15158249 - 24 Jul 2025
Abstract
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter [...] Read more.
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter identification has become a crucial approach for analyzing ESS dynamic behaviors during high-voltage ride-through (HVRT) and low-voltage ride-through (LVRT) and for optimizing control strategies. In this study, we present a multidimensional feature-integrated parameter identification framework for ESSs, combining a multi-scenario voltage disturbance testing environment built on a real-time laboratory platform with field-measured data and enhanced optimization algorithms. Focusing on the control characteristics of energy storage converters, a non-intrusive identification method for grid-connected control parameters is proposed based on dynamic trajectory feature extraction and a hybrid optimization algorithm that integrates an improved particle swarm optimization (PSO) algorithm with gradient-based coordination. The results demonstrate that the proposed approach effectively captures the dynamic coupling mechanisms of ESSs under dual-mode operation (charging and discharging) and voltage fluctuations. By relying on measured data for parameter inversion, the method circumvents the limitations posed by commercial confidentiality, providing a novel technical pathway to enhance the fault ride-through (FRT) performance of energy storage systems (ESSs). In addition, the developed simulation verification framework serves as a valuable tool for security analysis in power systems with high renewable energy penetration. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
14 pages, 461 KiB  
Review
Sensor Technologies and Rehabilitation Strategies in Total Knee Arthroplasty: Current Landscape and Future Directions
by Theodora Plavoukou, Spiridon Sotiropoulos, Eustathios Taraxidis, Dimitrios Stasinopoulos and George Georgoudis
Sensors 2025, 25(15), 4592; https://doi.org/10.3390/s25154592 - 24 Jul 2025
Abstract
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter [...] Read more.
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter limitations in accessibility, patient adherence, and personalization. In response, emerging sensor technologies have introduced innovative solutions to support and enhance recovery following TKA. This review provides a thematically organized synthesis of the current landscape and future directions of sensor-assisted rehabilitation in TKA. It examines four main categories of technologies: wearable sensors (e.g., IMUs, accelerometers, gyroscopes), smart implants, pressure-sensing systems, and mobile health (mHealth) platforms such as ReHub® and BPMpathway. Evidence from recent randomized controlled trials and systematic reviews demonstrates their effectiveness in tracking mobility, monitoring range of motion (ROM), detecting gait anomalies, and delivering real-time feedback to both patients and clinicians. Despite these advances, several challenges persist, including measurement accuracy in unsupervised environments, the complexity of clinical data integration, and digital literacy gaps among older adults. Nevertheless, the integration of artificial intelligence (AI), predictive analytics, and remote rehabilitation tools is driving a shift toward more adaptive and individualized care models. This paper concludes that sensor-enhanced rehabilitation is no longer a future aspiration but an active transition toward a smarter, more accessible, and patient-centered paradigm in recovery after TKA. Full article
(This article belongs to the Section Biosensors)
20 pages, 2783 KiB  
Article
Inverse Kinematics-Augmented Sign Language: A Simulation-Based Framework for Scalable Deep Gesture Recognition
by Binghao Wang, Lei Jing and Xiang Li
Algorithms 2025, 18(8), 463; https://doi.org/10.3390/a18080463 - 24 Jul 2025
Abstract
In this work, we introduce IK-AUG, a unified algorithmic framework for kinematics-driven data augmentation tailored to sign language recognition (SLR). Departing from traditional augmentation techniques that operate at the pixel or feature level, our method integrates inverse kinematics (IK) and virtual simulation to [...] Read more.
In this work, we introduce IK-AUG, a unified algorithmic framework for kinematics-driven data augmentation tailored to sign language recognition (SLR). Departing from traditional augmentation techniques that operate at the pixel or feature level, our method integrates inverse kinematics (IK) and virtual simulation to synthesize anatomically valid gesture sequences within a structured 3D environment. The proposed system begins with sparse 3D keypoints extracted via a pose estimator and projects them into a virtual coordinate space. A differentiable IK solver based on forward-and-backward constrained optimization is then employed to reconstruct biomechanically plausible joint trajectories. To emulate natural signer variability and enhance data richness, we define a set of parametric perturbation operators spanning spatial displacement, depth modulation, and solver sensitivity control. These operators are embedded into a generative loop that transforms each original gesture sample into a diverse sequence cluster, forming a high-fidelity augmentation corpus. We benchmark our method across five deep sequence models (CNN3D, TCN, Transformer, Informer, and Sparse Transformer) and observe consistent improvements in accuracy and convergence. Notably, Informer achieves 94.1% validation accuracy with IK-AUG enhanced training, underscoring the framework’s efficacy. These results suggest that algorithmic augmentation via kinematic modeling offers a scalable, annotation free pathway for improving SLR systems and lays the foundation for future integration with multi-sensor inputs in hybrid recognition pipelines. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
20 pages, 1067 KiB  
Article
Motion Sickness Suppression Strategy Based on Dynamic Coordination Control of Active Suspension and ACC
by Fang Zhou, Dengfeng Zhao, Yudong Zhong, Pengpeng Wang, Junjie Jiang, Zhenwei Wang and Zhijun Fu
Machines 2025, 13(8), 650; https://doi.org/10.3390/machines13080650 - 24 Jul 2025
Abstract
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in [...] Read more.
With the development of electrification and intelligent technologies in vehicles, ride comfort issues represented by motion sickness have become a key constraint on the performance of autonomous driving. The occurrence of motion sickness is influenced by the comprehensive movement of the vehicle in the longitudinal, lateral, and vertical directions, involving ACC, LKA, active suspension, etc. Existing motion sickness control method focuses on optimizing the longitudinal, lateral, and vertical directions separately, or coordinating the optimization control of the longitudinal and lateral directions, while there is relatively little research on the coupling effect and coupled optimization of the longitudinal and vertical directions. This study proposes a coupled framework of ACC and active suspension control system based on MPC. By adding pitch angle changes caused by longitudinal acceleration to the suspension model, a coupled state equation of half-car vertical dynamics and ACC longitudinal dynamics is constructed to achieve integrated optimization of ACC and suspension for motion suppression. The suspension active forces and vehicle acceleration are regulated coordinately to optimize vehicle vertical, longitudinal, and pitch dynamics simultaneously. Simulation experiments show that compared to decoupled control of ACC and suspension, the integrated control framework can be more effective. The research results confirm that the dynamic coordination between the suspension and ACC system can effectively suppress the motion sickness, providing a new idea for solving the comfort conflict in the human vehicle environment coupling system. Full article
(This article belongs to the Section Vehicle Engineering)
12 pages, 2171 KiB  
Article
Use of Foliar Biostimulants in Durum Wheat: Understanding Its Potential in Improving Agronomic and Quality Responses Under Mediterranean Field Conditions
by Angelo Rossini, Roberto Ruggeri and Francesco Rossini
Plants 2025, 14(15), 2276; https://doi.org/10.3390/plants14152276 - 24 Jul 2025
Abstract
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the [...] Read more.
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the need to select the most efficient product in a specific growing environment is of dramatic importance to achieve remarkable results in yield and grain quality. To analyze the potential of different active ingredients, a field trial was performed in two consecutive growing seasons (2023 and 2024) under Mediterranean climatic conditions. A randomized block design with three replicates was used. Durum wheat cultivar “Iride” was treated with the following five foliar biostimulants in comparison with the untreated control (T0): seaweed and plant extracts (T1); micronized vaterite (T2); culture broth of Pseudomonas protegens (T3); humic and fulvic acids (T4); organic nitrogen fertilizer (N 5%) containing glycine betaine (T5). Biostimulant treatment was applied at the end of tillering and at heading. Root length, chlorophyll content, grain yield, yield components and grain quality were measured and subjected to a one-way analysis of variance. As compared to the control, seaweed and plant extracts as well as micronized vaterite showed the best results in terms of grain yield (29% and 24% increase, respectively), root length (120% and 77% increase, respectively) and grain protein content (one percentage point increase, from approx. 12% to 13%). The results from this study can help Mediterranean farmers and researchers to develop new fertilization protocols to reach the goals of the “Farm to Fork” European strategy. Full article
Show Figures

Figure 1

31 pages, 4042 KiB  
Article
Real-Time Object Detection for Edge Computing-Based Agricultural Automation: A Case Study Comparing the YOLOX and YOLOv12 Architectures and Their Performance in Potato Harvesting Systems
by Joonam Kim, Giryeon Kim, Rena Yoshitoshi and Kenichi Tokuda
Sensors 2025, 25(15), 4586; https://doi.org/10.3390/s25154586 - 24 Jul 2025
Abstract
In this paper, we presents a case study involving the implementation experience and a methodological framework through a comprehensive comparative analysis of the YOLOX and YOLOv12 object detection models for agricultural automation systems deployed in the Jetson AGX Orin edge computing platform. We [...] Read more.
In this paper, we presents a case study involving the implementation experience and a methodological framework through a comprehensive comparative analysis of the YOLOX and YOLOv12 object detection models for agricultural automation systems deployed in the Jetson AGX Orin edge computing platform. We examined the architectural differences between the models and their impact on detection capabilities in data-imbalanced potato-harvesting environments. Both models were trained on identical datasets with images capturing potatoes, soil clods, and stones, and their performances were evaluated through 30 independent trials under controlled conditions. Statistical analysis confirmed that YOLOX achieved a significantly higher throughput (107 vs. 45 FPS, p < 0.01) and superior energy efficiency (0.58 vs. 0.75 J/frame) than YOLOv12, meeting real-time processing requirements for agricultural automation. Although both models achieved an equivalent overall detection accuracy (F1-score, 0.97), YOLOv12 demonstrated specialized capabilities for challenging classes, achieving 42% higher recall for underrepresented soil clod objects (0.725 vs. 0.512, p < 0.01) and superior precision for small objects (0–3000 pixels). Architectural analysis identified a YOLOv12 residual efficient layer aggregation network backbone and area attention mechanism as key enablers of balanced precision–recall characteristics, which were particularly valuable for addressing agricultural data imbalance. However, NVIDIA Nsight profiling revealed implementation inefficiencies in the YOLOv12 multiprocess architecture, which prevented the theoretical advantages from being fully realized in edge computing environments. These findings provide empirically grounded guidelines for model selection in agricultural automation systems, highlighting the critical interplay between architectural design, implementation efficiency, and application-specific requirements. Full article
(This article belongs to the Section Smart Agriculture)
27 pages, 736 KiB  
Article
Institutional Quality, Energy Efficiency, and Natural Gas: Explaining CO2 Emissions in the GCC, 2000–2023
by Nagwa Amin Abdelkawy and Luluh Alzuwaidi
Sustainability 2025, 17(15), 6746; https://doi.org/10.3390/su17156746 - 24 Jul 2025
Abstract
This study investigates whether institutional quality amplifies the emissions-reducing effect of energy efficiency in hydrocarbon-dependent economies. Addressing a gap in the energy–environment literature, it tests how governance conditions shape the effectiveness of technical mitigation strategies. Using panel data from six Gulf Cooperation Council [...] Read more.
This study investigates whether institutional quality amplifies the emissions-reducing effect of energy efficiency in hydrocarbon-dependent economies. Addressing a gap in the energy–environment literature, it tests how governance conditions shape the effectiveness of technical mitigation strategies. Using panel data from six Gulf Cooperation Council (GCC) countries between 2000 and 2023, we estimate a fixed-effects model with interaction terms between energy intensity (as a proxy for efficiency) and institutional quality (proxied by Control of Corruption). The results show that energy efficiency is associated with lower CO2 emissions, and this relationship is significantly moderated by institutional quality. We also analyze the emissions impact of natural gas consumption and identify a structural shift following the 2014 energy reforms: while gas use was positively associated with emissions before 2014, the post-reform period shows a weaker or reversed effect. Robustness checks using alternative governance indicators—Regulatory Quality and Government Effectiveness—confirm the moderating role of institutions. The study offers new empirical evidence on the energy–institution–environment nexus and introduces a novel interaction-based methodology suited to resource-rich economies undergoing institutional transition. Full article
15 pages, 2127 KiB  
Article
Accessible Interface for Museum Geological Exhibitions: PETRA—A Gesture-Controlled Experience of Three-Dimensional Rocks and Minerals
by Andrei Ionuţ Apopei
Minerals 2025, 15(8), 775; https://doi.org/10.3390/min15080775 - 24 Jul 2025
Abstract
The increasing integration of 3D technologies and machine learning is fundamentally reshaping mineral sciences and cultural heritage, establishing the foundation for an emerging “Mineralogy 4.0” framework. However, public engagement with digital 3D collections is often limited by complex or costly interfaces, such as [...] Read more.
The increasing integration of 3D technologies and machine learning is fundamentally reshaping mineral sciences and cultural heritage, establishing the foundation for an emerging “Mineralogy 4.0” framework. However, public engagement with digital 3D collections is often limited by complex or costly interfaces, such as VR/AR systems and traditional touchscreen kiosks, creating a clear need for more intuitive, accessible, and more engaging and inclusive solutions. This paper presents PETRA, an open-source, gesture-controlled system for exploring 3D rocks and minerals. Developed in the TouchDesigner environment, PETRA utilizes a standard webcam and the MediaPipe framework to translate natural hand movements into real-time manipulation of digital specimens, requiring no specialized hardware. The system provides a customizable, node-based framework for creating touchless, interactive exhibits. Successfully evaluated during a “Long Night of Museums” public event with 550 visitors, direct qualitative observations confirmed high user engagement, rapid instruction-free learnability across diverse age groups, and robust system stability in a continuous-use setting. As a practical case study, PETRA demonstrates that low-cost, webcam-based gesture control is a viable solution for creating accessible and immersive learning experiences. This work offers a significant contribution to the fields of digital mineralogy, human–machine interaction, and cultural heritage by providing a hygienic, scalable, and socially engaging method for interacting with geological collections. This research confirms that as digital archives grow, the development of human-centered interfaces is paramount in unlocking their full scientific and educational potential. Full article
(This article belongs to the Special Issue 3D Technologies and Machine Learning in Mineral Sciences)
Show Figures

Figure 1

19 pages, 4504 KiB  
Article
Development and Evaluation of an Immersive Virtual Reality Application for Road Crossing Training in Older Adults
by Alina Napetschnig, Wolfgang Deiters, Klara Brixius, Michael Bertram and Christoph Vogel
Geriatrics 2025, 10(4), 99; https://doi.org/10.3390/geriatrics10040099 - 24 Jul 2025
Abstract
Background/Objectives: Aging is often accompanied by physical and cognitive decline, affecting older adults’ mobility. Virtual reality (VR) offers innovative opportunities to safely practice everyday tasks, such as street crossing. This study was designed as a feasibility and pilot study to explore acceptance, usability, [...] Read more.
Background/Objectives: Aging is often accompanied by physical and cognitive decline, affecting older adults’ mobility. Virtual reality (VR) offers innovative opportunities to safely practice everyday tasks, such as street crossing. This study was designed as a feasibility and pilot study to explore acceptance, usability, and preliminary effects of a VR-based road-crossing intervention for older adults. It investigates the use of virtual reality (VR) as an innovative training tool to support senior citizens in safely navigating everyday challenges such as crossing roads. By providing an immersive environment with realistic traffic scenarios, VR enables participants to practice in a safe and controlled setting, minimizing the risks associated with real-world road traffic. Methods: A VR training application called “Wegfest” was developed to facilitate targeted road-crossing practice. The application simulates various scenarios commonly encountered by older adults, such as crossing busy streets or waiting at traffic lights. The study applied a single-group pre-post design. Outcomes included the Timed Up and Go test (TUG), Falls Efficacy Scale-International (FES-I), and Montreal Cognitive Assessment (MoCA). Results: The development process of “Wegfest” demonstrates how a highly realistic street environment can be created for VR-based road-crossing training. Significant improvements were found in the Timed Up and Go test (p = 0.002, d = 0.784) and fall-related self-efficacy (FES-I, p = 0.005). No change was observed in cognitive function (MoCA, p = 0.56). Participants reported increased subjective safety (p < 0.001). Discussion: The development of the VR training application “Wegfest” highlights the feasibility of creating realistic virtual environments for skill development. By leveraging immersive technology, both physical and cognitive skills required for road-crossing can be effectively trained. The findings suggest that “Wegfest” has the potential to enhance the mobility and safety of older adults in road traffic through immersive experiences and targeted training interventions. Conclusions: As an innovative training tool, the VR application not only provides an engaging and enjoyable learning environment but also fosters self-confidence and independence among older adults in traffic settings. Regular training within the virtual world enables senior citizens to continuously refine their skills, ultimately improving their quality of life. Full article
Show Figures

Figure 1

18 pages, 2560 KiB  
Article
In Vitro Insights into the Anti-Biofilm Potential of Salmonella Infantis Phages
by Jan Torres-Boncompte, María Sanz-Zapata, Josep Garcia-Llorens, José M. Soriano, Pablo Catalá-Gregori and Sandra Sevilla-Navarro
Antibiotics 2025, 14(8), 744; https://doi.org/10.3390/antibiotics14080744 - 24 Jul 2025
Abstract
Background/Objectives: As bacteriophage-based strategies to control bacterial pathogens continue to gain momentum, phage therapy is increasingly being explored across various fields. In the poultry industry, efforts to minimize the public health impact of Salmonella have spurred growing interest in phage applications, particularly [...] Read more.
Background/Objectives: As bacteriophage-based strategies to control bacterial pathogens continue to gain momentum, phage therapy is increasingly being explored across various fields. In the poultry industry, efforts to minimize the public health impact of Salmonella have spurred growing interest in phage applications, particularly as prophylactic and disinfecting agents. Although the disinfecting potential of bacteriophages has been recognized, in-depth studies examining their efficacy under varying environmental conditions remain limited. This study focused on evaluating the effectiveness of bacteriophages as disinfecting agents against biofilm-forming Salmonella Infantis under different environments. Methods: A comprehensive screening of biofilm-producing strains was conducted using Congo Red Agar and 96-well plate assays. Two strains with distinct biofilm-forming capacities were selected for further analysis under different environmental conditions: aerobic and microaerobic atmospheres at both 25 °C and 37 °C. The resulting biofilms were then treated with four phage preparations: three individual phages and one phage cocktail. Biofilm reduction was assessed by measuring optical density and CFU/well. Additionally, scanning electron microscopy was used to visualize both untreated and phage-treated biofilms. Results: The results demonstrated that all S. Infantis strains were capable of forming biofilms (21/21). All three phage candidates exhibited biofilm-disrupting activity and were able to lyse biofilm-embedded Salmonella cells. Notably, the lytic efficacy of the phages varied depending on environmental conditions, highlighting the importance of thorough phage characterization prior to application. Conclusions: These findings underscore that the effectiveness of bacteriophages as surface disinfectants can be significantly compromised if inappropriate phages are used, especially in the presence of biofilms. Full article
Show Figures

Figure 1

14 pages, 935 KiB  
Systematic Review
The Global Prevalence of Bacillus spp. in Milk and Dairy Products: A Systematic Review and Meta-Analysis
by Tianmei Sun, Ran Wang, Yanan Sun, Xiaoxu Zhang, Chongtao Ge and Yixuan Li
Foods 2025, 14(15), 2599; https://doi.org/10.3390/foods14152599 - 24 Jul 2025
Abstract
The spoilage of dairy products and foodborne diseases caused by Bacillus spp. are important public concerns. The objective of this study was to estimate the global prevalence of Bacillus spp. in a range of milk and dairy products by using a meta-analysis of [...] Read more.
The spoilage of dairy products and foodborne diseases caused by Bacillus spp. are important public concerns. The objective of this study was to estimate the global prevalence of Bacillus spp. in a range of milk and dairy products by using a meta-analysis of literature data published between 2001 and 2023. A total of 3624 publications were collected from Web of Science and PubMed databases. Following the principles of systematic review, 417 sets of prevalence data were extracted from 142 eligible publications. Estimated by the random-effects model, the overall prevalence of Bacillus spp. in milk and dairy products was 11.8% (95% CI: 10.1–13.7%), with highly severe heterogeneity (94.8%). Subgroup analyses revealed substantial heterogeneity in Bacillus spp. prevalence according to geographical continents, sources of sampling, types of dairy products, microbial species, and detection methods. The prevalence of Bacillus spp. was highest in Asia (15.4%, 95% CI: 12.3–19.1%), lowest in Oceania (3.5%, 95% CI: 3.3–3.7%) and generally higher in developing versus developed countries. The prevalence of Bacillus spp. isolated from retail markets (16.1%, 95% CI: 13.0–19.7%) was higher than from farms (10.3%, 95% CI: 6.9–15.0%) or dairy plants (9.2%, 95% CI: 7.1–12.0%). This finding is likely attributable to its inherent characteristic of the resistant endospores and ubiquitous presence in the environment—Bacillus spp. can potentially cyclically contaminate farms, dairy products and human markets. Regarding the species distribution, Bacillus cereus presented a cosmopolitan distribution across all continents. The epidemic patterns of different Bacillus species vary depending on the sample sources. In addition, the detection method utilized also affected the reported prevalence of Bacillus spp. It is recommended to use molecular-based rapid detection methods to obtain a more accurate prevalence of Bacillus contamination. Therefore, a better understanding of variations in Bacillus spp. prevalence across different factors will enable competent authorities, industries, and other relevant stakeholders to tailor their interventions for effectively controlling Bacillus spp. in milk and dairy products. Full article
Show Figures

Figure 1

20 pages, 28281 KiB  
Article
Infrared-Guided Thermal Cycles in FEM Simulation of Laser Welding of Thin Aluminium Alloy Sheets
by Pasquale Russo Spena, Manuela De Maddis, Valentino Razza, Luca Santoro, Husniddin Mamarayimov and Dario Basile
Metals 2025, 15(8), 830; https://doi.org/10.3390/met15080830 - 24 Jul 2025
Abstract
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser [...] Read more.
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser welding plays a crucial role in assembling such materials, offering high flexibility and fast joining capabilities for thin aluminium sheets. However, welding these materials presents specific challenges, particularly in controlling heat input to minimize distortions and ensure consistent weld quality. As a result, numerical simulations based on the Finite Element Method (FEM) are essential for predicting weld-induced phenomena and optimizing process performance. This study investigates welding-induced distortions in laser butt welding of 1.5 mm-thick Al 6061 samples through FEM simulations performed in the SYSWELD 2024.0 environment. The methodology provided by the software is based on the Moving Heat Source (MHS) model, which simulates the physical movement of the heat source and typically requires extensive calibration through destructive metallographic testing. This transient approach enables the detailed prediction of thermal, metallurgical, and mechanical behavior, but it is computationally demanding. To improve efficiency, the Imposed Thermal Cycle (ITC) model is often used. In this technique, a thermal cycle, extracted from an MHS simulation or experimental data, is imposed on predefined subregions of the model, allowing only mechanical behavior to be simulated while reducing computation time. To avoid MHS-based calibration, this work proposes using thermal cycles acquired in-line during welding via infrared thermography as direct input for the ITC model. The method was validated experimentally and numerically, showing good agreement in the prediction of distortions and a significant reduction in workflow time. The distortion values from simulations differ from the real experiment by less than 0.3%. Our method exhibits a slight decrease in performance, resulting in an increase in estimation error of 0.03% compared to classic approaches, but more than 85% saving in computation time. The integration of real process data into the simulation enables a virtual representation of the process, supporting future developments toward Digital Twin applications. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

21 pages, 2794 KiB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Figure 1

35 pages, 5195 KiB  
Article
A Multimodal AI Framework for Automated Multiclass Lung Disease Diagnosis from Respiratory Sounds with Simulated Biomarker Fusion and Personalized Medication Recommendation
by Abdullah, Zulaikha Fatima, Jawad Abdullah, José Luis Oropeza Rodríguez and Grigori Sidorov
Int. J. Mol. Sci. 2025, 26(15), 7135; https://doi.org/10.3390/ijms26157135 - 24 Jul 2025
Abstract
Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these [...] Read more.
Respiratory diseases represent a persistent global health challenge, underscoring the need for intelligent, accurate, and personalized diagnostic and therapeutic systems. Existing methods frequently suffer from limitations in diagnostic precision, lack of individualized treatment, and constrained adaptability to complex clinical scenarios. To address these challenges, our study introduces a modular AI-powered framework that integrates an audio-based disease classification model with simulated molecular biomarker profiles to evaluate the feasibility of future multimodal diagnostic extensions, alongside a synthetic-data-driven prescription recommendation engine. The disease classification model analyzes respiratory sound recordings and accurately distinguishes among eight clinical classes: bronchiectasis, pneumonia, upper respiratory tract infection (URTI), lower respiratory tract infection (LRTI), asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis, and healthy respiratory state. The proposed model achieved a classification accuracy of 99.99% on a holdout test set, including 94.2% accuracy on pediatric samples. In parallel, the prescription module provides individualized treatment recommendations comprising drug, dosage, and frequency trained on a carefully constructed synthetic dataset designed to emulate real-world prescribing logic.The model achieved over 99% accuracy in medication prediction tasks, outperforming baseline models such as those discussed in research. Minimal misclassification in the confusion matrix and strong clinician agreement on 200 prescriptions (Cohen’s κ = 0.91 [0.87–0.94] for drug selection, 0.78 [0.74–0.81] for dosage, 0.96 [0.93–0.98] for frequency) further affirm the system’s reliability. Adjusted clinician disagreement rates were 2.7% (drug), 6.4% (dosage), and 1.5% (frequency). SHAP analysis identified age and smoking as key predictors, enhancing model explainability. Dosage accuracy was 91.3%, and most disagreements occurred in renal-impaired and pediatric cases. However, our study is presented strictly as a proof-of-concept. The use of synthetic data and the absence of access to real patient records constitute key limitations. A trialed clinical deployment was conducted under a controlled environment with a positive rate of satisfaction from experts and users, but the proposed system must undergo extensive validation with de-identified electronic medical records (EMRs) and regulatory scrutiny before it can be considered for practical application. Nonetheless, the findings offer a promising foundation for the future development of clinically viable AI-assisted respiratory care tools. Full article
Show Figures

Figure 1

Back to TopTop