
Citation: Li, Y.; Du, Z.; Fu, Y.; Liu, L.

Role-Based Access Control Model for

Inter-System Cross-Domain in

Multi-Domain Environment. Appl.

Sci. 2022, 12, 13036. https://doi.org/

10.3390/app122413036

Academic Editors: Christina Thorpe

and Stephen O’ Shaughnessy

Received: 8 October 2022

Accepted: 13 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Role-Based Access Control Model for Inter-System Cross-Domain
in Multi-Domain Environment
Yunliang Li 1,*,† , Zhiqiang Du 2,*,† , Yanfang Fu 2,* and Liangxin Liu 2

1 School of Armament Science and Technology, Xi’an Technological University, Xi’an 710021, China
2 School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China
* Correspondence: lyl@st.xatu.edu.cn (Y.L.); duzhiqiang@xatu.edu.cn (Z.D.); fuyanfang@xatu.edu.cn (Y.F.)
† These authors contributed equally to this work.

Abstract: Information service platforms or management information systems of various institutions
or sectors of enterprises are gradually interconnected to form a multi-domain environment. A multi-
domain environment is convenient for managers to supervise and manage systems, and for users to
access data across domains and systems. However, given the complex multi-domain environment
and many users, the traditional or enhanced role-based access control (RBAC) model still faces
some challenges. It is necessary to address issues such as role naming conflicts, platform–domain
management conflicts, inter-domain management conflicts, and cross-domain sharing difficulties. For
the above problems, a role-based access control model for inter-system cross-domain in multi-domain
environment (RBAC-IC) is proposed. This paper formally defines the model, divides roles into
abstract roles and specific roles, and designs the operating process of the access control model. The
model has four characteristics: support role name repetition, platform–domain isolation management,
inter-domain isolation management, and fine-grained cross-domain sharing. By establishing security
violation formulas for security analysis, it is finally shown that RBAC-IC can operate safely.

Keywords: role-based access control (RBAC); inter-system cross-domain; access control; multi-domain
environment; information service platform

1. Introduction

In recent years, more and more firms or organizations have integrated the previ-
ously independent management information systems into a comprehensive information
service platform [1–3]. In addition, cloud computing, distribution and other information
technologies are also developing rapidly. SaaS [4,5], blockchain [6,7] and other methods
interconnect the information service platforms of various sectors within the enterprise or
various institutions within the organization, forming a multi-domain environment. In addi-
tion, A multi-domain environment accommodates various information systems deployed
in different domain servers, and the structure is composed of three layers: platform in
multi-domain environment, domain, and system. Figure 1 shows the hierarchical structure
of the multi-domain environment. For example, the medical alliance is a multi-domain
environment, and each hospital in the alliance belongs to a different domain. Each domain
contains various management information systems owned by the hospital. The permissions
of the same functional staff in different hospitals (domains) are different, and the data need
to be isolated. Permissions of the same personnel in different hospitals (domains) are differ-
ent, and the data need to be isolated. However, the medical alliance has business needs
such as cross-hospital collaborative treatment and prescription circulation, so medical staff
from different hospitals need to access data across domains.

Appl. Sci. 2022, 12, 13036. https://doi.org/10.3390/app122413036 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122413036
https://doi.org/10.3390/app122413036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9079-5251
https://orcid.org/0000-0002-5173-806X
https://doi.org/10.3390/app122413036
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122413036?type=check_update&version=2

Appl. Sci. 2022, 12, 13036 2 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 27

managers to supervise and manage the systems. Access control can prohibit illegal users
from accessing resources in the system and prevent unauthorized operations by legitimate
users in the system. There are many access control technologies, among which role-based
access control (RBAC) [8] introduces the concept of role between users and permissions.
It assigns permissions to roles based on business responsibilities, and then grants roles to
users. The introduction of “role” simplifies the management of access control in complex
systems, and RBAC has been widely used [9–12]. However, multi-domain environment is
necessary to ensure data isolation among systems and to satisfy cross-domain sharing of
data by users. Under these premises, how to improve RBAC and design an access control
model for inter-system cross-domain, to control of user access is an urgent problem to be
solved.

Figure 1. Hierarchical structure of multi-domain environment.

At present, there is a lot of research on the cross-domain access control model. How-
ever, there are still the following problems to be solved in the current research results:
• Role naming conflict: After the introduction of the role concept [8], although the same

roles have similar responsibilities in different domains, it is necessary to allow the
same roles to have different permissions in different domains.

• Platform–domain management conflict: Avoid domain administrators from unau-
thorized manipulation of the platform, and platform administrators from accessing
domain server business data, resulting in privacy leakage.

• Inter-domain management conflicts: In a multi-domain environment, different do-
mains need to be isolated for management, and data among systems also need to be
isolated.

• Fine-grained cross-domain sharing: Meet users’ needs for inter-system cross-domain
access control. When a role is authorized cross-domain, only the required users are
authorized, and the role authorization rights are not assigned to other domain ad-
ministrators.
Aiming at the above problems, a role-based inter-system cross-control model (RBAC-

IC) is designed. Based on the traditional RBAC model, roles are extended to abstract roles
and specific roles. Abstract roles define the scope of responsibility, set hierarchies and
constraints of roles; specific roles are responsible for assigning permissions and authoriz-
ing users. Platform personnel are divided into three categories: platform administrators,
domain administrators and ordinary users. The two types of administrators are managed
at the levels of platform and domain, respectively. Ordinary users can apply for author-
ized specific roles inner-domain or cross-domain, and access system resources with the
authorized specific roles. The model has four characteristics: support role name repetition,
platform–domain isolation management, inter-domain isolation management, and fine-
grained cross-domain sharing.

The rest of this paper is organized as follows. Section 2 describes the research status
in related fields. We introduce the proposed model by formal definition in Section 3. In
Section 4, we expound on the execution flow after applying RBAC-IC on the multi-domain

Figure 1. Hierarchical structure of multi-domain environment.

In such a multi-domain environment, it is conducive to data sharing among enterprise
sectors or various institutions within the organization, and it is also beneficial for managers
to supervise and manage the systems. Access control can prohibit illegal users from
accessing resources in the system and prevent unauthorized operations by legitimate users
in the system. There are many access control technologies, among which role-based access
control (RBAC) [8] introduces the concept of role between users and permissions. It assigns
permissions to roles based on business responsibilities, and then grants roles to users. The
introduction of “role” simplifies the management of access control in complex systems,
and RBAC has been widely used [9–12]. However, multi-domain environment is necessary
to ensure data isolation among systems and to satisfy cross-domain sharing of data by
users. Under these premises, how to improve RBAC and design an access control model
for inter-system cross-domain, to control of user access is an urgent problem to be solved.

At present, there is a lot of research on the cross-domain access control model. How-
ever, there are still the following problems to be solved in the current research results:

• Role naming conflict: After the introduction of the role concept [8], although the same
roles have similar responsibilities in different domains, it is necessary to allow the
same roles to have different permissions in different domains.

• Platform–domain management conflict: Avoid domain administrators from unau-
thorized manipulation of the platform, and platform administrators from accessing
domain server business data, resulting in privacy leakage.

• Inter-domain management conflicts: In a multi-domain environment, different domains
need to be isolated for management, and data among systems also need to be isolated.

• Fine-grained cross-domain sharing: Meet users’ needs for inter-system cross-domain
access control. When a role is authorized cross-domain, only the required users are autho-
rized, and the role authorization rights are not assigned to other domain administrators.

Aiming at the above problems, a role-based inter-system cross-control model (RBAC-
IC) is designed. Based on the traditional RBAC model, roles are extended to abstract roles
and specific roles. Abstract roles define the scope of responsibility, set hierarchies and
constraints of roles; specific roles are responsible for assigning permissions and authoriz-
ing users. Platform personnel are divided into three categories: platform administrators,
domain administrators and ordinary users. The two types of administrators are managed
at the levels of platform and domain, respectively. Ordinary users can apply for autho-
rized specific roles inner-domain or cross-domain, and access system resources with the
authorized specific roles. The model has four characteristics: support role name repeti-
tion, platform–domain isolation management, inter-domain isolation management, and
fine-grained cross-domain sharing.

The rest of this paper is organized as follows. Section 2 describes the research status
in related fields. We introduce the proposed model by formal definition in Section 3. In
Section 4, we expound on the execution flow after applying RBAC-IC on the multi-domain
environment platform. Section 5 introduces how to apply RBAC-IC to the multi-domain

Appl. Sci. 2022, 12, 13036 3 of 26

information service platform. The features and security of RBAC-IC are analyzed in
Section 6. It is concluded in Section 7.

2. Related Work

Sandhu et al. introduced the concepts of role hierarchy, constraint, etc., extended RBAC
into four forms and collectively called it the RBAC96 model [13]; most of the later RBAC
improvement schemes depended on the RBAC96 model. Later, Sandhu et al. proposed
the ARBAC97 model [14], which divides the roles into mutually exclusive regular roles
and administrative roles granted to the security administrators in the system; ARBAC97
standardizes and defines the operations of administrative roles to regular roles within
the system. Ferraiolo et al. proposed a standard for RBAC [15], which defines some
components of RBAC and their semantics, and regulates the operation and management of
RBAC; The standard plays a normative role for subsequent RBAC research work. However,
when solving inter-system cross-domain access control problems, if these traditional RBAC
models are used, it can lead to a situation of role explosion [16], resulting in many redundant
roles with similar permissions and easy confusion.

There have been many studies on improving the RBAC model to solve the shortcom-
ings of the traditional RBAC model. Uddin et al. proposed a dynamic access control model
AW-TRBAC [17], which assigns tasks according to users’ roles, and access permissions
are only available when tasks are executed in the workflow. The dynamic nature of the
model alleviates the role explosion problem, but the security administrator does not define
the management scope in the model and cannot resolve the inter-domain management
conflict. In references [18–20], the concept of multi-dimensional roles is proposed to isolate
tenants. Among them, reference [20] uses 4D-Role with user categories, and user categories
include tenant users and platform users, making cloud platform management independent
of tenant management. Strictly isolating users among different tenants is beneficial to
privacy protection, but it is not conducive to information sharing among tenants.

Freudenthal et al. proposed a distributed role-based access control (dRBAC) [21].
In dRBAC, each entity uses its own name as the namespace of its publishing role, and
the entity can delegate the role assignment rights to other entities, which in turn reduces
role naming conflicts and permission sharing. However, these assignment rights can
be passed so continually that it cannot control its indirect delegation. Tang et al. [22]
proposed a multi-tenant RBAC model for collaborative cloud services. The issuer of
the truster establishes a trust relation with the trustee, and the users in the trustee can
authorize the roles in the truster to complete multi-tenant data sharing and isolation. The
issuer needs to rely on each trustee to establish public role sets, and the truster cannot
control the trustee’s user authorization. Abdelfattah et al. [23] used the role-to-role (RTR)
mapping rules to map a role in the organization with other organizational roles through the
proposed role mapping algorithm, so that users can share other organizational resources.
References [24–26], respectively, use inter-domain role mapping (IDRM) and role cross-
domain inheritance to solve the problem of cross-domain sharing. References [23–26] have
the same defects as in reference [22]. The truster domain cannot control how the trustee
domain administrator authorizes roles to users, and the grain is coarse.

Uikey et al. proposed an RBAC architecture for multi-domain cloud environment [27].
Service providers and the domain administrators are, respectively, responsible for access
control and access control policy management. There is a certain isolation between the
service provider and the domain, but the service provider is allowed to modify the domain
policies. Following that modification, the domain administrator needs to review and
redefine the policy, which increases the management burden of the domain administrator.
In addition, when users request cross-domain access, the domain administrator sends the
policy to the corresponding domain, without considering the policy differences between
different domains. There are also some studies that determine whether to authorize roles to
users based on attributes [28] or points [29]. These concepts make the granularity of RBAC

Appl. Sci. 2022, 12, 13036 4 of 26

model finer, but the computing process has to be guaranteed to be reasonably reliable,
otherwise the security of the access control process will be affected.

3. Proposed Model
3.1. Overview

In order to solve the problems of role naming conflicts, inter-domain management
conflicts and cross-domain sharing difficulties. RBAC-IC divides roles into abstract roles and
specific roles. Abstract roles do not need to assign permissions and authorize users. It is to
define the responsibilities of positions contained in the system, set inheritance relationships
and constraints among roles, and form the mapping various jobs or positions to system roles.
Specific roles are an instantiation of an abstract role, and its purpose is to grant it to users to
obtain the appropriate permissions. The specific role needs to be associated with an abstract
role, and assign corresponding permissions to it according to the requirements. At the same
time, the specific role inherits the role inheritance and constraints of the associated abstract
role. Thus, RBAC-IC has the characteristics of support role name repetition, inter-domain
isolation management and fine-grained cross-domain sharing.

In order to solve the problem of platform–domain management conflict, RBAC-IC
divides platform personnel into three categories: platform administrators, domain ad-
ministrators and ordinary users (users). The platform administrator is responsible for
management operations for platform level such as platform configuration, system develop-
ment and configuration (creating abstract roles, creating permissions, etc.), and deploying
systems for domain servers. The domain administrator is responsible for creating specific
roles of the deployed system, assigning permissions to specific roles, and authorizing
ordinary users. At the same time, when users in a local domain apply for cross-domain
access, the local domain administrator is responsible for sending cross-domain authoriza-
tion requests to the application domain administrator. Ordinary users are users who use
the application system. After granting specific roles, they can execute permissions by
establishing sessions. The sessions activate a subset of the specific roles that ordinary users
have. The permissions available to ordinary users are the aggregate of the permissions of
all roles in activated sessions. Ordinary users need permission discrimination to access
resources. After passing the discrimination, they can read or manipulate system data. Thus,
RBAC-IC has the characteristics of platform–domain isolation management.

A role-based access control model for inter-system cross-domain in multi-domain
environment (RBAC-IC) is defined in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 27

authorize roles to users based on attributes [28] or points [29]. These concepts make the
granularity of RBAC model finer, but the computing process has to be guaranteed to be
reasonably reliable, otherwise the security of the access control process will be affected.

3. Proposed Model
3.1. Overview

In order to solve the problems of role naming conflicts, inter-domain management
conflicts and cross-domain sharing difficulties. RBAC-IC divides roles into abstract roles
and specific roles. Abstract roles do not need to assign permissions and authorize users.
It is to define the responsibilities of positions contained in the system, set inheritance re-
lationships and constraints among roles, and form the mapping various jobs or positions
to system roles. Specific roles are an instantiation of an abstract role, and its purpose is to
grant it to users to obtain the appropriate permissions. The specific role needs to be asso-
ciated with an abstract role, and assign corresponding permissions to it according to the
requirements. At the same time, the specific role inherits the role inheritance and con-
straints of the associated abstract role. Thus, RBAC-IC has the characteristics of support
role name repetition, inter-domain isolation management and fine-grained cross-domain
sharing.

In order to solve the problem of platform–domain management conflict, RBAC-IC
divides platform personnel into three categories: platform administrators, domain admin-
istrators and ordinary users (users). The platform administrator is responsible for man-
agement operations for platform level such as platform configuration, system develop-
ment and configuration (creating abstract roles, creating permissions, etc.), and deploying
systems for domain servers. The domain administrator is responsible for creating specific
roles of the deployed system, assigning permissions to specific roles, and authorizing or-
dinary users. At the same time, when users in a local domain apply for cross-domain ac-
cess, the local domain administrator is responsible for sending cross-domain authoriza-
tion requests to the application domain administrator. Ordinary users are users who use
the application system. After granting specific roles, they can execute permissions by es-
tablishing sessions. The sessions activate a subset of the specific roles that ordinary users
have. The permissions available to ordinary users are the aggregate of the permissions of
all roles in activated sessions. Ordinary users need permission discrimination to access
resources. After passing the discrimination, they can read or manipulate system data.
Thus, RBAC-IC has the characteristics of platform–domain isolation management.

A role-based access control model for inter-system cross-domain in multi-domain
environment (RBAC-IC) is defined in Figure 2.

Figure 2. RBAC-IC sketch map. Figure 2. RBAC-IC sketch map.

3.2. Formal Definition of Model Sets

Ud (Users). Set up a user set for each domain and the elements are composed of
user, user is a subject in access control, which can be authorized specific roles and activate
sessions, usually a person, device, or process, etc.

A user is two-tuples formed as <category, domain>, where category includes platform
administrators, domain administrators and ordinary users; domain is used to identify the

Appl. Sci. 2022, 12, 13036 5 of 26

domain of domain administrators and ordinary users; domain of platform administrators is
empty. Formally:

Ud = {user1, user2, . . . , usern} (d = 1, 2, . . . , m) (1)

is the set of all user in domain d; m is the number of domains in the platform; n is the
number of users in domain d.

P (Permissions). A permission set is set for the entire platform, and the elements
are composed of permission, permission is the authorization of the subject to perform some
operation on the object.

The permission is triple-tuples formed as <category, operation, system>, where category
identifies the type of object manipulated by the permission, operation is a way of operating
a category, such as read, write or executable; system indicates that the permission is valid in
the system. Formally:

P = {permission1, permission2, . . . , permissionn} (2)

is the set of all permission in the platform; n is the number of permissions in the platform.
Od (Objects). Set up an object set for each domain and the elements are composed of

object. The object is the object (resources) in the system and be manipulated by users, which
usually exist in the form of files, data, etc.

An object is triple-tuples formed as <category, domain, system>, where category identifies
the type of object; domain and system indicate that the object is stored in the system of the
domain. Formally:

Od = {object1, object2, . . . , objectn} (d = 1, 2, . . . , m) (3)

is the set of all object in domain d; m is the number of domains in the platform; n is the
number of objects in domain d.

AR (Abstract_Roles). An abstract set is set for the entire platform and the elements
are composed of abstract_role. The abstract_role is abstraction of a set of responsibilities
within a system of the platform. It cannot be authorized to users, nor can abstract roles be
assigned permissions.

An abstract_role is triple-tuples formed as <system, primary_role, constraint>, where
system indicates that the abstract_role is valid in the system; primary_role is the set of abstract
roles which it inherits; constraint is the constraint set of the abstract role. Formally:

AR = {abstract_role1, abstract_role2, . . . , abstract_rolen} (4)

is the set of all abstract role in the platform; n is the number of abstract roles in the platform.
SRd (Specific_Roles). Set up a specific role set for each domain and the elements are

composed of specific_role. The specific_role is assigned a set of permissions according to the
responsibilities of the associated abstract role and the personalized requirements of the
domain, and authorized the users to complete a certain business.

A specific_role is five-tuples formed as <abstract_role, permissions, domain, system, valid_time>,
where abstract_role is the abstract role associated with the specific role, permissions are a
group of permission assigned to the specific role, domain and system indicate that the spe-
cific_role is valid in the system of the domain, and valid_time is the valid time of the specific
role, which is generally set when users apply for cross-domain access. When valid_time→
+∞, it means that the specific role is permanently valid. Specific roles can only be used in
the designated system within its set domain, and must be valid for a period. Formally:

SRd = {specific_role1, specific_role2, . . . , specific_rolen} (d = 1, 2, . . . , m) (5)

is the set of all specific role in domain d; m is the number of domains in the platform; n is
the number of specific roles in domain d.

Appl. Sci. 2022, 12, 13036 6 of 26

Sd (Sessions). Set up a session set for each domain and the elements are composed of
session. When the user performs tasks, the session is the mapping between the user and the
specific roles that need to be activated.

A session is two-tuples formed as <user, specific_role>, where user and specific_role
represent the user and specific roles are activated by the user, respectively. Formally:

Sd = {session1, session2, . . . , sessionn} (d = 1, 2, . . . , m) (6)

is the set of all session in domain d; m is the number of domains in the platform; n is the
number of sessions in domain d.

3.3. Formal Definition of Model Relationships

USRd ⊆ Ud × SRd. denote a set of many-to-many relationships from users to specific
roles. Formally:

∀(useri, specific_rolej) ∈ USRd (useri ∈ Ud, specific_rolej ∈ SRd) (d = 1, 2, . . . , l; i = 1, 2, . . . , m; j = 1, 2, . . . , n) (7)

SRPd ⊆ SRd × Pd. denote a set of many-to-many relationships from specific roles to
permissions. Domain administrators need to assign permissions to specific roles according
to the principle of least privilege [30] and the associated abstract roles. The user needs to
access the object through specific roles that conforms to the principle of minimum authority,
and cannot directly access the object by bypassing the specific role, nor can they directly
assign the permission to the user. Formally:

∀(specific_rolei, permissionj) ∈ SRPd (specific_rolei ∈ SRd, permissionj ∈ Pd) (d = 1, 2, . . . , l; i = 1, 2, . . . , m; j = 1, 2, . . . , n) (8)

USd⊆Ud× Sd. denote a set of one-to-many relationships from a user to sessions. Formally:

∀(user, sessioni) ∈ USd (user ∈ Ud, sessioni ∈ Sd) (d = 1, 2, . . . , m; i = 1, 2, . . . , n) (9)

SRARd ⊆ SRd × AR. denote a many-to-one relationship set from specific roles to an
abstract role. A specific role can only be associated with one abstract role, and an abstract
role can be associated with multiple specific roles. Formally:

∀(specific_rolei, abstract_role) ∈ SRARd (specific_rolei ∈ SRd, abstract_role ∈ AR) (d = 1, 2, . . . , m; i = 1, 2, . . . , n) (10)

sr_association(specific_role∈ SRd)→ AR. denote a mapping from a specific role to
an abstract role. Formally:

sr_association(specific_role ∈ SRd) = {abstract_role ∈ AR | (specific_role, abstract_role) ∈ SRARd} (11)

Property 1. A specific role has one and only one associated abstract role.

Proof of Property 1. The formal proof is as follows:
Suppose,

∀specific_role1 ∈ SR1;

∀abstract_role1, abstract_role2 ∈ AR;

If,
sr_association(specific_role1) = abstract_role1;

sr_association(specific_role1) = abstract_role2;

Because,
sr_association(specific_role ∈ SRd)→ AR;

So,
abstract_role1 = abstract_role2.

�

Appl. Sci. 2022, 12, 13036 7 of 26

3.4. Formal Definition of Model Hierarchies

ARH ⊆ AR × AR. denote a set of inheritance relationships among abstract roles,
which is an antisymmetric partial order relationship. Formally:

(abstract_role′ � abstract_role) ∈ ARH (abstract_role’, abstract_role ∈ AR) (12)

where abstract_role′ is called the senior abstract role of abstract_role, and abstract_role is called
the primary abstract role of abstract_role′.

SRHd ⊆ SRd × SRd. denote a set of inheritance relationships among specific roles,
which is an antisymmetric partial order relationship. Formally:

(specific_role′ � specific_role) ∈ SRHd (specific_role′, specific_role ∈ SRd) (d = 1, 2, . . . , n) (13)

where specific_role′ is called the senior specific role of specific_role, and specific_role is called
the primary specific role of specific_role′. In addition, specific_role′ inherits all the permissions
of specific_role.

Property 2. The inheritance relationship among specific roles is consistent with the inheritance
relationship among the associated abstract roles. The formal expression is as follows,
Suppose,

∀specific_role1, specific_role2 ∈ SR1;

∀abstract_role1, abstract_role2 ∈ AR;

If,
sr_association(specific_role1) = abstract_role1;

sr_association(specific_role1) = abstract_role2;

abstract_role1 � abstract_role2;

So,
specific_role1 � specific_role2.

Example 1. There are four abstract roles A, B, C and D in the system. B and C inherit A; D inherits
B and C; A has a constraint. Create four specific roles A′, B′, C′, and D′ to be associated with A, B,
C, and D, respectively. Then, the inheritance relationship between the four specific roles is B′ and
C′ inherit A′; D′ inherits B′ and C′; A′ inherits constraints of A. There are no other inheritance
relationships, as shown in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 27

Figure 3. Example diagram of role inheritance.

ar_primary_role(abstract_role ∈ AR) → 2AR. denote all abstract roles inherited by an
abstract role. Formally:

ar_primary_role(abstract_role ∈ AR) = {ARi | ARi ⊆ AR} (14)

Property 3. If the abstract role has multiple inheritance, the abstract role set it inherits includes
the directly inherited abstract role set, and the abstract role set that it inherits indirectly. The formal
expression is as follows,
Suppose, ∀abstract_role′, ARa∪b, ARa, ARb ⊆ AR;

If,

ARa denote the set of direct primary abstract roles of abstract_role′;

ARb denote the full set of indirect primary abstract roles for abstract_role′;

ARb =
abstract_role' abstract_role

ar_primary_role abstract_role () ;

So, all abstract roles inherited by abstract_role′ are,

ARa∪b = ar_primary_role(abstract_role′) = ARa ∪ ARb.

sr_primary_role(specific_role ∈ SRd) → 2 dSR . denote all specific roles inherited by a spe-
cific role. Formally:

sr_primary_role(specific_role ∈ SRd) = {
idSR |

idSR ⊆ SRd} (15)

Property 4. If a specific role has multiple layers of inheritance, the set of specific roles it inherits
includes the set of directly inherited specific roles and the set of specific roles that it inherits indi-
rectly. The formal expression is as follows,
Suppose, ∀specific_role′,

∪a b
SR1 ,

a
SR1 ,

b
SR1 ⊆ SR1;

If,

a
SR1 denote the set of direct primary specific roles of specific_role′;

b
SR1 denote the full set of indirect primary specific roles for specific_role′;

b
SR1 =

specific_role' specific_role

sr_primary_role specific_role () ;

Figure 3. Example diagram of role inheritance.

ar_primary_role(abstract_role ∈ AR)→ 2AR. denote all abstract roles inherited by
an abstract role. Formally:

ar_primary_role(abstract_role ∈ AR) = {ARi | ARi ⊆ AR} (14)

Appl. Sci. 2022, 12, 13036 8 of 26

Property 3. If the abstract role has multiple inheritance, the abstract role set it inherits includes the
directly inherited abstract role set, and the abstract role set that it inherits indirectly. The formal
expression is as follows,
Suppose,

∀abstract_role′, ARa∪b, ARa, ARb ⊆ AR;

If,
ARa denote the set of direct primary abstract roles of abstract_role′;

ARb denote the full set of indirect primary abstract roles for abstract_role′;

ARb = ∪
abstract_role′�abstract_role

ar_primary_role(abstract_role)

So, all abstract roles inherited by abstract_role′ are,

ARa∪b = ar_primary_role(abstract_role′) = ARa ∪ ARb.

sr_primary_role(specific_role ∈ SRd)→ 2SRd . denote all specific roles inherited by a spe-
cific role. Formally:

sr_primary_role(specific_role ∈ SRd) =
{

SRdi

∣∣ SRdi
⊆ SRd

}
(15)

Property 4. If a specific role has multiple layers of inheritance, the set of specific roles it inherits
includes the set of directly inherited specific roles and the set of specific roles that it inherits indirectly.
The formal expression is as follows,
Suppose,

∀specific_role′, SR1a∪b , SR1a , SR1b ⊆ SR1

If,
SR1a denote the set of direct primary specific roles of specific_role′;

SR1a denote the full set of indirect primary specific roles for specific_role′;

SR1b= ∪
speci f ic_role′�speci f ic_role

sr_primary_role(speci f ic_role)

So, all specific roles inherited by specific_role′ are,

SR1a∪b= sr_primary_role
(
specific_role′

)
= SR1a ∪ SR1b

3.5. Formal Definition of Model Functions

user_authorization(user ∈ Ud)→ 2SRe . denote all specific roles authorized to a user.
Formally:

userauthorization(user ∈ Ud) = {SRei | SRei ⊆ SRei , (user, SRei) ∈ USRd} (e = 1, 2, . . . , n) (16)

when e = d, SRei indicates the specific role set of local domain for the user; when SRei = ∅, it
explains that the user does not have any specific role of domain e.

sr_assignment(specific_role ∈ SRd)→ 2P. denote all the permissions assigned to a
specific role. Formally:

sr_assignment(specific_role ∈ SRd) = {Pi | Pi ⊆ P, (specific_role, Pi) ∈ SRPd} (17)

Appl. Sci. 2022, 12, 13036 9 of 26

Property 5. If a specific role has a primary specific role, its permission set includes the directly
assigned permissions and the permissions of all its primary roles. The formal expression is as follows:
Suppose,

∀specific_role′, specific_role ∈ SR1;

∀Pa∪b, Pa, Pb ⊆ P;

If,
Pa denotes a permission set directly assigned to specific_role′;

Pb denote the permission set of all primary specific roles of specific_role′,

Pb = ∪
speci f ic_role∈sr_inheritance(speci f ic_role′)

sr_assignment(speci f ic_role)

So, all permissions assigned by specific_role′ are,

Pa∪b = sr_assignment(specific_role′) = Pa ∪ Pb.

user_assignment(user ∈ Ud)→ 2P. denote all permissions a user has. Formally:

user_assignment(user ∈ Ud) = ∪
speci f ic_role∈user_authorization(user)

sr_assignment(speci f ic_role) (18)

user_sessions(user ∈ Ud)→ 2Se . denote all sessions activated by a user. Formally:

user_sessions(user ∈ Ud) =
{

Sdi

∣∣ Sdi
⊆ SRd,

(
user, Sdi

)
∈ USd} (19)

session_user(session ∈ Sd) → user ∈ Ud. denote from a session to a user mapping.
Formally:

session_user(session ∈ Sd) = {user | user ∈ Ud, (user, session) ∈ USd} (20)

session_sr(session ∈ Sd)→ 2SRe . denote all specific roles activated by a session. Formally:

session_sr(session ∈ Sd) = {SRei | SRei ⊆ SRd, (session_user(session), SRei) ∈ USRd} (e = 1, 2, . . . , n) (21)

when e = d, SRei indicates the specific role set of the local domain activated for the session;
whenSRei = ∅, it explains that the session does not activate any specific role of domain e.

session_permission(session ∈ Sd)→ 2P. denote all permissions activated by a session.
Formally:

sessionpermission(session ∈ Sd) = ∪
speci f ic_role∈session_sr(session)

sr_assignment(speci f ic_role) (22)

4. RBAC-IC Execution

The workflow diagram of RBAC-IC is shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 27

session_permission(session ∈ Sd) → 2P. denote all permissions activated by a session. For-
mally:

session_permission(session ∈ Sd) =
specific_role session_ sr session

sr_assignment specific_role
∈ ()

() (22)

4. RBAC-IC Execution
The workflow diagram of RBAC-IC is shown in Figure 4.

Figure 4. Workflow of RBAC-IC.

4.1. Initialization Work
When developing and configuring the system, the platform administrator needs to

create abstract roles for domain administrators to create specific roles. The platform ad-
ministrator uploads the name, system, primary_role and constraint of the abstract role to the
platform. The platform checks whether name of the abstract role exists and whether the
system is empty. After passing all checks, the platform database stores the abstract role
information and inheritance relationship into the abstract role set and inheritance rela-
tionship set. Finally, the platform returns the execution result to the platform administra-
tor. Formally:

AR = AR ∪ abstract_role<system, primary_role, constraint>;

ARH = ARH ∪ (abstract_role, abstract_role[primary_role])
(23)

Platform administrators also need to create permissions for domain administrators
to assign permissions to specific roles. When creating a permission, the platform admin-
istrator uploads the name, category, operation and system of the permission to the platform.
The platform checks whether the name of the permission exists and whether other infor-
mation is empty. After passing all checks, the platform database stores the permission
information into the permission set. Finally, the platform returns the execution results to
the platform administrator. Formally:

P = P ∪ permission<category, operation, system> (24)

After deploying the system for the domain server, the domain administrator needs
to create specific roles for the deployed system. Specific roles are used to authorize the
user to complete the access operation. The domain administrator also needs to create spe-
cific roles with timeliness to meet users’ needs for cross-domain sharing. When creating a
specific role, the domain administrator uploads the name, abstract_role, permissions, system
and valid_time to domain server. The domain server first checks whether the name of the
specific role exists, then checks whether the system is empty, and then checks whether the
associated abstract role and each assigned permission exist. If all checks pass, the domain
of the domain administrator will be taken as the effective range (domain) of the specific
role. The domain database stores the specific role information and associated relationships
into a corresponding set. Finally, the execution results will be returned to the domain ad-
ministrator. Formally:

Figure 4. Workflow of RBAC-IC.

Appl. Sci. 2022, 12, 13036 10 of 26

4.1. Initialization Work

When developing and configuring the system, the platform administrator needs to create
abstract roles for domain administrators to create specific roles. The platform administrator
uploads the name, system, primary_role and constraint of the abstract role to the platform. The
platform checks whether name of the abstract role exists and whether the system is empty. After
passing all checks, the platform database stores the abstract role information and inheritance
relationship into the abstract role set and inheritance relationship set. Finally, the platform
returns the execution result to the platform administrator. Formally:

AR = AR ∪ abstract_role<system, primary_role, constraint>;
ARH = ARH ∪ (abstract_role, abstract_role[primary_role])

(23)

Platform administrators also need to create permissions for domain administrators to
assign permissions to specific roles. When creating a permission, the platform administrator
uploads the name, category, operation and system of the permission to the platform. The
platform checks whether the name of the permission exists and whether other information
is empty. After passing all checks, the platform database stores the permission information
into the permission set. Finally, the platform returns the execution results to the platform
administrator. Formally:

P = P ∪ permission<category, operation, system> (24)

After deploying the system for the domain server, the domain administrator needs
to create specific roles for the deployed system. Specific roles are used to authorize the
user to complete the access operation. The domain administrator also needs to create
specific roles with timeliness to meet users’ needs for cross-domain sharing. When creating
a specific role, the domain administrator uploads the name, abstract_role, permissions, system
and valid_time to domain server. The domain server first checks whether the name of the
specific role exists, then checks whether the system is empty, and then checks whether the
associated abstract role and each assigned permission exist. If all checks pass, the domain
of the domain administrator will be taken as the effective range (domain) of the specific
role. The domain database stores the specific role information and associated relationships
into a corresponding set. Finally, the execution results will be returned to the domain
administrator. Formally:

SRd = SRd ∪ specific_role<abstract_role, permissions, domain, system, valid_time>;
SRARd = SRARd ∪ (specific_role, specific_role[abstract_role]);

SRPd = SRPd ∪ (specific_role, specific_role[permissions]);
SRHd = SRHd ∪ (specific_role, specific_role[primary_role])

(25)

After the deployment of the domain server is completed, ordinary users can register
to join the domain. Formally:

Ud = Ud ∪ user<ordinary_user, domain> (26)

4.2. Authorization and Access Control

The authorization and access control framework of RBAC-IC is shown in Figure 5.
Figure 5 shows that the domain administrators of domain A and domain B have created a
specific role associated with the same abstract role in their respective domains, and assigned
different permissions. An ordinary user in domain A wants to access an object in domain B,
and needs to authorize a relevant specific role in domain B. The user first applies to the
administrator of the local domain, and the administrator sends a notification to domain
B. If the administrator of domain B agrees, the specific role will be authorized to the user.
After the user obtains the specific role, he can access resources in domain B across domains.
Sections 4.2.1 and 4.2.2 describe the details of authorization and access control processing.

Appl. Sci. 2022, 12, 13036 11 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 27

SRd = SRd ∪ specific_role<abstract_role, permissions, domain, system, valid_time>;

SRARd = SRARd ∪ (specific_role, specific_role[abstract_role]);

SRPd = SRPd ∪ (specific_role, specific_role[permissions]);

SRHd = SRHd ∪ (specific_role, specific_role[primary_role])

(25)

After the deployment of the domain server is completed, ordinary users can register
to join the domain. Formally:

Ud = Ud ∪ user<ordinary_user, domain> (26)

4.2. Authorization and Access Control
The authorization and access control framework of RBAC-IC is shown in Figure 5.

Figure 5 shows that the domain administrators of domain A and domain B have created
a specific role associated with the same abstract role in their respective domains, and as-
signed different permissions. An ordinary user in domain A wants to access an object in
domain B, and needs to authorize a relevant specific role in domain B. The user first ap-
plies to the administrator of the local domain, and the administrator sends a notification
to domain B. If the administrator of domain B agrees, the specific role will be authorized
to the user. After the user obtains the specific role, he can access resources in domain B
across domains. Sections 4.2.1 and 4.2.2 describe the details of authorization and access
control processing.

Figure 5. Authorization and access control framework of RBAC-IC.

4.2.1. Authorization Management
Users who want to access the objects in the system need to have corresponding per-

missions, which are obtained by authorizing specific roles. For inner-domain

Figure 5. Authorization and access control framework of RBAC-IC.

4.2.1. Authorization Management

Users who want to access the objects in the system need to have corresponding per-
missions, which are obtained by authorizing specific roles. For inner-domain authorization,
the user applies for a specific role to the domain server where he belongs. If the domain
administrator agrees to authorize, the domain server will check the specific role and authen-
ticate. After the authentication is passed, the domain server will check whether the user
meets the constraint required by the specific role. After the inspection is correct, the domain
server will authorize the specific role to the user. The sequence diagram of applying for
inner-domain authorization is shown in Figure 6.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 27

authorization, the user applies for a specific role to the domain server where he belongs.
If the domain administrator agrees to authorize, the domain server will check the specific
role and authenticate. After the authentication is passed, the domain server will check
whether the user meets the constraint required by the specific role. After the inspection is
correct, the domain server will authorize the specific role to the user. The sequence dia-
gram of applying for inner-domain authorization is shown in Figure 6.

Ordinary user Local domain server
(Database)

Domain
administrator

 Apply for inner-domain
 authorization

Return result

Send notice

Consent authorization

Upload database

Check specific role

Check constraint

Authenticate

Figure 6. Sequence diagram of applying for inner-domain authorization.

When users need to cross-domain accesses objects, it is necessary to apply for cross-
domain authorization, and the domain administrator of the requested domain authorizes
the specific role. The user applies for cross-domain authorization to the local domain
server. After the authentication is passed and the local domain administrator agrees, the
local domain server sends a request to the corresponding domain server. If the adminis-
trator of the requested domain also agrees to authorize, the requested domain server
checks the specific role and determines whether the user meets the constraint. After the
inspection is correct, the domain administrator authorizes the specific role to the user. In
addition, domain administrators can set a valid time of the specific role. When valid time
is reached, the specific role will become invalid, and the user will not be able to continue
to access corresponding resources in the domain. The sequence diagram of applying for
cross-domain authorization is shown in Figure 7.

Figure 6. Sequence diagram of applying for inner-domain authorization.

Appl. Sci. 2022, 12, 13036 12 of 26

When users need to cross-domain accesses objects, it is necessary to apply for cross-
domain authorization, and the domain administrator of the requested domain authorizes
the specific role. The user applies for cross-domain authorization to the local domain server.
After the authentication is passed and the local domain administrator agrees, the local
domain server sends a request to the corresponding domain server. If the administrator
of the requested domain also agrees to authorize, the requested domain server checks the
specific role and determines whether the user meets the constraint. After the inspection
is correct, the domain administrator authorizes the specific role to the user. In addition,
domain administrators can set a valid time of the specific role. When valid time is reached,
the specific role will become invalid, and the user will not be able to continue to access
corresponding resources in the domain. The sequence diagram of applying for cross-
domain authorization is shown in Figure 7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 27

Ordinary user Local domain server
(Database)

Local domain
administrator

 Apply for cross-domain
 authorization

Return result

Send notice

Consent authorization

Requested domain server
(Database)

Requested domain
administrator

Send request

Upload database

Send notice

Consent authorization

Authenticate

Check specific role

Check constraint

Figure 7. Sequence diagram of applying for cross-domain authorization.

4.2.2. Access Control
When the user requests to access objects of system, the system needs to control the

user’s behavior and decide whether to allow the user to access the objects through authen-
tication and authority judgement. The access control can be automatically determined by
the domain server without the operation of the administrator, as shown in Algorithm 1.
The process of cross-domain access control is like that of inner-domain access control, but
it is different when applying for authorization. After the user applies for access to the
object, the user is authenticated in the user’s domain. Then, the permission discrimination
is carried out in the domain of the user’s target object. The permission discrimination pro-
cess checks the correctness of the object, specific role, and permission in turn. Then, the
permission discrimination is carried out in the domain of the user’s target object. It in-
cludes checking whether the object exists, whether the user has the declared specific role
and permission, whether the specific role and permission declared by the user are valid
in the applied domain and system, and whether the specific role is in valid time. After
checking that everything is correct, the user’s operation behavior is executed.

Algorithm 1. Access control.
Input: u(user), o(object), p(permission), sr(specific_role)
Output: bool
1: Domain Server ← Ordinary User(u, o, p, sr)
2: if Ud[u] != true || u[category] != ordinary_user then
3: return false
4: if Od[o] != true || sr[domain] != o[domain] || p[system] != o[system] || p[category] != o[category] then
5: return false
6: for i = 0 to user_authorization(u).length - 1 do
7: if user_authorization(u)[i] == sr && user_authorization(u)[i][valid_time][min_time] < current_time && user_au-
thorization(u)[i][valid_time][max_time] > current_time then
8: for i = 0 to sr_assignment(sr).length - 1 do
9: if sr_assignment(sr)[i] == permission then
10: Sd = Sd ∪ (u, sr)
11: return true
12: return false

Figure 7. Sequence diagram of applying for cross-domain authorization.

4.2.2. Access Control

When the user requests to access objects of system, the system needs to control the
user’s behavior and decide whether to allow the user to access the objects through authen-
tication and authority judgement. The access control can be automatically determined
by the domain server without the operation of the administrator, as shown in Algorithm
1. The process of cross-domain access control is like that of inner-domain access control,
but it is different when applying for authorization. After the user applies for access to the
object, the user is authenticated in the user’s domain. Then, the permission discrimination
is carried out in the domain of the user’s target object. The permission discrimination
process checks the correctness of the object, specific role, and permission in turn. Then,
the permission discrimination is carried out in the domain of the user’s target object. It
includes checking whether the object exists, whether the user has the declared specific role
and permission, whether the specific role and permission declared by the user are valid
in the applied domain and system, and whether the specific role is in valid time. After
checking that everything is correct, the user’s operation behavior is executed.

Appl. Sci. 2022, 12, 13036 13 of 26

Algorithm 1 Access control

Input: u(user), o(object), p(permission), sr(specific_role)
Output: bool

1: Domain Server← Ordinary User(u, o, p, sr)
2: if Ud[u] != true || u[category] != ordinary_user then
3: return false
4: if Od[o] != true || sr[domain] != o[domain] || p[system] != o[system] || p[category] != o[category] then
5: return false
6: for i = 0 to user_authorization(u).length - 1 do
7: if user_authorization(u)[i] == sr && user_authorization(u)[i][valid_time][min_time] < current_time &&

user_authorization(u)[i][valid_time][max_time] > current_time then
8: for i = 0 to sr_assignment(sr).length - 1 do
9: if sr_assignment(sr)[i] == permission then
10: Sd = Sd ∪ (u, sr)
11: return true
12: return false

5. Case Analysis

In order to better understand and verify the RBAC-IC model, a set of multi-domain
information service platform is developed, which uses the RBAC-IC model as the access
control model. At present, the platform has been applied in Taishan Zhizhen Packaging.
The main business of the group is to produce metal cans.

5.1. Platform Architecture

Taishan Zhizhen Packaging has several production subsidiaries in different cities. Each
manufacturing subsidiary of this group has a domain server as a domain in the platform,
called the production domain. Some parts or processes of packaging cans (such as can
cover manufacturing, metal can printing, etc.) are processed by cooperative outsourcing
companies, and the domain server of the outsourcing company is called the outsourced
domain. All administrative departments of the group are located at the group headquarters,
and they share a domain server called the administrative domain. Each production and
outsourced domain contain a production management information system to manage
production data, and a financial management information system to manage the company’s
finances. The administrative domain contains a sales management information system, an
HR management information system, and a financial management information system to,
respectively, manage the corresponding business data. The multi-domain environmental
structure of Taishan Zhizhen Packaging is shown in Figure 8. Clearly, the business logic has
been suitably simplified by considering only a production domain, an outsourced domain
and an administrative domain, and three management information systems: production,
sales and finance.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 27

5. Case Analysis
In order to better understand and verify the RBAC-IC model, a set of multi-domain

information service platform is developed, which uses the RBAC-IC model as the access
control model. At present, the platform has been applied in Taishan Zhizhen Packaging.
The main business of the group is to produce metal cans.

5.1. Platform Architecture
Taishan Zhizhen Packaging has several production subsidiaries in different cities.

Each manufacturing subsidiary of this group has a domain server as a domain in the plat-
form, called the production domain. Some parts or processes of packaging cans (such as
can cover manufacturing, metal can printing, etc.) are processed by cooperative outsourc-
ing companies, and the domain server of the outsourcing company is called the out-
sourced domain. All administrative departments of the group are located at the group
headquarters, and they share a domain server called the administrative domain. Each pro-
duction and outsourced domain contain a production management information system
to manage production data, and a financial management information system to manage
the company’s finances. The administrative domain contains a sales management infor-
mation system, an HR management information system, and a financial management in-
formation system to, respectively, manage the corresponding business data. The multi-
domain environmental structure of Taishan Zhizhen Packaging is shown in Figure 8.
Clearly, the business logic has been suitably simplified by considering only a production
domain, an outsourced domain and an administrative domain, and three management
information systems: production, sales and finance.

Production
domain 1

Production
domain 2

Multi-domain environmental
of Taishan Zhizhen Packaging

Outsourcing
domain

Administra-
tive domain

1. Production system

2. Financial system

1. Sales system

2. HR system

3. Financial system

……

1. Production system

2. Financial system

1. Production system

2. Financial system

Figure 8. Multi-domain environmental structure of Taishan Zhizhen Packaging.

The back-end business and API interfaces of the platform and system are developed
using Spring Boot 2.7.0. MySQL 5.7 is used for platform database and domain database.
The data volume and concurrency of the production system in the production domain
and outsourcing domain are high, and users will interact with the production system un-
interruptedly during the production process. Therefore, it is deployed on a high-perfor-
mance cloud server, and the CPU is Intel Xeon (Cascade Lake) Platinum 8269CY@2.50
GHz (64 G memory). The administrative domain is deployed on the server, and the CPU
of the server is Intel Xeon E5-2620 v3@2.40 GHz (32 G memory).

5.2. Design of Platform Access Control Model
In the platform, platform administrators are responsible for the design of abstract

roles and permissions, while domain administrators are responsible for specific role de-
sign, user registration, and user authorization. The responsibilities of the two types of ad-
ministrators do not intersect, reflecting the platform–domain isolation management fea-
ture of the RBAC-IC and solving the platform–domain management conflict problem.

Figure 8. Multi-domain environmental structure of Taishan Zhizhen Packaging.

Appl. Sci. 2022, 12, 13036 14 of 26

The back-end business and API interfaces of the platform and system are developed
using Spring Boot 2.7.0. MySQL 5.7 is used for platform database and domain database.
The data volume and concurrency of the production system in the production domain and
outsourcing domain are high, and users will interact with the production system uninter-
ruptedly during the production process. Therefore, it is deployed on a high-performance
cloud server, and the CPU is Intel Xeon (Cascade Lake) Platinum 8269CY@2.50 GHz (64 G
memory). The administrative domain is deployed on the server, and the CPU of the server
is Intel Xeon E5-2620 v3@2.40 GHz (32 G memory).

5.2. Design of Platform Access Control Model

In the platform, platform administrators are responsible for the design of abstract roles
and permissions, while domain administrators are responsible for specific role design, user
registration, and user authorization. The responsibilities of the two types of administrators
do not intersect, reflecting the platform–domain isolation management feature of the
RBAC-IC and solving the platform–domain management conflict problem.

5.2.1. Design of Abstract Roles

Abstract roles are designed as shown in Table 1. AR1 and AR3 are the primary roles of
AR2 and AR4, respectively. Specific roles associated with AR2 inherit all the permissions of
specific roles associated with AR1. The cardinality constraint limit for AR2, AR4 and AR7
is 1; that is, their associated specific roles can only be authorized to one user at most. AR2
and AR4 have prerequisite constraints. When authorizing a specific role associated with
AR2 or AR4 to a user, the user must have authorized the specific role associated with AR1
or AR3. AR5 and AR6 are mutex, and their associated specific roles cannot be authorized
to a user at the same time.

Table 1. Design of abstract roles.

Serial Number Name System Primary Role Constraint

AR1 Production staff Production

AR2 Production
executive Production AR1 Cardinality (1)

Prerequisite (AR1)
AR3 Sales staff Sales

AR4 Sales executive Sales AR3 Cardinality (1)
Prerequisite (AR3)

AR5 Accountant Finance Mutex (AR6)
AR6 Auditor Finance Mutex (AR5)
AR7 Treasurer Finance Cardinality (1)

5.2.2. Design of Permissions

Permissions are designed as shown in Table 2. The permissions are valid within the
specified systems of all domains.

5.2.3. Design of Specific Roles

Specific roles are designed as shown in Table 3. The subsidiary is responsible for the
production of three-piece cans and two-piece cans. There are two specific roles SR1 and
SR2 associated with AR1 in the production domain. SR1 and SR2 are assigned the read and
write permissions for the data of three-piece cans and two-piece cans, respectively. The
printing company in the outsourcing domain is responsible for printing metal materials for
the three-piece cans. The printing company is only responsible for printing the three-piece
cans. Therefore, only one specific role SR5 associated with AR1 is required, and SR5 is
assigned read/write permissions for the data of two-piece cans. SR6, the production staff
of the printing company, only has the permission to publish the production report of
three-piece cans. In addition, the printing staff need to work according to the processing
data of the three-piece cans. At this time, the domain administrator of the production

Appl. Sci. 2022, 12, 13036 15 of 26

domain needs to create the specific role SR4, and only assign the data read permission of
the three-piece cans. SR4 is designed to provide cross-domain access for printing staff in
outsourced domains.

Table 2. Design of permissions.

Serial Number Category Operation System

P1 Data of three-piece cans Input Production
P2 Data of three-piece cans Read Production
P3 Data of two-piece cans Input Production
P4 Data of two-piece cans Read Production
P5 Production report of product A Publish Production
P6 Production report of product B Publish Production
P7 Sales data Input Sales
P8 Sales data Read Sales
P9 Sales report Publish Sales

P10 Financial statement Publish Finance
P11 Financial statement Audit Finance
P12 Financial report Publish Finance

Table 3. Design of specific roles.

Serial
Number Name Abstract

Role Permission Domain System Valid Time

SR1 Production staff of three-piece cans AR1 P1, P2 Production Production +∞
SR2 Production staff of two-piece cans AR1 P3, P4 Production Production +∞
SR3 Production Supervisor AR2 P5, P6 Production Production ∞

SR4 Outsourced printing staff AR1 P1 Production Production 2022-07-03T00:00:00Z
2022-07-05T23:59:59Z

SR5 Printing staff AR1 P1, P2 Outsourced Production +∞
SR6 Production Executive AR2 P5 Outsourced Production +∞
SR7 Sales staff AR3 P7, P8 Administrative Sales +∞
SR8 Sales Executive AR4 P9 Administrative Sales +∞
SR9 Accountant AR5 P10 Administrative Finance +∞

SR10 Auditor AR6 P11 Administrative Finance +∞
SR11 Treasurer AR7 P12 Administrative Finance +∞

Due to the inheritance relationship, SR3 inherits all the permissions of SR1, SR2
and SR4, and SR6 inherits the permissions of SR5. Data and specific roles under different
domain servers are isolated from each other, and the specific roles are valid in the designated
systems and domains. Therefore, RBAC-IC has inter-domain isolation management of
the RBAC-IC and solves the problem of inter-domain management conflict. SR3 and SR6
have the same name, but the two roles have different permissions in different domains, so
they have the feature of support role name repetition, solving the problem of role naming
conflicts. SR4 is set by the administrator for users in other domain to cross-domain access,
and the valid time is set to 12 h.

5.2.4. User’s Authorization

Design and authorization of users is shown in Table 4. RBAC-IC has three ways of
authorizing the user a specific role. Users can be authorized multiple roles of a system in
their domain, as shown in Figure 9a. For example, U1 can produce three-piece cans and
two-piece cans, so it is authorized SR1 and SR2 of the production management information
system. Users also can be authorized to have a specific role for multiple systems in their
domain, as shown in Figure 9b. For example, U2 can be the sales executive and treasurer at
the same time, so it is authorized SR8 and SR11 (assuming constraints are met). Users can
be authorized specific roles in other domains, as shown in Figure 9c. For example, U3, the
printing staff in the outsourcing domain, needs to carry out printing according to the data
of three-piece cans in the production domain, and thus, it can be authorized SR4.

Appl. Sci. 2022, 12, 13036 16 of 26

Table 4. User authorization.

User Number Domain of User Specific Role Authorization Result

U1 Production SR1 Allowance
U1 Production SR2 Allowance
U2 Administrative SR8 Allowance
U2 Administrative SR11 Allowance
U3 Outsourced SR4 Allowance
U1 Production SR3 Allowance

U4 Production SR3 Denial
(Cardinality constraint)

U5 Administrative SR8 Denial
(Prerequisite constraint)

U6 Production SR9 Allowance

U6 Production SR10 Rejection
(Static mutex constraint)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 27

Domain

System1 System2 System3

Specific role1 Specific role2 Specific role3

User

Domain

System1

Specific role1 Specific role2 Specific role3

User

Domain2

System1

Domain1

Specific role2

User
(a) (b) (c)

Figure 9. Diagram of the way users are authorized to have specific roles. (a) Single system multi-role
authorize approach. (b) Multi-system multi-role authorize approach. (c) Cross-domain authorize
method.

When authorizing specific roles to users, this will be limited by the constraint. After
having already authorized SR3 to U1, authorizing SR3 to U4 will be denied because SR3
can only authorize one user at most. This is allowed when authorizing SR3 for U1, which
already has the prerequisite role SR1 or SR2 required by SR3, but cannot authorize SR8 to
U5 because U5 has not authorized the prerequisite role SR7 required by SR8, which vio-
lates prerequisite constraints. SR9 has been successfully authorized for U6, so continuing
to authorize SR10 for U6 would be rejected because the two specific roles are mutex.

Table 4. User authorization.

User Number Domain of User Specific Role Authorization Result
U1 Production SR1 Allowance
U1 Production SR2 Allowance
U2 Administrative SR8 Allowance
U2 Administrative SR11 Allowance
U3 Outsourced SR4 Allowance
U1 Production SR3 Allowance

U4 Production SR3 Denial
(Cardinality constraint)

U5 Administrative SR8 Denial
(Prerequisite constraint)

U6 Production SR9 Allowance

U6 Production SR10
Rejection

(Static mutex constraint)

5.2.5. User’s Access Control Operation
Suppose a user requests to input production data of three-piece cans into the produc-

tion management information system in the production domain, the access control exam-
ple is shown in Table 5. U7 does not exist in the production domain, so access is denied
due to authentication failure. When U1 requests access using SR5, the domain of SR5 is
inconsistent with that of the resource, and access is denied. When U1 requests access using
P3, the resource type of P3 does not match the requested resource type, and access is de-
nied. When U2 requests access using SR1, U2 does not authorize SR1, and access is denied.
When U1 requests access using SR1 and P1, SR2 does not assign P1, and access is denied.
When U1 requests access using SR1 and P1, at this point, authentication and permission
discriminations all pass, and access is allowed. When U4 uses SR4 and P1 to request ac-
cess, U4 performs authentication in the outsourced domain and determines the permis-
sion in the production domain. If they all pass, this cross-domain access is allowed.

Figure 9. Diagram of the way users are authorized to have specific roles. (a) Single system multi-role
authorize approach. (b) Multi-system multi-role authorize approach. (c) Cross-domain authorize method.

When authorizing specific roles to users, this will be limited by the constraint. After
having already authorized SR3 to U1, authorizing SR3 to U4 will be denied because SR3
can only authorize one user at most. This is allowed when authorizing SR3 for U1, which
already has the prerequisite role SR1 or SR2 required by SR3, but cannot authorize SR8 to
U5 because U5 has not authorized the prerequisite role SR7 required by SR8, which violates
prerequisite constraints. SR9 has been successfully authorized for U6, so continuing to
authorize SR10 for U6 would be rejected because the two specific roles are mutex.

5.2.5. User’s Access Control Operation

Suppose a user requests to input production data of three-piece cans into the pro-
duction management information system in the production domain, the access control
example is shown in Table 5. U7 does not exist in the production domain, so access is
denied due to authentication failure. When U1 requests access using SR5, the domain of
SR5 is inconsistent with that of the resource, and access is denied. When U1 requests access
using P3, the resource type of P3 does not match the requested resource type, and access
is denied. When U2 requests access using SR1, U2 does not authorize SR1, and access is
denied. When U1 requests access using SR1 and P1, SR2 does not assign P1, and access
is denied. When U1 requests access using SR1 and P1, at this point, authentication and
permission discriminations all pass, and access is allowed. When U4 uses SR4 and P1 to
request access, U4 performs authentication in the outsourced domain and determines the
permission in the production domain. If they all pass, this cross-domain access is allowed.

Appl. Sci. 2022, 12, 13036 17 of 26

Table 5. Example access control table.

User Domain of User Specific Role Permission Result of Access Reason of Denial

U7 Production SR1 P1 Denial Authentication failed
U1 Production SR5 P1 Denial Mismatch between SR5 and resource
U1 Production SR1 P3 Denial Mismatch between P3 and resource
U2 Production SR1 P1 Denial U2 has not authorized SR1
U1 Production SR2 P1 Denial P1 is not assigned to SR2
U1 Production SR1 P1 Allowance /
U3 Outsourced SR4 P1 Allowance /

6. Model Evaluation
6.1. Model Characteristics

For support role name repetition, it is achieved by splitting roles into abstract and
specific roles. Domain administrators create specific roles for systems in the domain, then
assign permissions to specific roles based on responsibilities of the associated abstract
roles. Different permissions are allowed for specific roles with the same name in different
domains, so it will not cause role naming conflicts.

For platform–domain isolation management, RBAC-IC has designed three types of
personnel: platform administrators, domain administrators and ordinary users. Platform
administrators can create abstract roles, but abstract roles do not assign permissions and
authorize users. Therefore, platform administrators cannot control the database of the
domain server. Domain administrators can create specific roles that are valid only within
their domain, and assign permissions to them and authorize them to ordinary users. In this
way, privacy disclosure to platform administrators is avoided.

For inter-domain isolation management, RBAC-IC regards specific roles as a five-tuple,
in which if domain and system element are different, the effective system and domain of
the specific role are different. This ensures that systems and data in different domains are
isolated from each other.

For fine-grained cross-domain sharing, domain administrators create special specific
roles for cross-domain access, and users can cross-domain access after authorizing these
specific roles. These specific roles are authorized by the domain administrator of the
domain where they are located, and the authorizing rights of the roles are not assigned to
other domain administrators, to achieve fine-grained authorization. In addition, domain
administrators can also set valid time for these specific roles, and these specific roles will
automatically become invalid after the expiration.

Table 6 shows the comparison between RBAC-IC and other schemes in the above four
characteristics.

6.2. Security Analysis

Some security violation formulas are proposed to verify the security of the model. In
any case, the security of the system can only be proved if these security violation formulas
cannot be satisfied.

Appl. Sci. 2022, 12, 13036 18 of 26

Table 6. Characteristics comparison between RBAC-IC and other schemes.

Schemes Support Role Name
Repetition

Platform–Domain
Isolation Management

Inter-Domain Isolation
Management Cross-Domain Sharing

RBAC96 [13] Not supported. Not supported. Not supported. Not supported.

ARBAC97 [14] Not supported.
Not supported.

(Administrative role can be
slightly refined to support.)

Not supported. Not supported.

Uddin et al. [17]

Not supported. (Role
redundancy can be

reduced through highly
dynamic workflow and

task concepts.)

Not applicable. Not applicable. Not applicable.

Literature [18,19] Yes. (Expand the role to
two or three dimensions.) Not supported. Yes. (Roles are valid only

within the specified scope.) Not supported.

Zhang et al. [20] Yes. (Expand the role to
four dimensions.)

Yes. (The category element
of the 4D role distinguishes
the platform administrator,
tenant administrator and

user.)

Yes. (Roles are valid only
within the specified scope.) Not supported.

Ferraiolo et al. [21]
Yes. (Use the role

namespace as the role
prefix.)

Not applicable.
Yes. (It can be isolated

through the role
namespace.)

Fine-grained is not
supported. (By delegate the

role assignment rights to
other entities.)

Tang et al. [23] Not applicable. Not applicable.

Fine-grained is not supported. (After the issuer of the truster
establishes private role sets and public role sets, it establishes
a trust relationship with the trustee. The issuer of the truster

can authorize users roles of the public role set.)

Uikey et al. [22] Not applicable.
Yes. (It designs service
providers and domain

administrators.)
Not applicable.

Yes, fine-grained is
supported. (It supports the

way to forward access
control policies to other

domains.)

RBAC-IC

Yes. (Expand the role to
abstract roles and specific

roles, and allow the
specific role under

different domains to have
the same name.)

Yes. (Administrators are
divided into platform

administrators and domain
administrators to handle

specified businesses,
respectively.)

Yes. (Different specific roles
are only valid in the domain

they belong to.)

Fine-grained is not
supported. (The domain

administrator can authorize
other domain users to have
specific roles, and will not

authorize the role
assignment right.)

6.2.1. Model Confidentiality Analysis

1. Unauthorized access;

sr /∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (27)

This formula describes that if user u does not authorize the specific role sr, but the user
still activates session s, sr is used in session s. This indicates that the user has used an
unauthorized specific role for unauthorized access.

Proof that RBAC-IC does not meet Formula (27).
Assume that user u has authorized sr, that is,

sr ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (28)

is established;
When the sr is not authorized to the user, if there is a case where s can be activated by the
user and sr can be used in s, Formula (27) holds;
At the same time. Illustrate the following formula,

sr /∈ user_authorization(u) ∧ sr ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (29)

Appl. Sci. 2022, 12, 13036 19 of 26

should be established;
However, due to sr ∈ user_authorization(u) and sr /∈ user_authorization(u), conflicts exist;
Therefore, Formula (29) does not hold; that is, Formulae (27) and (28) cannot hold at the
same time;
It can be proved that RBAC-IC does not meet Formula (27). �

2. Access with specific role without permission;

p /∈ sr_assignment(sr) ∧ sr ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ p ∈ session_permission(s) (30)

This formula describes that if user u authorizes the specific role sr, sr does not assign
permission p, but the user still activates session s, and p is used in session s. This indicates
that the user has used an unassigned permission for unauthorized access.

The proof process for RBAC-IC not meeting Formula (30) is similar to Formula (27).

3. Access with expired specific role;

current_time /∈ sr[valid_time] ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (31)

This formula describes that the specific role sr has expired, but user u can still use sr in the
activated session s. This indicates that the user is using an expired specific role.

Proof that RBAC-IC does not meet Formula (31).
Assume that the current time is within the effective time range of the specific role sr; that is,
sr[valid_time][min_time] ≤ current_time ≤ sr[valid_time][max_time];
If the current time is not within the valid time range; that is, sr[valid_time][min_time] >
current_time > sr[valid_time][max_time];
If there is a case where s can be activated by the user and sr can be used in s, Formula (31)
holds;
At the same time. Illustrate the following formula,

current_time /∈ sr[valid_time] ∧ current_time ∈ sr[valid_time] ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (32)

should be established;
However, current_time /∈ sr[valid_time] and current_time ∈ sr[valid_time] conflicts exist, and
RBAC-IC stipulates that specific roles can only be used within the validity period.
Therefore, Formulae (31) and (32) cannot hold at the same time.
It can be proved that RBAC-IC does not meet Formula (31). �

6.2.2. Model Constraint Security Analysis

1. Static mutex constraint;

static_mutex(sr1, sr2) ∧ sr1, sr2 ∈ user_authorization(u) (33)

where static_mutex(sr1, sr2) indicates that specific roles sr1 and sr2 have static mutual exclusion
constraints; that is, the two roles cannot be authorized to one user. This formula describes
the sr1 and sr2 that authorize the user u with static mutex constraints at the same time. This
indicates that the static mutual exclusion constraint rule of the specific role is violated.

Proof that RBAC-IC does not meet Formula (33).
Assume there is user u, and specific roles sr1 and sr2, sr1 6= sr2, and there is a static mutual
exclusion relationship between sr1 and sr2;
Assume that sr1 is authorized to u, and sr2 is not authorized to u; that is,

static_mutex(sr1, sr2) ∧ sr1 ∈ user_authorization(u) ∧ sr2 /∈ user_authorization(u) (34)

is established;

Appl. Sci. 2022, 12, 13036 20 of 26

If both sr1 and sr2 are authorized to u, Formula (31) is established;
According to the static mutual exclusion relationship between sr1 and sr2, users can only be
authorized to a specific role in the specific role set with static mutual exclusion relationship;
Therefore, both sr1 and sr2 cannot be authorized to u;
It can be proved that RBAC-IC does not meet Formula (33). �

Figure 10 shows an example of a static mutex constraint.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 27

static_mutex(sr1, sr2) ∧ sr1 ∈ user_authorization(u) ∧ sr2 ∉ user_authorization(u) (34)

is established;
If both sr1 and sr2 are authorized to u, Formula (31) is established;
According to the static mutual exclusion relationship between sr1 and sr2, users can only
be authorized to a specific role in the specific role set with static mutual exclusion rela-
tionship;
Therefore, both sr1 and sr2 cannot be authorized to u;
It can be proved that RBAC-IC does not meet Formula (33). □

Figure 10 shows an example of a static mutex constraint.

da

sr1 sr2

u

Static
mutex

①
② ②

①

Figure 10. There is a static mutex constraint between sr1 and sr2. The domain administrator da can
only authorize one of sr1 and sr2 to the user, that is, only one of ① and ② processes can be executed.

2. Cardinality constraint;

cardinality(sr, m) ∧ sr ∈ user_authorization(u1) ∧ sr ∈ user_authorization(u2) ∧ … ∧ sr ∈ user_authorization(un) (n > m) (35)

where cardinality(sr, m) means that the specific role sr can only be authorized to m users at
most, and there is a cardinality constraint. This formula describes that the specific role sr
is authorized to n users at the same time, and the number of authorizations exceeds the
maximum number of cardinals m. This shows that the cardinal constraint rule of the spe-
cific role is violated.

Proof that RBAC-IC does not meet Formula (35).
Assume that the specific role sr exists, and sr has cardinality constraints cardinality(sr, m);
In the current state, no user has authorized sr. At this time, if the domain administrator
has authorized sr for no more than m users, the cardinality(sr, m) constraint is satisfied;
That is

cardinality(sr, m) ∧ sr ∈ user_authorization(u1) ∧ sr ∈ user_authorization(u2) ∧ … ∧ sr ∈ user_authorization(un) (n ≤ m) (36)

is established;
If the number of users with sr is greater than m, Formula (35) is valid;
According to the pigeonhole principle [31], if m users have m + 1 sr, it means that at least
one user will have two identical sr, but the user cannot authorize this sr again if he has 1
sr;
Therefore, the number of users with sr cannot be greater than m;
According to cardinality(sr, m), sr can only be authorized to m users at most, and no more
than m users have sr.
Therefore, Formula (35) conflicts with cardinal constraint rules, and Formula (35) is not
valid;
It can be proved that RBAC-IC does not meet Formula (35). □

Figure 10. There is a static mutex constraint between sr1 and sr2. The domain administrator da can
only authorize one of sr1 and sr2 to the user, that is, only one of 1© and 2© processes can be executed.

2. Cardinality constraint;

cardinality(sr, m) ∧ sr ∈ user_authorization(u1) ∧ sr ∈ user_authorization(u2) ∧ . . . ∧ sr ∈ user_authorization(un) (n > m) (35)

where cardinality(sr, m) means that the specific role sr can only be authorized to m users
at most, and there is a cardinality constraint. This formula describes that the specific role
sr is authorized to n users at the same time, and the number of authorizations exceeds
the maximum number of cardinals m. This shows that the cardinal constraint rule of the
specific role is violated.

Proof that RBAC-IC does not meet Formula (35).
Assume that the specific role sr exists, and sr has cardinality constraints cardinality(sr, m);
In the current state, no user has authorized sr. At this time, if the domain administrator has
authorized sr for no more than m users, the cardinality(sr, m) constraint is satisfied; That is

cardinality(sr, m) ∧ sr ∈ user_authorization(u1) ∧ sr ∈ user_authorization(u2) ∧ . . . ∧ sr ∈ user_authorization(un) (n ≤ m) (36)

is established;
If the number of users with sr is greater than m, Formula (35) is valid;
According to the pigeonhole principle [31], if m users have m + 1 sr, it means that at least
one user will have two identical sr, but the user cannot authorize this sr again if he has 1 sr;
Therefore, the number of users with sr cannot be greater than m;
According to cardinality(sr, m), sr can only be authorized to m users at most, and no more
than m users have sr.
Therefore, Formula (35) conflicts with cardinal constraint rules, and Formula (35) is not valid;
It can be proved that RBAC-IC does not meet Formula (35). �

3. Prerequisite constraint;

prerequisite(sr1, sr2) ∧ sr2 /∈ user_authorization(u) ∧ sr1 ∈ user_authorization(u) (37)

where prerequisite(sr1, sr2) indicates that the user must have the specific role sr2 before
authorizing the specific role sr1, and sr1 has prerequisite constraints. This formula describes
that the user u is authorized with sr1, but not with sr2. This indicates that the precondition
constraint rule of the specific role is violated.

Appl. Sci. 2022, 12, 13036 21 of 26

Proof that RBAC-IC does not meet Formula (37).
Assume there is user u, and specific roles sr1 and sr2, sr1 6= sr2, and sr2 is a prerequisite role
of sr1;
Follow these steps to authorize users,
step1: Authorize sr2 to u;
step2: Authorize sr1 to u;
If step 1 is never executed and step 2 is directly executed, Formula (37) is established;
According to the prerequisite of the specific role, the user must have authorized the specific
role that has the prerequisite specific role.
Therefore, step2 cannot be executed without step1;
It can be proved that RBAC-IC does not meet Formula (37). �

Figure 11 shows an example of a prerequisite constraint.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 27

3. Prerequisite constraint;

prerequisite(sr1, sr2) ∧ sr2 ∉ user_authorization(u) ∧ sr1 ∈ user_authorization(u) (37)

where prerequisite(sr1, sr2) indicates that the user must have the specific role sr2 before au-
thorizing the specific role sr1, and sr1 has prerequisite constraints. This formula describes
that the user u is authorized with sr1, but not with sr2. This indicates that the precondition
constraint rule of the specific role is violated.

Proof that RBAC-IC does not meet Formula (37).
Assume there is user u, and specific roles sr1 and sr2, sr1 ≠ sr2, and sr2 is a prerequisite role
of sr1;
Follow these steps to authorize users,
step1: Authorize sr2 to u;
step2: Authorize sr1 to u;
If step 1 is never executed and step 2 is directly executed, Formula (37) is established;
According to the prerequisite of the specific role, the user must have authorized the spe-
cific role that has the prerequisite specific role.
Therefore, step2 cannot be executed without step1;
It can be proved that RBAC-IC does not meet Formula (37). □

Figure 11 shows an example of a prerequisite constraint.

da
sr2

u

da
sr1

u
OA OB

Figure 11. sr2 is a prerequisite role of sr1. The OA operation indicates that the domain administrator
da authorizes sr2 to u, and the OB operation indicates that the domain administrator da authorizes
sr1 to u. Before performing the OB operation, OA must be executed, and the OA operation cannot be
skipped to execute OB.

4. Dynamic mutex constraint;

dynamic_mutex(sr1, sr2) ∧ sr1, sr2 ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr1, sr2 ∈ session_sr(s) (38)

where dynamic_mutex(sr1, sr2) indicates that specific roles sr1 and sr2 have a dynamic mu-
tual exclusion constraint; that is, two roles cannot be used by user in one session. This
formula describes that user u is authorized sr1 and sr2 with dynamic mutual exclusion
constraint at the same time, and session s is activated, but user can use sr1 and sr2 at the
same time in s. This shows that the dynamic constraint rules of the specific role are vio-
lated.

Proof that RBAC-IC does not meet Formula (38).
Assume there is user u, and the specific roles sr1 and sr2, sr1 ≠ sr2, sr1 and sr2 have a dynamic
mutual exclusion relationship, and sr1, sr2 ∈ user_authorization(u), sr1 and sr2 cannot exist
in the same session at the same time,
If both sr1 and sr2 exist in session s, Formula (38) holds;
According to the dynamic mutual exclusion relationship between sr1 and sr2, sr1 and sr2
cannot exist in a session.

Figure 11. sr2 is a prerequisite role of sr1. The OA operation indicates that the domain administrator
da authorizes sr2 to u, and the OB operation indicates that the domain administrator da authorizes sr1

to u. Before performing the OB operation, OA must be executed, and the OA operation cannot be
skipped to execute OB.

4. Dynamic mutex constraint;

dynamic_mutex(sr1, sr2) ∧ sr1, sr2 ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr1, sr2 ∈ session_sr(s) (38)

where dynamic_mutex(sr1, sr2) indicates that specific roles sr1 and sr2 have a dynamic mutual
exclusion constraint; that is, two roles cannot be used by user in one session. This formula
describes that user u is authorized sr1 and sr2 with dynamic mutual exclusion constraint at
the same time, and session s is activated, but user can use sr1 and sr2 at the same time in s.
This shows that the dynamic constraint rules of the specific role are violated.

Proof that RBAC-IC does not meet Formula (38).
Assume there is user u, and the specific roles sr1 and sr2, sr1 6= sr2, sr1 and sr2 have a
dynamic mutual exclusion relationship, and sr1, sr2 ∈ user_authorization(u), sr1 and sr2
cannot exist in the same session at the same time,
If both sr1 and sr2 exist in session s, Formula (38) holds;
According to the dynamic mutual exclusion relationship between sr1 and sr2, sr1 and sr2
cannot exist in a session.
Therefore, Formula (38) is not valid;
It can be proved that RBAC-IC does not meet Formula (38). �

Figure 12 shows an example of a dynamic mutex constraint.

Appl. Sci. 2022, 12, 13036 22 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 27

Therefore, Formula (38) is not valid;
It can be proved that RBAC-IC does not meet Formula (38). □

Figure 12 shows an example of a dynamic mutex constraint.

Figure 12. There is a dynamic mutual exclusion constraint between sr1 and sr2. The domain admin-
istrator da allows to authorizes both sr1 and sr2 roles to user u. However, after u activates session s,
only one of sr1 and sr2 can exist in s; that is, only one of ① and ② processes can be executed.

6.2.3. Model Cross-Domain Security Analysis
For cross-domain authorization and cross-domain access in the model, security in-

teroperability needs to be met. For authorization, the domain administrator cannot au-
thorize the specific role of other domains to users. For access, users cannot hold the spe-
cific role or permission of other domains to access the objects of the requesting domain.
1. Cross-domain authorization;

(da[category] = domain_administer ∧ da[domain] = domain1 ∧ sr[domain] = domain2) ∧ authorization(da, u, sr) (39)

where authorization(da, u, sr) means that the domain administrator da authorizes the spe-
cific role sr for user u. This formula describes that da is the domain administrator of do-
main1, sr is the specific role in domain2, and da authorizes sr to user u. This indicates that
the domain administrator authorizes the specific role of other domains to users, which
violates the inter-domain isolation management.

Proof that RBAC-IC does not meet Formula (39).
Assume domain administrator da and user u exist in domain1, and the specific role sr exists
in domain2. da authorizes sr to u, and Formula (39) is established;
However, RBAC-IC requires that the domain administrator can only authorize the specific
roles in the local domain to users;
Formula (39) does not meet the above rules, and the authorization(da, u, sr) operation can-
not be executed;
It can be proved that RBAC-IC does not meet Formula (39). □

Figure 13 shows an example of cross-domain authorization.

da

sr1 sr2

u

Authorization Authorization

s

① ①

Dynamic
mutex

② ②

Figure 12. There is a dynamic mutual exclusion constraint between sr1 and sr2. The domain adminis-
trator da allows to authorizes both sr1 and sr2 roles to user u. However, after u activates session s,
only one of sr1 and sr2 can exist in s; that is, only one of 1© and 2© processes can be executed.

6.2.3. Model Cross-Domain Security Analysis

For cross-domain authorization and cross-domain access in the model, security inter-
operability needs to be met. For authorization, the domain administrator cannot authorize
the specific role of other domains to users. For access, users cannot hold the specific role or
permission of other domains to access the objects of the requesting domain.

1. Cross-domain authorization;

(da[category] = domain_administer ∧ da[domain] = domain1 ∧ sr[domain] = domain2) ∧ authorization(da, u, sr) (39)

where authorization(da, u, sr) means that the domain administrator da authorizes the specific
role sr for user u. This formula describes that da is the domain administrator of domain1, sr
is the specific role in domain2, and da authorizes sr to user u. This indicates that the domain
administrator authorizes the specific role of other domains to users, which violates the
inter-domain isolation management.

Proof that RBAC-IC does not meet Formula (39).
Assume domain administrator da and user u exist in domain1, and the specific role sr exists
in domain2. da authorizes sr to u, and Formula (39) is established;
However, RBAC-IC requires that the domain administrator can only authorize the specific
roles in the local domain to users;
Formula (39) does not meet the above rules, and the authorization(da, u, sr) operation cannot
be executed;
It can be proved that RBAC-IC does not meet Formula (39). �

Figure 13 shows an example of cross-domain authorization.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 27

da

sr1

u

sr2

Authorization Authorizationdomain1 domain2

Figure 13. The solid line indicates that it is feasible for domain administrator da to authorize the
specific role sr1 of local domain to user u. The dotted line indicates that the da authorizes the sr1 of
other domains to the u, but it is not feasible.

2. Cross-domain access (Wrong specific roles);

(sr[domain] = domain1 ∧ o[domain] = domain2) ∨ (sr[system] = system1 ∧ o[system] = system2) ∧ s ∈ user_session(u) ∧ sr ∈
session_sr(s) ∧ access(u, sr, o) (40)

where access(u, sr, o) means that user u uses the specific role sr to access object o. This
formula describes that the specific role sr can be used in domain1 or system1. User u has
activated session s, sr is allowed in s and u successfully uses sr to access object o, but o is
stored in a system in domain2 or system2 in a domain. This indicates that the user has per-
formed an illegal cross-domain operation.

When RBAC-IC uses a specific role to access an object, the specific role cannot be
different from the domain or system of the target object. Figure 14 shows an example of
cross-domain access, which illustrates that RBAC-IC does not satisfy Formula (40).

sr1 o1 sr2 o2

o3

system1

system3

system2

domain1 domain2

②

u

① ① ② ②

①

④

④

③

③

Figure 14. ① Indicates that user u accesses object o1 using the specific role sr1 of system1 under do-
main1, which is allowed. ② Indicates that u uses the specific role sr2 of system2 under domain2, to
access object o2 across domains, which is also allowed. ③ Indicates that sr1 is not allowed to access
o2 across domains. ④ Indicates that it is not allowed to use sr1 to access object o3 in system3 across
systems.

3. Cross-system access (Wrong permissions);

(p[domain] = domain1 ∧ o[domain] = domain2) ∨ (p[system] = system1 ∧ o[system] = system2) ∧ s ∈ user_session(u) ∧ sr ∈
session_permission(s) ∧ access(u, p, o) (41)

where access(u, p, o) indicates that user u accesses object o with permission p. This formula
describes that permission p can be used in domain1 or system1, user u has activated session
s, p is allowed in s and u has successfully used p to access object o, but o is stored in a

Figure 13. The solid line indicates that it is feasible for domain administrator da to authorize the
specific role sr1 of local domain to user u. The dotted line indicates that the da authorizes the sr1 of
other domains to the u, but it is not feasible.

Appl. Sci. 2022, 12, 13036 23 of 26

2. Cross-domain access (Wrong specific roles);

(sr[domain] = domain1 ∧ o[domain] = domain2) ∨ (sr[system] = system1 ∧ o[system] = system2) ∧ s ∈
user_session(u) ∧ sr ∈ session_sr(s) ∧ access(u, sr, o)

(40)

where access(u, sr, o) means that user u uses the specific role sr to access object o. This
formula describes that the specific role sr can be used in domain1 or system1. User u has
activated session s, sr is allowed in s and u successfully uses sr to access object o, but o
is stored in a system in domain2 or system2 in a domain. This indicates that the user has
performed an illegal cross-domain operation.

When RBAC-IC uses a specific role to access an object, the specific role cannot be
different from the domain or system of the target object. Figure 14 shows an example of
cross-domain access, which illustrates that RBAC-IC does not satisfy Formula (40).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 27

da

sr1

u

sr2

Authorization Authorizationdomain1 domain2

Figure 13. The solid line indicates that it is feasible for domain administrator da to authorize the
specific role sr1 of local domain to user u. The dotted line indicates that the da authorizes the sr1 of
other domains to the u, but it is not feasible.

2. Cross-domain access (Wrong specific roles);

(sr[domain] = domain1 ∧ o[domain] = domain2) ∨ (sr[system] = system1 ∧ o[system] = system2) ∧ s ∈ user_session(u) ∧ sr ∈
session_sr(s) ∧ access(u, sr, o) (40)

where access(u, sr, o) means that user u uses the specific role sr to access object o. This
formula describes that the specific role sr can be used in domain1 or system1. User u has
activated session s, sr is allowed in s and u successfully uses sr to access object o, but o is
stored in a system in domain2 or system2 in a domain. This indicates that the user has per-
formed an illegal cross-domain operation.

When RBAC-IC uses a specific role to access an object, the specific role cannot be
different from the domain or system of the target object. Figure 14 shows an example of
cross-domain access, which illustrates that RBAC-IC does not satisfy Formula (40).

sr1 o1 sr2 o2

o3

system1

system3

system2

domain1 domain2

②

u

① ① ② ②

①

④

④

③

③

Figure 14. ① Indicates that user u accesses object o1 using the specific role sr1 of system1 under do-
main1, which is allowed. ② Indicates that u uses the specific role sr2 of system2 under domain2, to
access object o2 across domains, which is also allowed. ③ Indicates that sr1 is not allowed to access
o2 across domains. ④ Indicates that it is not allowed to use sr1 to access object o3 in system3 across
systems.

3. Cross-system access (Wrong permissions);

(p[domain] = domain1 ∧ o[domain] = domain2) ∨ (p[system] = system1 ∧ o[system] = system2) ∧ s ∈ user_session(u) ∧ sr ∈
session_permission(s) ∧ access(u, p, o) (41)

where access(u, p, o) indicates that user u accesses object o with permission p. This formula
describes that permission p can be used in domain1 or system1, user u has activated session
s, p is allowed in s and u has successfully used p to access object o, but o is stored in a

Figure 14. 1© Indicates that user u accesses object o1 using the specific role sr1 of system1 under
domain1, which is allowed. 2© Indicates that u uses the specific role sr2 of system2 under domain2, to
access object o2 across domains, which is also allowed. 3© Indicates that sr1 is not allowed to access
o2 across domains. 4© Indicates that it is not allowed to use sr1 to access object o3 in system3 across
systems.

3. Cross-system access (Wrong permissions);

(p[domain] = domain1 ∧ o[domain] = domain2) ∨ (p[system] = system1 ∧ o[system] = system2) ∧ s ∈
user_session(u) ∧ sr ∈ session_permission(s) ∧ access(u, p, o)

(41)

where access(u, p, o) indicates that user u accesses object o with permission p. This formula
describes that permission p can be used in domain1 or system1, user u has activated session s,
p is allowed in s and u has successfully used p to access object o, but o is stored in a system
in domain2 or system2 in a domain. This indicates that the user has performed an illegal
cross-domain operation.

Explanation and examples of Formula (41) is similar to Formula (40).

6.2.4. Model Platform–Domain Isolation Security Analysis

create_ar(da, ar) indicates that domain administrator da creates abstract role ar. This
formula describes the abstract role ar created by the domain administrator da. This violates
the platform–domain isolation management. In addition, the security violation formula
of the domain administrator performs other operations on platforms, and the platform
administrator’s operations in the domain are similar to Formula (42).

da[category] = domain_administer ∧ create_ar(da, ar) (42)

Assume there is a domain administrator da in a domain under a platform. If the
domain administrator creates an abstract role ar, Formula (41) holds. However, according

Appl. Sci. 2022, 12, 13036 24 of 26

to the platform–domain isolation management feature in RBAC-IC, domain administrators
cannot perform platform level operations, such as creating abstract roles. Therefore, RBAC-
IC does not satisfy Formula (38).

Figure 15 shows an example of platform–domain isolation management.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 25 of 27

system in domain2 or system2 in a domain. This indicates that the user has performed an
illegal cross-domain operation.

Explanation and examples of Formula (41) is similar to Formula (40).

6.2.4. Model Platform–Domain Isolation Security Analysis
create_ar(da, ar) indicates that domain administrator da creates abstract role ar. This

formula describes the abstract role ar created by the domain administrator da. This violates
the platform–domain isolation management. In addition, the security violation formula of
the domain administrator performs other operations on platforms, and the platform ad-
ministrator’s operations in the domain are similar to Formula (42).

da[category] = domain_administer ∧ create_ar(da, ar) (42)

Assume there is a domain administrator da in a domain under a platform. If the do-
main administrator creates an abstract role ar, Formula (41) holds. However, according to
the platform–domain isolation management feature in RBAC-IC, domain administrators
cannot perform platform level operations, such as creating abstract roles. Therefore,
RBAC-IC does not satisfy Formula (38).

Figure 15 shows an example of platform–domain isolation management.

pa

ar

da

srCreate

Create Create

domain

platform

Create

Figure 15. The platform administrator pa creates an abstract role and domain administrator da cre-
ates a specific role are allowed. However, platform administrators create specific roles, and domain
administrators create abstract roles, which are not allowed.

7. Conclusions and Future Work
A role-based access control model for inter-system cross-domain in multi-domain

environment (RBAC-IC) is proposed. This model is based on the traditional RBAC model,
where roles are divided into abstract roles and specific roles play different functions; users
are divided into three categories: platform administrators, domain administrators and or-
dinary users. This paper explains the concepts of the model through formal definitions,
and it expounds upon different functions of abstract roles and specific roles. The execution
process of RBAC-IC is described by pseudocode. RBAC-IC has four features that support
role name repetition, platform–domain isolation management, inter-domain isolation
management, and fine-grained cross-domain sharing. RBAC-IC carried out a typical case
verification under the information service platform of the packaging can manufacturing
group, and it conducted model security analysis by establishing security violation formu-
las. It is proved that RBAC-IC can run securely, and it is suitable to be used as the access
control model of multi-domain information service platform to address the issue of inter-
system cross-domain access control.

The security analysis of the model still needs further research, especially in the aspect
of cascading security threats [32]; for example, the security events of system X in domain

Figure 15. The platform administrator pa creates an abstract role and domain administrator da creates
a specific role are allowed. However, platform administrators create specific roles, and domain
administrators create abstract roles, which are not allowed.

7. Conclusions and Future Work

A role-based access control model for inter-system cross-domain in multi-domain
environment (RBAC-IC) is proposed. This model is based on the traditional RBAC model,
where roles are divided into abstract roles and specific roles play different functions; users
are divided into three categories: platform administrators, domain administrators and
ordinary users. This paper explains the concepts of the model through formal definitions,
and it expounds upon different functions of abstract roles and specific roles. The execution
process of RBAC-IC is described by pseudocode. RBAC-IC has four features that support
role name repetition, platform–domain isolation management, inter-domain isolation
management, and fine-grained cross-domain sharing. RBAC-IC carried out a typical case
verification under the information service platform of the packaging can manufacturing
group, and it conducted model security analysis by establishing security violation formulas.
It is proved that RBAC-IC can run securely, and it is suitable to be used as the access control
model of multi-domain information service platform to address the issue of inter-system
cross-domain access control.

The security analysis of the model still needs further research, especially in the aspect
of cascading security threats [32]; for example, the security events of system X in domain
A may affect other systems in other domains. In the future work, we will carry out more
research in this area.

Author Contributions: Conceptualization, Y.L. and Z.D.; methodology, Y.L. and L.L.; software, Y.L.;
validation, Y.L. and L.L.; formal analysis, Y.L. and L.L.; writing—original draft preparation, Y.L., L.L.
and Z.D.; writing—review and editing, Y.L. and Z.D.; supervision, Z.D. and Y.F.; funding acquisition,
Y.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shaanxi Natural Science Basic Research Project (Grant
Number: 2021KW-07) and the Shaanxi International Science and Technology Cooperation Program
Project (Grant Number: 2022QFY01-14).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Appl. Sci. 2022, 12, 13036 25 of 26

Acknowledgments: The authors thank Timechainer (Beijing) Technology Co., Ltd. and its general
manager Mao Ye for their support in software development. The authors thank Taishan Zhizhen
Packaging Technology Co., Ltd. and Zhipeng Cai of North Automatic Control Technology Institute
for their support in verification.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiao, T. Mobile English Teaching Information Service Platform Based on Edge Computing. Mob. Inf. Syst. 2021, 2021, 2082282.

[CrossRef]
2. Pynnönen, S.; Haltia, E.; Hujala, T. Digital forest information platform as service innovation: Finnish Metsaan.fi service use, users

and utilisation. For. Policy Econ. 2021, 125, 102404. [CrossRef]
3. Qian, C.; Zhang, Y.; Liu, Y.; Wang, Z. A cloud service platform integrating additive and subtractive manufacturing with high

resource efficiency. J. Clean. Prod. 2019, 241, 118379. [CrossRef]
4. Liu, B.; Chen, H.; Junmei, H. Design and Implementation of University Continuing Education Informatization Platform Based on

SaaS Model. In Proceedings of the 2020 15th International Conference on Computer Science & Education (ICCSE), Delft, The
Netherlands, 18–22 August 2020; pp. 253–256. [CrossRef]

5. Mahalle, A.; Yong, J.; Tao, X. Challenges and Mitigation for Application Deployment over SaaS Platform in Banking and Financial
Services Industry. In Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in
Design (CSCWD), Dalian, China, 5–7 May 2021; pp. 288–296. [CrossRef]

6. Celesti, A.; Ruggeri, A.; Fazio, M.; Galletta, A.; Villari, M.; Romano, A. Blockchain-Based Healthcare Workflow for Tele-Medical
Laboratory in Federated Hospital IoT Clouds. Sensors 2020, 20, 2590. [CrossRef]

7. Wen, J.; Deng, B.; Peng, L.; Zhang, Y.; Zhang, B. Building of SaaS platform of hospital operational risk monitoring based on
blockchain and smart contract. J. Med. Inform. 2019, 40, 18–22.

8. Ferraiolo, D.; Kuhn, D. Role-based access controls. In Proceedings of the 15th NIST-NCSC National Computer Security Conference,
Baltimore, MD, USA, 13 October 1992; pp. 554–563.

9. Pan, N.; Sun, L.; He, L.-S.; Zhu, Z.-Q. An Approach for Hierarchical RBAC Reconfiguration with Minimal Perturbation. IEEE
Access 2017, 6, 40389–40399. [CrossRef]

10. Ghafoorian, M.; Abbasinezhad-Mood, D.; Shakeri, H. A Thorough Trust and Reputation Based RBAC Model for Secure Data
Storage in the Cloud. IEEE Trans. Parallel Distrib. Syst. 2018, 30, 778–788. [CrossRef]

11. Thakare, A.; Lee, E.; Kumar, A.; Nikam, V.B.; Kim, Y.-G. PARBAC: Priority-Attribute-Based RBAC Model for Azure IoT Cloud.
IEEE Internet Things J. 2020, 7, 2890–2900. [CrossRef]

12. Chao, L.; He, D.; Huang, X.; Choo, K.K.R.; Vasilakos, A. V B. SeIn: A blockchain-based secure mutual authentication with
fine-grained access control system for industry 4.0. J. Netw. Comput. Appl. 2018, 116, 42–52. [CrossRef]

13. Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; Youman, C.E. Role-based access control models. IEEE Comput. 1996, 29, 38–47.
[CrossRef]

14. Sandhu, R.; Bhamidipati, V.; Munawer, Q. The ARBAC97 model for role-based administration of roles. ACM Trans. Inf. Syst.
Secur. 1999, 2, 105–135. [CrossRef]

15. Ferraiolo, D.F.; Sandhu, R.; Gavrila, S.; Kuhn, D.R.; Chandramouli, R. Proposed NIST standard for role-based access control. ACM
Trans. Inf. Syst. Secur. 2001, 4, 224–274. [CrossRef]

16. Balusamy, B.; Ramachandran, S.; Priya, N. Achieving fine-grained access control and mitigating role explosion by utilising ABE
with RBAC. Int. J. High Perform. Comput. Netw. 2017, 10, 109–117. [CrossRef]

17. Uddin, M.; Islam, S.; Al-Nemrat, A. A Dynamic Access Control Model Using Authorising Workflow and Task-Role-Based Access
Control. IEEE Access 2019, 7, 166676–166689. [CrossRef]

18. Zhang, C.X.; LI, J.F.; Liu, Y.; Zhao, W.D. Design and implementation of universal management system based on roles and scopes.
Comput. Eng. 2008, 34, 47–49. [CrossRef]

19. Li, J.; Zhang, C. A three-dimensional role based user management model in web information systems. In Proceedings of the 2012
International Conference on Information Technology and Software Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 657–665.
[CrossRef]

20. Li, J.; Liao, Z.; Zhang, C.; Shi, Y. A 4D-Role Based Access Control Model for Multitenancy Cloud Platform. Math. Probl. Eng. 2016,
2016, 2935638. [CrossRef]

21. Freudenthal, E.; Pesin, T.; Port, L.; Keenan, E.; Karamcheti, V. dRBAC: Distributed role-based access control for dynamic coalition
environments. In Proceedings of the 22nd International Conference on Distributed Computing Systems, Vienna, Austria, 2–5 July
2002; pp. 554–563. [CrossRef]

22. Tang, B.; Li, Q.; Sandhu, R. A multi-tenant RBAC model for collaborative cloud services. In Proceedings of the 2013 Eleventh
Annual Conference on Privacy, Security and Trust, Tarragona, Spain, 10–12 July 2013; pp. 229–238. [CrossRef]

23. Abdelfattah, D.; Hassan, H.A.; Omara, F.A. A novel role-mapping algorithm for enhancing highly collaborative access control
system. Distrib. Parallel Databases 2022, 40, 521–558. [CrossRef]

http://doi.org/10.1155/2021/2082282
http://doi.org/10.1016/j.forpol.2021.102404
http://doi.org/10.1016/j.jclepro.2019.118379
http://doi.org/10.1109/iccse49874.2020.9201626
http://doi.org/10.1109/cscwd49262.2021.9437798
http://doi.org/10.3390/s20092590
http://doi.org/10.1109/ACCESS.2017.2782838
http://doi.org/10.1109/TPDS.2018.2870652
http://doi.org/10.1109/JIOT.2019.2963794
http://doi.org/10.1016/j.jnca.2018.05.005
http://doi.org/10.1109/2.485845
http://doi.org/10.1145/300830.300839
http://doi.org/10.1145/501978.501980
http://doi.org/10.1504/IJHPCN.2017.083208
http://doi.org/10.1109/ACCESS.2019.2947377
http://doi.org/10.1080/10286600801908949
http://doi.org/10.1007/978-3-642-34528-9_69
http://doi.org/10.1155/2016/2935638
http://doi.org/10.1109/ICDCS.2002.1022279
http://doi.org/10.1109/pst.2013.6596058
http://doi.org/10.1007/s10619-022-07407-9

Appl. Sci. 2022, 12, 13036 26 of 26

24. Shafiq, B.; Joshi, J.; Bertino, E.; Ghafoor, A. Secure interoperation in a multidomain environment employing RBAC policies. IEEE
Trans. Knowl. Data Eng. 2005, 17, 1557–1577. [CrossRef]

25. Du, S.; Joshi, J.B.D. Supporting authorization query and inter-domain role mapping in presence of hybrid role hierarchy. In
Proceedings of the Eleventh ACM Symposium on Access Control Models and Technologies, Lake Tahoe, CA, USA, 7–9 June 2006.
[CrossRef]

26. Gouglidis, A.; Mavridis, I.; Hu, V.C. Security policy verification for multi-domains in cloud systems. Int. J. Inf. Secur. 2013, 13, 97–111.
[CrossRef]

27. Uikey, C.; Bhilare, D.S. RBACA: Role-based access control architecture for multi-domain cloud environment. Int. J. Bus.
Infor-Mation Syst. 2018, 28, 1–17. [CrossRef]

28. Qi, H.; Di, X.; Li, J. Formal definition and analysis of access control model based on role and attribute. J. Inf. Secur. Appl. 2018, 43, 53–60.
[CrossRef]

29. Geethakumari, G.; Negi, A.; Sastry, V.N. A cross-domain role mapping and authorization framework for RBAC in grid systems.
Int. J. Comput. Sci. Appl. 2009, 6, 1–12.

30. Denning, P.J. Fault tolerant operating systems. ACM Comput. Surv. CSUR 1976, 8, 359–389. [CrossRef]
31. Trybulec, W.A. Pigeon hole principle. J. Formaliz. Math. 1990, 2, 575–579.
32. Ebad, S.A. Security assessment of large-scale IT infrastructure. Sci. J. King Faisal Univ. Basic Appl. Sci. 2021, 22, 136–143. [CrossRef]

http://doi.org/10.1109/TKDE.2005.185
http://doi.org/10.1145/1133058.1133090
http://doi.org/10.1007/s10207-013-0205-x
http://doi.org/10.1504/IJBIS.2018.091160
http://doi.org/10.1016/j.jisa.2018.09.001
http://doi.org/10.1145/356678.356680
http://doi.org/10.37575/b/cmp/0055

	Introduction
	Related Work
	Proposed Model
	Overview
	Formal Definition of Model Sets
	Formal Definition of Model Relationships
	Formal Definition of Model Hierarchies
	Formal Definition of Model Functions

	RBAC-IC Execution
	Initialization Work
	Authorization and Access Control
	Authorization Management
	Access Control

	Case Analysis
	Platform Architecture
	Design of Platform Access Control Model
	Design of Abstract Roles
	Design of Permissions
	Design of Specific Roles
	User’s Authorization
	User’s Access Control Operation

	Model Evaluation
	Model Characteristics
	Security Analysis
	Model Confidentiality Analysis
	Model Constraint Security Analysis
	Model Cross-Domain Security Analysis
	Model Platform–Domain Isolation Security Analysis

	Conclusions and Future Work
	References

