Accurate estimation of the state of health (SOH) of lithium-ion batteries is essential for the safe and efficient operation of electric vehicles (EVs). Conventional approaches, including Coulomb counting, electrochemical impedance spectroscopy, and equivalent circuit models, provide useful insights but face practical limitations such
[...] Read more.
Accurate estimation of the state of health (SOH) of lithium-ion batteries is essential for the safe and efficient operation of electric vehicles (EVs). Conventional approaches, including Coulomb counting, electrochemical impedance spectroscopy, and equivalent circuit models, provide useful insights but face practical limitations such as error accumulation, high equipment requirements, and limited applicability across different conditions. These challenges have encouraged the use of machine learning (ML) methods, which can model nonlinear relationships and temporal degradation patterns directly from cycling data. This paper reviews four machine learning algorithms that are widely applied in SOH estimation: support vector regression (SVR), random forest (RF), convolutional neural networks (CNNs), and long short-term memory networks (LSTMs). Their methodologies, advantages, limitations, and recent extensions are discussed with reference to the existing literature. To complement the review, MATLAB-based simulations were carried out using the NASA Prognostics Center of Excellence (PCoE) dataset. Training was performed on three cells (B0006, B0007, B0018), and testing was conducted on an unseen cell (B0005) to evaluate cross-battery generalisation. The results show that the LSTM model achieved the highest accuracy (RMSE = 0.0146, MAE = 0.0118, R
2 = 0.980), followed by CNN and RF, both of which provided acceptable accuracy with errors below 2% SOH. SVR performed less effectively (RMSE = 0.0457, MAPE = 4.80%), reflecting its difficulty in capturing sequential dependencies. These outcomes are consistent with findings in the literature, indicating that deep learning models are better suited for modelling long-term battery degradation, while ensemble approaches such as RF remain competitive when supported by carefully engineered features. This review also identifies ongoing and future research directions, including the use of optimisation algorithms for hyperparameter tuning, transfer learning for adaptation across battery chemistries, and explainable AI to improve interpretability. Overall, LSTM and hybrid models that combine complementary methods (e.g., CNN-LSTM) show strong potential for deployment in battery management systems, where reliable SOH prediction is important for safety, cost reduction, and extending battery lifetime.
Full article