Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 490 KB  
Article
The Electric Vehicle (EV) Revolution: How Consumption Values, Consumer Attitudes, and Infrastructure Readiness Influence the Intention to Purchase Electric Vehicles in Malaysia
by Nor Azila Mohd Noor, Azli Muhammad, Filzah Md Isa, Mohd Farid Shamsudin and Tunku Nur Atikhah Tunku Abaidah
World Electr. Veh. J. 2025, 16(10), 556; https://doi.org/10.3390/wevj16100556 - 30 Sep 2025
Viewed by 1120
Abstract
In response to the rising demand for sustainable transportation, electric vehicles (EVs) are increasingly regarded as viable alternatives to conventional vehicles. This study investigates the intention of Malaysian consumers to choose EVs as their preferred mode of transportation. Consumption values were conceptualized as [...] Read more.
In response to the rising demand for sustainable transportation, electric vehicles (EVs) are increasingly regarded as viable alternatives to conventional vehicles. This study investigates the intention of Malaysian consumers to choose EVs as their preferred mode of transportation. Consumption values were conceptualized as a multi-dimensional construct comprising functional value, symbolic value, emotional value, novelty value, and conditional value. This study examines the relationships between these consumption values, consumer attitudes, and intention to purchase EVs. In addition, this study also examines the mediating role of attitude and the moderating role of infrastructure readiness. Data were gathered using a proportionate stratified sampling method from 264 respondents in Klang Valley, Malaysia. Of the twelve (12) hypotheses tested, four (4) were supported. The analysis indicates positive relationship between attitude and emotional value with consumers’ intention to purchase EVs. Consumers’ attitudes mediate the relationship between functional value, emotional value, and intention to purchase EVs. Infrastructure readiness does not moderate the relationship between consumers’ attitudes towards EVs and their purchase intentions. This study enhances the existing knowledge of consumers’ multifaceted value views about EVs and offers practical guidance for marketers and serves as a reference for policymakers to improve the marketability of EVs. Full article
(This article belongs to the Section Marketing, Promotion and Socio Economics)
Show Figures

Figure 1

26 pages, 1356 KB  
Review
Equity Considerations in Public Electric Vehicle Charging: A Review
by Boyou Chen, Austin Moore, Bochen Jia, Kaihan Zhang and Mengqiu Cao
World Electr. Veh. J. 2025, 16(10), 553; https://doi.org/10.3390/wevj16100553 - 25 Sep 2025
Viewed by 802
Abstract
Public electric vehicle (EV) charging infrastructure is crucial for accelerating EV adoption and reducing transportation emissions; however, disparities in infrastructure access have raised significant equity concerns. This review synthesizes existing knowledge and identifies gaps regarding equity in EV public charging research. Following structured [...] Read more.
Public electric vehicle (EV) charging infrastructure is crucial for accelerating EV adoption and reducing transportation emissions; however, disparities in infrastructure access have raised significant equity concerns. This review synthesizes existing knowledge and identifies gaps regarding equity in EV public charging research. Following structured review protocols, 91 peer-reviewed studies from Scopus and Google Scholar were analyzed, focusing explicitly on equity considerations. The findings indicate that current research on EV public charging equity mainly adopts geographic information systems (GIS), network optimization, behavioral modeling, and hybrid analytical frameworks, yet lacks consistent normative frameworks for assessing equity outcomes. Equity assessments highlight four key dimensions: spatial accessibility, cost burdens, reliability and usability, and user awareness and trust. Socio-economic disparities, particularly income, housing tenure, and ethnicity, frequently exacerbate inequitable access, disproportionately disadvantaging low-income, renter, and minority populations. Additionally, infrastructure-specific choices, including charger reliability, strategic location, and pricing strategies, significantly influence adoption patterns and equity outcomes. However, the existing literature primarily reflects the contexts of North America, Europe, and China, revealing substantial geographical and methodological limitations. This review suggests the need for more robust normative evaluations of equity, comprehensive demographic data integration, and advanced methodological frameworks, thereby guiding targeted, inclusive, and context-sensitive infrastructure planning and policy interventions. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

15 pages, 1898 KB  
Article
Design and Cost Evaluation of Additively Manufactured Electric Vehicle Gearbox Housings
by Steffen Jäger and Tilmann Linde
World Electr. Veh. J. 2025, 16(10), 552; https://doi.org/10.3390/wevj16100552 - 25 Sep 2025
Viewed by 390
Abstract
Additive manufacturing technologies enable the design of complex lightweight structures for electric powertrain applications. This study evaluates the topology optimization and conceptual additive manufacturing of a real electric vehicle gearbox housing, aiming to reduce weight while maintaining structural stiffness. Based on an existing [...] Read more.
Additive manufacturing technologies enable the design of complex lightweight structures for electric powertrain applications. This study evaluates the topology optimization and conceptual additive manufacturing of a real electric vehicle gearbox housing, aiming to reduce weight while maintaining structural stiffness. Based on an existing industrial component, a topology-optimized design featuring an X-shaped rib structure was developed. The manufacturing concept combines Laser Metal Deposition (LMD) with a pre-machined turned part. A comparative material study was carried out using finite element simulations to assess aluminum, magnesium, titanium, and stainless steel in terms of weight, deformation, and natural frequency. The results indicate that aluminum alloys offer the best balance of stiffness and weight due to their high specific modulus and favorable processability. The optimized design achieved a simulated weight reduction of approximately 21% with only a minor increase in rotational deformation. A cost analysis of different manufacturing methods suggests that, while conventional casting remains more economical at higher volumes, additive processes are becoming increasingly viable for small series. The study provides a theoretical foundation for future development of lightweight functionally integrated gearbox housings in electric mobility. Full article
Show Figures

Figure 1

17 pages, 554 KB  
Article
The Potential of Light Electric Vehicles to Substitute Car Trips in Commercial Transport in Germany
by Robert Seiffert, Mascha Brost and Laura Gebhardt
World Electr. Veh. J. 2025, 16(10), 547; https://doi.org/10.3390/wevj16100547 - 23 Sep 2025
Viewed by 365
Abstract
Achieving climate protection goals in the transport sector requires the adoption of innovative mobility solutions and new vehicle concepts. In Germany, commercial transport accounts for one-quarter of the total car mileage. Many of these trips are comparatively short, often involve a single passenger, [...] Read more.
Achieving climate protection goals in the transport sector requires the adoption of innovative mobility solutions and new vehicle concepts. In Germany, commercial transport accounts for one-quarter of the total car mileage. Many of these trips are comparatively short, often involve a single passenger, and require the transport of only small or lightweight goods—yet they are typically carried out by car. Substituting cars with small and light electric vehicles (LEVs) wherever feasible could make commercial transport more efficient and environmentally friendly. LEVs combine a favorable weight-to-payload ratio with the high efficiency of electric drivetrains. This study estimates the share of car trips in commercial transport in Germany that could theoretically be substituted by LEVs. The analysis is based on a comparison of trip characteristics from a national travel survey with the technical capabilities of selected LEV categories. Our results indicate that up to 73% of commercial car trips and 44% of mileage could theoretically be covered by LEVs, with particularly high potential for trips in commercial passenger transport. Although limitations in range and payload restrict the universal applicability of LEVs, the findings reveal substantial opportunities to make commercial transport cleaner and more sustainable. These insights highlight the relevance of LEVs for sustainable commercial transport and offer a data-driven basis for further discussion of their potential and for guiding targeted policy and planning. Full article
(This article belongs to the Section Vehicle and Transportation Systems)
Show Figures

Figure 1

28 pages, 1632 KB  
Review
Surface Waviness of EV Gears and NVH Effects—A Comprehensive Review
by Krisztian Horvath and Daniel Feszty
World Electr. Veh. J. 2025, 16(9), 540; https://doi.org/10.3390/wevj16090540 - 22 Sep 2025
Viewed by 1046
Abstract
Electric vehicle (EV) drivetrains operate at high rotational speeds, which makes the noise, vibration, and harshness (NVH) performance of gear transmissions a critical design factor. Without the masking effect of an internal combustion engine, gear whine can become a prominent source of passenger [...] Read more.
Electric vehicle (EV) drivetrains operate at high rotational speeds, which makes the noise, vibration, and harshness (NVH) performance of gear transmissions a critical design factor. Without the masking effect of an internal combustion engine, gear whine can become a prominent source of passenger discomfort. This paper provides the first comprehensive review focused specifically on gear tooth surface waviness, a subtle manufacturing-induced deviation that can excite tonal noise. Periodic, micron-scale undulations caused by finishing processes such as grinding may generate non-meshing frequency “ghost orders,” leading to tonal complaints even in high-quality gears. The article compares finishing technologies including honing and superfinishing, showing their influence on waviness and acoustic behavior. It also summarizes modern waviness detection techniques, from single-flank rolling tests to optical scanning systems, and highlights data-driven predictive approaches using machine learning. Industrial case studies illustrate the practical challenges of managing waviness, while recent proposals such as controlled surface texturing are also discussed. The review identifies gaps in current research: (i) the lack of standardized waviness metrics for consistent comparison across studies; (ii) the limited validation of digital twin approaches against measured data; and (iii) the insufficient integration of machine learning with physics-based models. Addressing these gaps will be essential for linking surface finish specifications with NVH performance, reducing development costs, and improving passenger comfort in EV transmissions. Full article
Show Figures

Figure 1

15 pages, 3348 KB  
Article
Performance of Electric Bus Batteries in Rollover Scenarios According to ECE R66 and R100 Standards
by Alexsandro Sordi, Bruno Gabriel Menino, Gabriel Isoton Pistorello, Vagner do Nascimento and Giovani Dambros Telli
World Electr. Veh. J. 2025, 16(9), 528; https://doi.org/10.3390/wevj16090528 - 18 Sep 2025
Cited by 1 | Viewed by 498
Abstract
With the growing adoption of electric buses in urban transportation systems, ensuring the safety and structural integrity of their battery systems under accident scenarios has become increasingly important. Among potential accidents, rollover events pose a particular risk, as they can lead to the [...] Read more.
With the growing adoption of electric buses in urban transportation systems, ensuring the safety and structural integrity of their battery systems under accident scenarios has become increasingly important. Among potential accidents, rollover events pose a particular risk, as they can lead to the penetration or deformation of the battery pack and, consequently, trigger thermal runaway. In this context, this study evaluates the structural performance of rechargeable energy storage systems (REESS) in electric buses under rollover conditions, following the guidelines of United Nations Economic Commission for Europe (UNECE) Regulations No. 100 and No. 66. The analysis focuses on the structural safety of uniformly distributing the battery pack beneath the vehicle floor during rollover scenarios. The methodology adopted includes detailed finite element modeling to accurately represent the vehicle structure and battery modules, as well as virtual instrumentation using accelerometers. Simulations were conducted to evaluate structural deformations, battery retention integrity, and acceleration levels within the REESS compartments under rollover impact conditions. The results demonstrated compliance with both regulations and highlighted the importance of properly positioning and securing the battery module to the vehicle floor. The findings contribute to the improvement of design and validation criteria for electric buses, reinforcing the need to align technological innovation with international safety standards. Finally, this research supports the development of safer and more reliable vehicles, promoting sustainable mobility solutions for urban transportation systems. Full article
(This article belongs to the Section Storage Systems)
Show Figures

Figure 1

23 pages, 7026 KB  
Article
Modeling, Simulation, and Performance Evaluation of a Commercial Electric Scooter
by Sajad Solgi, Andreas Stadler, Kazem Pourhossein, Amra Jahic, Maik Plenz and Detlef Schulz
World Electr. Veh. J. 2025, 16(9), 529; https://doi.org/10.3390/wevj16090529 - 18 Sep 2025
Viewed by 603
Abstract
As electric scooters (e-scooters) continue to populate city streets and gain popularity as a key mode of micro-mobility, issues such as their energy consumption and demand from the power grid, as well as optimizing their electrical systems, become increasingly important. Improving performance requires [...] Read more.
As electric scooters (e-scooters) continue to populate city streets and gain popularity as a key mode of micro-mobility, issues such as their energy consumption and demand from the power grid, as well as optimizing their electrical systems, become increasingly important. Improving performance requires a deep understanding of their electrical behavior and the design of smart control strategies. This paper presents a detailed analysis of the entire electrical system of commercial electric scooters, with a particular focus on the performance of key components such as the permanent magnet brushless direct current motor and the lithium-ion battery system. The study involves modeling and simulation of motor control, battery management, and DC-link voltage stabilization using MATLAB/Simulink. The simulations are complemented by laboratory measurements of the motor performance in an SXT Scooters MAX unit under various operating conditions. Additionally, a complete battery charging cycle is analyzed to evaluate charging characteristics and usable energy storage capacity. This paper presents a first step for researchers interested in studying the electrical systems of e-scooters. Additionally, it can serve as educational material for electrical engineers in the field of e-scooters. Full article
Show Figures

Figure 1

16 pages, 5064 KB  
Article
The Impact of Weight Distribution in Heavy Battery Electric Vehicles on Pavement Performance: A Preliminary Study
by Konstantinos Gkyrtis
World Electr. Veh. J. 2025, 16(9), 520; https://doi.org/10.3390/wevj16090520 - 15 Sep 2025
Cited by 1 | Viewed by 1094
Abstract
The transition to heavy-duty electric vehicles (HDEVs) offers substantial environmental benefits but raises concerns about increased pavement deterioration due to the added mass of large battery packs. A key research question is whether additional structural demands on road infrastructure could offset these benefits. [...] Read more.
The transition to heavy-duty electric vehicles (HDEVs) offers substantial environmental benefits but raises concerns about increased pavement deterioration due to the added mass of large battery packs. A key research question is whether additional structural demands on road infrastructure could offset these benefits. This study investigates the impact of battery weight distribution on asphalt pavement performance by comparing conventional diesel trucks with electric trucks under equivalent gross vehicle weight (36 tons). Three battery placement scenarios were evaluated: (i) concentration at the steering axle, (ii) concentration at the rear tractor axles, and (iii) uniform distribution across all tractor axles. Pavement elastic response was analyzed using a representative cross-section using mechanistic–empirical modeling, with fatigue damage estimated according to the Mechanistic–Empirical Pavement Design Guide (MEPDG) fatigue law. Results indicate that tensile strains at the bottom of asphalt layers may increase by up to 60%, with relative fatigue damage rising by 185% and 34% for scenarios (i) and (iii), respectively, while scenario (ii) produced nearly equivalent damage to conventional trucks. These findings highlight the critical role of battery placement; the optimal performance seems to be achieved when weight is concentrated at the rear tractor axles. Full article
Show Figures

Figure 1

24 pages, 921 KB  
Article
Assessing Consumers’ Willingness to Pay for Secondary Utilization of Retired Battery Products: The Role of Incentive Policy, Knowledge, and Perceived Risks
by Ziyi Zhao, Pengyu Dai, Chaoqun Zheng and Huaming Song
World Electr. Veh. J. 2025, 16(9), 516; https://doi.org/10.3390/wevj16090516 - 12 Sep 2025
Viewed by 495
Abstract
The rapid development of the new energy vehicle industry has resulted in a large number of retired power batteries. Creating products from second-use retired batteries (SURB) is crucial for sustainability by extending the batteries’ operational life, which, in turn, conserves resources and protects [...] Read more.
The rapid development of the new energy vehicle industry has resulted in a large number of retired power batteries. Creating products from second-use retired batteries (SURB) is crucial for sustainability by extending the batteries’ operational life, which, in turn, conserves resources and protects the environment. Consequently, this paper establishes a structural equation model (SEM) based on an interpretive structural model (ISM). It investigates consumers’ willingness to pay (WTP) for secondary utilization of retired batteries (SURB) products by extending the theory of planned behavior (TPB)with incentive policy, knowledge, and perceived risk. The study reveals that incentive policies and knowledge are fundamental factors, while subjective norms, perceived risk, and perceived behavioral control exert moderate influence. Attitude emerges as the most significant predictor, directly affecting consumers’ WTP, with perceived behavioral control also playing a key role. Incentive policies and knowledge have an indirect influence through perceived behavioral control and perceived risk. Finally, this paper discusses the theoretical and practical significance of the findings and provides relevant policy recommendations. Full article
Show Figures

Graphical abstract

16 pages, 23983 KB  
Article
A Novel Railgun-Based Actuation System for Ultrafast DC Circuit Breakers in EV Fast-Charging Applications
by Fermín Gómez de León, Ara Bissal, Maurizio Repetto and Fabio Freschi
World Electr. Veh. J. 2025, 16(9), 514; https://doi.org/10.3390/wevj16090514 - 11 Sep 2025
Viewed by 405
Abstract
This paper presents a novel ultrafast DC circuit breaker concept based on a railgun actuator, designed for ultrafast charging stations operating at 800 V and delivering up to 640 kW. The proposed breaker achieves contact opening speeds exceeding 190 m/ [...] Read more.
This paper presents a novel ultrafast DC circuit breaker concept based on a railgun actuator, designed for ultrafast charging stations operating at 800 V and delivering up to 640 kW. The proposed breaker achieves contact opening speeds exceeding 190 m/s, enabling fault current interruption within 200 μs and limiting the peak fault current to 2200 A. This performance significantly reduces breaker stress compared with conventional mechanical solutions. System-level simulations demonstrate a dramatic reduction in energy dissipation during faults—from 11,000 J with a conventional fast breaker to just 250 J using the proposed design. A 3D finite element method model of the railgun actuator confirms the feasibility of achieving a 15 mm stroke in 150 μs. The evolution of current density and magnetic field is analyzed, highlighting the influence of skin and velocity skin effects. Results confirm that the proposed solution acts both as a circuit breaker and a fault current limiter, enhancing safety, reliability, and durability in high-power DC systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

21 pages, 6144 KB  
Article
A Flexible Assembly and Gripping Process of Hairpin Baskets
by Felix Fraider, Peter Dreher, Josette Lindner, Dominik Reichl, Florian Kößler and Jürgen Fleischer
World Electr. Veh. J. 2025, 16(9), 503; https://doi.org/10.3390/wevj16090503 - 7 Sep 2025
Viewed by 549
Abstract
Established hairpin stators for electric traction motors are made up of a large number of so-called hairpins. To produce these stators, the individual hairpins must first be pre-assembled into an auxiliary device in order to achieve the desired winding scheme. The resulting hairpin [...] Read more.
Established hairpin stators for electric traction motors are made up of a large number of so-called hairpins. To produce these stators, the individual hairpins must first be pre-assembled into an auxiliary device in order to achieve the desired winding scheme. The resulting hairpin basket must then be picked up and transported to the lamination stack. Automated solutions for both processes are characterized by a high degree of complexity and low flexibility. Manual assembly, however, is prone to errors. The new approach presented in this paper is therefore based on the collaborative assembly of the hairpins and a flexible hairpin basket gripper. A cobot hands the hairpins in the correct sequence to the operator. The correct positioning of the hairpins in the auxiliary device is ensured by the use of a monitor located under it. The creation of the correct assembly sequence is partly automated by a collision detection program. In addition, a new and flexible hairpin basket gripping concept is presented. Tests show that the cycle times of both new processes are slow due to hardware limitations. This restricts their use to specific applications, such as complex winding patterns or very small quantities. Full article
Show Figures

Figure 1

24 pages, 5081 KB  
Article
Simulative Consumption Analysis of an All-Electric Vehicle Fleet in an Urban Environment
by Paul Heckelmann, Tobias Peichl, Johanna Krettek and Stephan Rinderknecht
World Electr. Veh. J. 2025, 16(9), 500; https://doi.org/10.3390/wevj16090500 - 5 Sep 2025
Viewed by 633
Abstract
The increasing shift towards battery electric vehicles (BEVs) in urban environments raises the question of how real-world traffic conditions affect their energy consumption. While BEVs are expected to reduce local emissions, their total energy demand, particularly in city traffic with with low average [...] Read more.
The increasing shift towards battery electric vehicles (BEVs) in urban environments raises the question of how real-world traffic conditions affect their energy consumption. While BEVs are expected to reduce local emissions, their total energy demand, particularly in city traffic with with low average speeds, and therefore a higher impact of secondary consumption, remains insufficiently understood. To address this, a simulative framework to analyze the average energy consumption of an all-electric vehicle fleet in a mid-sized city, using Darmstadt, Germany, as a case study, is presented. A validated microscopic traffic simulation is built based on 2024 data and enriched with representative powertrain models for various vehicle classes, including passenger cars, trucks, and buses. The simulation allows the assessment of consumption under different traffic densities and speeds, revealing the substantial influence of secondary consumers and traffic flow on total energy demand. Furthermore, the study compares the CO2 emissions of an all-BEV fleet with those of a fully combustion-based fleet. The findings aim to highlight the role of secondary consumers in urban traffic and to identify the potential for energy-saving. Full article
(This article belongs to the Special Issue Electric Vehicle Networking and Traffic Control)
Show Figures

Figure 1

29 pages, 4169 KB  
Article
Evaluation of Waveform Distortion in BESS-Integrated Fast-Charging Station
by Manav Giri and Sarah Rönnberg
World Electr. Veh. J. 2025, 16(9), 497; https://doi.org/10.3390/wevj16090497 - 2 Sep 2025
Viewed by 707
Abstract
This paper presents a detailed, measurement-based assessment of interharmonic, harmonic, and supraharmonic emissions from a Battery Energy Storage System (BESS) supporting electric vehicle (EV) fast charging. In contrast to prior literature, which is largely simulation-based and often neglects interharmonic and even harmonic components, [...] Read more.
This paper presents a detailed, measurement-based assessment of interharmonic, harmonic, and supraharmonic emissions from a Battery Energy Storage System (BESS) supporting electric vehicle (EV) fast charging. In contrast to prior literature, which is largely simulation-based and often neglects interharmonic and even harmonic components, this study provides real-world data under dynamic operating conditions. Emission limits are established in accordance with relevant international standards, with the observed deviations from standard practices highlighted in existing studies. The operation of the BESS-assisted fast-charging system is classified into five distinct operating stages, and the variations in spectral emissions across these stages are analyzed. A comparative evaluation with a grid-fed fast charger reveals the influence of BESS integration on power quality. Notably, the analysis shows a significant increase in even harmonics during EV charging events. This component is identified as the limiting factor in the network’s harmonic hosting capacity, underscoring the need to account for even harmonics in future grid compatibility assessments. These findings provide valuable insights for grid operators, EV infrastructure planners, and standardization bodies aiming to ensure compliance with power quality standards in evolving charging scenarios. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

19 pages, 1105 KB  
Article
From Cell to Pack: Empirical Analysis of the Correlations Between Cell Properties and Battery Pack Characteristics of Electric Vehicles
by Jan Koloch, Mats Heienbrok, Maksymilian Kasperek and Markus Lienkamp
World Electr. Veh. J. 2025, 16(9), 484; https://doi.org/10.3390/wevj16090484 - 25 Aug 2025
Cited by 1 | Viewed by 2366
Abstract
Lithium-ion batteries are pivotal components in battery electric vehicles, significantly influencing vehicle design and performance. This study investigates the interactions between cell properties and battery pack characteristics through statistical correlation analysis of datasets derived from industry-leading benchmarking platforms. Findings indicate that energy densities [...] Read more.
Lithium-ion batteries are pivotal components in battery electric vehicles, significantly influencing vehicle design and performance. This study investigates the interactions between cell properties and battery pack characteristics through statistical correlation analysis of datasets derived from industry-leading benchmarking platforms. Findings indicate that energy densities are comparable across cell formats at the pack level. While NMC and NCA chemistries outperform LFP in energy density at both cell and pack levels, LFP’s favorable cell-to-pack factors mitigate these differences. Analysis of cell properties suggests that increases in cell-level volumetric and gravimetric energy density result in proportionally smaller gains at the pack level due to the growing proportion of required passive components. The impact of cell chemistry and format on the z-dimension of a battery pack is analyzed in order to identify dependencies and influences between nominal cell properties and the geometry of the battery pack. The analysis suggests no significant influence of the used cell chemistry on the vertical dimension of a battery pack. The consideration of cell formats shows a dependency between the battery pack z-dimension and cell geometry, with prismatic cells reaching the highest pack heights and cylindrical cells being observed in packs of smaller vertical dimensions. The study also investigates the emerging sodium-ion battery technology and assesses pack-level energy densities derived from cell-level properties. The insights of this study contribute to the understanding of cell-to-pack relationships, guiding R&D toward improved energy storage solutions for electric vehicles. Full article
Show Figures

Figure 1

18 pages, 6610 KB  
Article
Design and Implementation of a Teaching Model for EESM Using a Modified Automotive Starter-Generator
by Patrik Resutík, Matúš Danko and Michal Praženica
World Electr. Veh. J. 2025, 16(9), 480; https://doi.org/10.3390/wevj16090480 - 22 Aug 2025
Viewed by 3912
Abstract
This project presents the development of an open-source educational platform based on an automotive Electrically Excited Synchronous Machine (EESM) repurposed from a KIA Sportage mild-hybrid vehicle. The introduction provides an overview of hybrid drive systems and the primary configurations employed in automotive applications, [...] Read more.
This project presents the development of an open-source educational platform based on an automotive Electrically Excited Synchronous Machine (EESM) repurposed from a KIA Sportage mild-hybrid vehicle. The introduction provides an overview of hybrid drive systems and the primary configurations employed in automotive applications, including classifications based on power flow and the placement of electric motors. The focus is placed on the parallel hybrid configuration, where a belt-driven starter-generator assists the internal combustion engine (ICE). Due to the proprietary nature of the original control system, the unit was disassembled, and a custom control board was designed using a Texas Instruments C2000 Digital Signal Processor (DSP). The motor features a six-phase dual three-phase stator, offering improved torque smoothness, fault tolerance, and reduced current per phase. A compact Anisotropic Magneto Resistive (AMR) position sensor was implemented for position and speed measurements. Current sensing was achieved using both direct and magnetic field-based methods. The control algorithm was verified on a modified six-phase inverter under simulated vehicle conditions utilizing a dynamometer. Results confirmed reliable operation and validated the control approach. Future work will involve complete hardware testing with the new control board to finalize the platform as a flexible, open-source tool for research and education in hybrid drive technologies. Full article
Show Figures

Figure 1

17 pages, 4249 KB  
Article
Electric Vehicle System Design Course—Implementing Synthesis-Oriented Education
by G. Maarten Bonnema, J. Roberto Reyes Garcia and Roy van Zijl
World Electr. Veh. J. 2025, 16(8), 475; https://doi.org/10.3390/wevj16080475 - 20 Aug 2025
Viewed by 888
Abstract
The field of electric vehicles and electric mobility, like other modern engineering practice, not only requires deep analytical skills but increasingly demands the ability to synthesise and integrate knowledge across multiple disciplines (e.g., electrical engineering, mechanical engineering, sustainability engineering, design engineering) to create [...] Read more.
The field of electric vehicles and electric mobility, like other modern engineering practice, not only requires deep analytical skills but increasingly demands the ability to synthesise and integrate knowledge across multiple disciplines (e.g., electrical engineering, mechanical engineering, sustainability engineering, design engineering) to create innovative systems. Education today, however, still has a strong analysis focus: learning, exploring, and understanding theories and concepts is the main drive. Design and synthesis build on those and aim at bringing together theories and concepts into creative and innovative systems. Teaching design and synthesis is notoriously hard. The design of electric vehicles exemplifies the complexity of contemporary engineering problems, requiring the integration of multiple domains to experience the challenges connected to design and synthesis. This paper presents the need for, rationale behind, setup of, and experiences with a 5 European Credit (140 h) Master’s-level (postgraduate) course named “Electric Vehicle System Design” that we developed as a joint effort for the University of Twente and the University of South-Eastern Norway. The course is specifically designed to immerse students in the multidisciplinary design and synthesis processes central to electric mobility. In the paper, the course framework, project-based approach, and lessons learned are discussed. This highlights how engineering students can be equipped for the challenges inherent to designing electric vehicles. Full article
Show Figures

Figure 1

24 pages, 1733 KB  
Article
The Soft Fixed Route Hybrid Electric Aircraft Charging Problem with Variable Speed
by Anthony Deschênes, Raphaël Boudreault, Jonathan Gaudreault and Claude-Guy Quimper
World Electr. Veh. J. 2025, 16(8), 471; https://doi.org/10.3390/wevj16080471 - 18 Aug 2025
Viewed by 413
Abstract
The shift toward sustainable aviation has accelerated research into hybrid electric aircraft, particularly in the context of regional air mobility. To support this transition, we introduce the Soft Fixed Route Hybrid Electric Aircraft Charging Problem with Variable Speed (S-FRHACP-VS), a novel optimization problem [...] Read more.
The shift toward sustainable aviation has accelerated research into hybrid electric aircraft, particularly in the context of regional air mobility. To support this transition, we introduce the Soft Fixed Route Hybrid Electric Aircraft Charging Problem with Variable Speed (S-FRHACP-VS), a novel optimization problem for managing hybrid electric aircraft operations that considers variable speed. The objective is to minimize total costs by determining charging strategies, refueling decisions, hybridization ratios, and speed decisions while adhering to a soft schedule. This paper introduces an iterative variable-based fixation heuristic, named Iterative Two-Stage Mixed-Integer Programming Heuristic (ITS-MIP-H), that alternatively optimizes speed and hybridization ratios while considering the soft schedule constraints, nonlinear charging, and nonlinear energy consumption functions. In addition, a metaheuristic genetic algorithm is proposed as an alternative optimization approach. Experiments on ten realistic flight instances demonstrate that optimizing speed leads to an average cost reduction of 7.64% compared to the best non-speed-optimized model, with reductions of up to 18.64% compared to an all-fuel-based heuristic. Although genetic algorithm provides a viable alternative that performs better than the best non-speed-optimized model, the proposed iterative variable-based fixation heuristic approach consistently outperforms the metaheuristic, achieving the best solutions within seconds. These results provide new insights into the integration of hybrid electric aircraft within transportation networks, contributing to advancements in aircraft routing optimization, energy-efficient operations, and sustainable aviation policy development. Full article
(This article belongs to the Special Issue Electric and Hybrid Electric Aircraft Propulsion Systems)
Show Figures

Figure 1

25 pages, 9055 KB  
Article
Genetic Algorithm-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
by Xingliang Yang and Yujie Wang
World Electr. Veh. J. 2025, 16(8), 467; https://doi.org/10.3390/wevj16080467 - 16 Aug 2025
Cited by 1 | Viewed by 691
Abstract
Enhancing system durability and fuel economy stands as a crucial factor in the energy management of fuel cell hybrid vehicles. This paper proposes an Equivalent Consumption Minimization Strategy (ECMS) based on the Genetic Algorithm (GA), aiming to minimize the overall operating cost of [...] Read more.
Enhancing system durability and fuel economy stands as a crucial factor in the energy management of fuel cell hybrid vehicles. This paper proposes an Equivalent Consumption Minimization Strategy (ECMS) based on the Genetic Algorithm (GA), aiming to minimize the overall operating cost of the system. First, this study establishes a dynamic model of the hydrogen–electric hybrid vehicle, a static input–output model of the hybrid power system, and an aging model. Next, a speed prediction method based on an Autoregressive Integrated Moving Average (ARIMA) model is designed. This method fits a predictive model by collecting historical speed data in real time, ensuring the robustness of speed prediction. Finally, based on the speed prediction results, an adaptive Equivalence Factor (EF) method using a GA is proposed. This method comprehensively considers fuel consumption and the economic costs associated with the aging of the hydrogen–electric hybrid system, forming a total operating cost function. The GA is then employed to dynamically search for the optimal EF within the cost function, optimizing the system’s economic performance while ensuring real-time feasibility. Simulation outcomes demonstrate that the proposed energy management strategy significantly enhances both the durability and fuel economy of the fuel cell hybrid vehicle. Full article
Show Figures

Figure 1

18 pages, 577 KB  
Article
Total Cost of Ownership of Electric Buses in Europe
by Rishabh Ghotge, Daan van Rooij and Sanne van Breukelen
World Electr. Veh. J. 2025, 16(8), 464; https://doi.org/10.3390/wevj16080464 - 13 Aug 2025
Cited by 1 | Viewed by 3641
Abstract
This study presents the total cost of ownership (TCO) of battery electric buses across Europe (the EU27 + UK + Türkiye). A comprehensive review of the assumptions and data used for the TCO calculation of buses in the literature is provided, along with [...] Read more.
This study presents the total cost of ownership (TCO) of battery electric buses across Europe (the EU27 + UK + Türkiye). A comprehensive review of the assumptions and data used for the TCO calculation of buses in the literature is provided, along with calculations of the different bus TCO excluding labor costs, across these countries. The calculated TCO is compared with diesel costs in each country to identify the countries in which bus electrification is financially most competitive. The study reveals that the financial case for bus electrification is strongest in Finland, France, Belgium and Greece (TCOs around €750k to €850k and high diesel costs in the range of €1.70 per liter) and is weakest in Malta, Bulgaria and Cyprus. These results are expected to be of interest for operators, academics, policy makers, and financial investors in bus electrification. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

31 pages, 5099 KB  
Article
Scalable Energy Management Model for Integrating V2G Capabilities into Renewable Energy Communities
by Niccolò Pezzati, Eleonora Innocenti, Lorenzo Berzi and Massimo Delogu
World Electr. Veh. J. 2025, 16(8), 450; https://doi.org/10.3390/wevj16080450 - 7 Aug 2025
Cited by 1 | Viewed by 1142
Abstract
To promote a more decentralized energy system, the European Commission introduced the concept of Renewable Energy Communities (RECs). Meanwhile, the increasing penetration of Electric Vehicles (EVs) may significantly increase peak power demand and consumption ramps when charging sessions are left uncontrolled. However, by [...] Read more.
To promote a more decentralized energy system, the European Commission introduced the concept of Renewable Energy Communities (RECs). Meanwhile, the increasing penetration of Electric Vehicles (EVs) may significantly increase peak power demand and consumption ramps when charging sessions are left uncontrolled. However, by integrating smart charging strategies, such as Vehicle-to-Grid (V2G), EV storage can actively support the energy balance within RECs. In this context, this work proposes a comprehensive and scalable model for leveraging smart charging capabilities in RECs. This approach focuses on an external cooperative framework to optimize incentive acquisition and reduce dependence on Medium Voltage (MV) grid substations. It adopts a hybrid strategy, combining Mixed-Integer Linear Programming (MILP) to solve the day-ahead global optimization problem with local rule-based controllers to manage power deviations. Simulation results for a six-month case study, using historical demand data and synthetic charging sessions generated from real-world events, demonstrate that V2G integration leads to a better alignment of overall power consumption with zonal pricing, smoother load curves with a 15.5% reduction in consumption ramps, and enhanced cooperation with a 90% increase in shared power redistributed inside the REC. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Graphical abstract

29 pages, 28606 KB  
Article
The Speed of Shared Autonomous Vehicles Is Critical to Their Demand Potential
by Tilmann Schlenther and Kai Nagel
World Electr. Veh. J. 2025, 16(8), 447; https://doi.org/10.3390/wevj16080447 - 7 Aug 2025
Viewed by 954
Abstract
Under a 2021 amendment to German law, the KelRide project became the first public on-demand service operating electric autonomous vehicles (AVs) without fixed routes on public roads. This paper addresses two notable gaps in the literature by (1) conducting an ex post evaluation [...] Read more.
Under a 2021 amendment to German law, the KelRide project became the first public on-demand service operating electric autonomous vehicles (AVs) without fixed routes on public roads. This paper addresses two notable gaps in the literature by (1) conducting an ex post evaluation of demand predictions for a non-infrastructure (Mobility-on-Demand (MoD)) project and (2) using real-world data to analyze how demand responds to key Autonomous Mobility-on-Demand (AMoD) system parameters in a rural context. Earlier simulation-based demand forecasts are compared to observed booking data, and the recalibrated model is used to investigate the sensitivity of passenger numbers to vehicle speed, fleet size, service area, operating hours, and idle vehicle positioning. Results show that increasing vehicle speed leads to a superlinear rise in passenger numbers—especially at small fleet sizes—while demand saturates at large fleet sizes. A linear increase in demand is observed with expanding service areas, provided fleet size is sufficient. Extending operating hours from 9 a.m.–4 p.m. to full-day service increases demand by a factor of two to four. Passengers numbers also vary notably depending on the positioning of idle vehicles. Consistent with empirical findings, the analysis underscores that raising AV speed is essential for ensuring the long-term viability of autonomous mobility services. Full article
Show Figures

Figure 1

52 pages, 1100 KB  
Article
The Impact of Renewable Generation Variability on Volatility and Negative Electricity Prices: Implications for the Grid Integration of EVs
by Marek Pavlík, Martin Vojtek and Kamil Ševc
World Electr. Veh. J. 2025, 16(8), 438; https://doi.org/10.3390/wevj16080438 - 4 Aug 2025
Viewed by 1293
Abstract
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot [...] Read more.
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot prices, and electric vehicle (EV) charging strategies. Based on empirical data from Germany, France, and the Czech Republic for the period 2015–2025, four research hypotheses are tested using correlation and regression analysis, cost simulations, and classification algorithms. The results confirm a negative correlation between the RES share and electricity prices, as well as the effectiveness of smart charging in reducing costs. At the same time, it is shown that the occurrence of negative prices is significantly affected by a high RES share. The correlation analysis further suggests that higher production from RESs increases the potential for price optimisation through smart charging. The findings have implications for policymaking aimed at flexible consumption and efficient RES integration. Full article
Show Figures

Graphical abstract

24 pages, 4441 KB  
Article
Simulation of Trip Chains in a Metropolitan Area to Evaluate the Energy Needs of Electric Vehicles and Charging Demand
by Pietro Antonio Centrone, Giuseppe Brancaccio and Francesco Deflorio
World Electr. Veh. J. 2025, 16(8), 435; https://doi.org/10.3390/wevj16080435 - 4 Aug 2025
Viewed by 655
Abstract
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for [...] Read more.
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for realistic journeys performed by car, a simulation approach is proposed here, using travel data collected from real vehicles to obtain trip chains for multiple consecutive days. Car travel activities, including stops with the option of charging, were simulated by applying an agent-based approach. Charging operations can be integrated into trip chains for user activities, assuming that they remain unchanged in the event that vehicles switch to electric. The energy consumption of the analyzed trips, disaggregated by vehicle type, was estimated using the average travel speed, which is useful for capturing the main route features (ranging from urban to motorways). Data were recorded for approximately 25,000 vehicles in the Turin Metropolitan Area for six consecutive days. Market segmentation of the vehicles was introduced to take into consideration different energy consumption rates and charging times, given that the electric power, battery size, and consumption rate can be related to the vehicle category. Charging activities carried out using public infrastructure during idle time between consecutive trips, as well as those carried out at home or work, were identified in order to model different needs. Full article
Show Figures

Figure 1

14 pages, 650 KB  
Article
Determining the Spanish Public’s Intention to Adopt Hydrogen Fuel-Cell Vehicles
by Roser Sala, Lila Gonçalves, Hitomi Sato, Ning Huan, Toshiyuki Yamamoto, Dimitrios Tzioutzios and Jose-Blas Navarro
World Electr. Veh. J. 2025, 16(8), 436; https://doi.org/10.3390/wevj16080436 - 4 Aug 2025
Viewed by 795
Abstract
Understanding what people think about hydrogen energy and how this influences their acceptance of the associated technology is a critical area of research. The public’s willingness to adopt practical applications of hydrogen energy, such as hydrogen fuel-cell vehicles (HFCVs), is a key factor [...] Read more.
Understanding what people think about hydrogen energy and how this influences their acceptance of the associated technology is a critical area of research. The public’s willingness to adopt practical applications of hydrogen energy, such as hydrogen fuel-cell vehicles (HFCVs), is a key factor in their deployment. To analyse the direct and indirect effects of key attitudinal variables that could influence the intention to use HFCVs in Spain, an online questionnaire was administered to a representative sample of the Spanish population (N = 1000). A path analysis Structural Equation Model (SEM) was applied to determine the effect of different attitudinal variables. A high intention to adopt HFCVs in Spain was found (3.8 out of 5), assuming their wider availability in the future. The path analysis results indicated that general acceptance of hydrogen technology and perception of its benefits had the greatest effect on the public’s intention to adopt HFCVs. Regarding indirect effects, the role of trust in hydrogen technology was notable, having significant mediating effects not only through general acceptance of hydrogen energy and local acceptance of hydrogen refuelling stations (HRS), but also through positive and negative emotions and benefits perception. The findings will assist in focusing the future hydrogen communication strategies of both the government and the private (business) sector. Full article
Show Figures

Figure 1

32 pages, 3972 KB  
Article
A Review and Case of Study of Cooling Methods: Integrating Modeling, Simulation, and Thermal Analysis for a Model Based on a Commercial Electric Permanent Magnet Synchronous Motor
by Henrry Gabriel Usca-Gomez, David Sebastian Puma-Benavides, Victor Danilo Zambrano-Leon, Ramón Castillo-Díaz, Milton Israel Quinga-Morales, Javier Milton Solís-Santamaria and Edilberto Antonio Llanes-Cedeño
World Electr. Veh. J. 2025, 16(8), 437; https://doi.org/10.3390/wevj16080437 - 4 Aug 2025
Cited by 1 | Viewed by 1954
Abstract
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of [...] Read more.
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of a commercial motor–generator system in high-demand applications. A baseline model of a permanent magnet synchronous motor (PMSM) was developed using MotorCAD 2023® software, which was supported by reverse engineering techniques to accurately replicate the motor’s physical and thermal characteristics. Subsequently, multiple cooling strategies were simulated under consistent operating conditions to assess their effectiveness. These strategies include conventional axial water jackets as well as advanced oil-based methods such as shaft cooling and direct oil spray to the windings. The integration of these systems in hybrid configurations was also explored to maximize thermal efficiency. Simulation results reveal that hybrid cooling significantly reduces the temperature of critical components such as stator windings and permanent magnets. This reduction in thermal stress improves current efficiency, power output, and torque capacity, enabling reliable motor operation across a broader range of speeds and under sustained high-load conditions. The findings highlight the effectiveness of hybrid cooling systems in optimizing both thermal management and operational performance of electric machines. Full article
Show Figures

Figure 1

19 pages, 440 KB  
Article
Cost-Benefit Analysis of Diesel vs. Electric Buses in Low-Density Areas: A Case Study City of Jastrebarsko
by Marko Šoštarić, Marijan Jakovljević, Marko Švajda and Juraj Leonard Vertlberg
World Electr. Veh. J. 2025, 16(8), 431; https://doi.org/10.3390/wevj16080431 - 1 Aug 2025
Viewed by 1254
Abstract
This paper presents a comprehensive analysis comparing the implementation of electric and diesel buses for public transport services in the low-density area of the City of Jastrebarsko in Croatia. It utilizes a multidimensional approach and incorporates direct and indirect costs, such as vehicle [...] Read more.
This paper presents a comprehensive analysis comparing the implementation of electric and diesel buses for public transport services in the low-density area of the City of Jastrebarsko in Croatia. It utilizes a multidimensional approach and incorporates direct and indirect costs, such as vehicle acquisition, operation, charging, maintenance, and environmental impact costs during the lifecycle of the buses. The results show that, despite the higher initial investment in electric buses, these vehicles offer savings, especially when coupled with significantly reduced emissions of pollutants, which decreases indirect costs. However, local contexts differ, leading to a need to revise whether or not a municipality can finance the procurement and operations of such a fleet. The paper utilizes a robust methodological framework, integrating a proposal based on real-world data and demand and combining it with predictive analytics to forecast long-term benefits. The findings of the paper support the introduction of buses as a sustainable solution for Jastrebarsko, which provides insights for public transport planners, urban planners, and policymakers, with a discussion about the specific issues regarding the introduction, procurement, and operations of buses of different propulsion in a low-density area. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

17 pages, 11742 KB  
Article
The Environmental and Grid Impact of Boda Boda Electrification in Nairobi, Kenya
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(8), 427; https://doi.org/10.3390/wevj16080427 - 31 Jul 2025
Viewed by 1490
Abstract
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, [...] Read more.
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, we simulated the effects of a full-scale transition from internal combustion engine (ICE) vehicles to electric motorbikes. We analysed various scenarios, including different battery charging strategies (swapping and home charging), motor efficiencies, battery capacities, charging rates, and the potential for solar power offsetting. The results indicate that electrification could reduce daily CO2 emissions by approximately 85% and eliminate tailpipe particulate matter emissions. However, transitioning the entire country’s fleet would increase the national daily energy demand by up to 6.85 GWh and could introduce peak grid loads as high as 2.40 GW, depending on the charging approach and vehicle efficiency. Battery swapping was found to distribute the grid load more evenly and better complement solar power integration compared to home charging, which concentrates demand in the evening. This research provides a scalable, data-driven framework for policymakers to assess the impacts of transport electrification in similar urban contexts, highlighting the critical trade-offs between environmental benefits and grid infrastructure requirements. Full article
Show Figures

Figure 1

26 pages, 4789 KB  
Article
Analytical Modelling of Arc Flash Consequences in High-Power Systems with Energy Storage for Electric Vehicle Charging
by Juan R. Cabello, David Bullejos and Alvaro Rodríguez-Prieto
World Electr. Veh. J. 2025, 16(8), 425; https://doi.org/10.3390/wevj16080425 - 29 Jul 2025
Viewed by 1175
Abstract
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with [...] Read more.
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with exponential growth expected over the next few years. In this article, the various charging modes for EVs are explored, and the risks associated with charging technologies are analysed, particularly for charging systems in high-power DC with Lithium battery energy storage, given their long market deployment and characteristic behaviour. In particular, the Arc Flash (AF) risk present in high-power DC chargers will be studied, involving numerous simulations of the charging process. Subsequently, the Incident Energy (IE) analysis is carried out at different specific points of a commercial high-power ‘Mode 4’ charger. For this purpose, different analysis methods of recognised prestige, such as Doan, Paukert, or Stokes and Oppenlander, are applied, using the latest version of the ETAP® simulation tool version 22.5.0. This study focuses on quantifying the potential severity (consequences) of an AF event, assuming its occurrence, rather than performing a probabilistic risk assessment according to standard methodologies. The primary objective of this research is to comprehensively quantify the potential consequences for workers involved in the operation, maintenance, repair, and execution of tasks related to EV charging systems. This analysis makes it possible to provide safe working conditions and to choose the appropriate and necessary personal protective equipment (PPE) for each type of operation. It is essential to develop this novel process to quantify the consequences of AF and to protect the end users of EV charging systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

22 pages, 4225 KB  
Article
One-Dimensional Simulation of Real-World Battery Degradation Using Battery State Estimation and Vehicle System Models
by Yuya Hato, Wei-hsiang Yang, Toshio Hirota, Yushi Kamiya and Kiyotaka Sato
World Electr. Veh. J. 2025, 16(8), 420; https://doi.org/10.3390/wevj16080420 - 25 Jul 2025
Viewed by 929
Abstract
This study aims to develop a method for analyzing real-world battery degradation in electric vehicles in order to identify the optimal battery management system (BMS) during the early digital phase of vehicle development. Battery management of lithium-ion batteries (LiBs) in electric vehicles is [...] Read more.
This study aims to develop a method for analyzing real-world battery degradation in electric vehicles in order to identify the optimal battery management system (BMS) during the early digital phase of vehicle development. Battery management of lithium-ion batteries (LiBs) in electric vehicles is important to ensure a stable output and to counteract degradation and thermal runaway. To design the optimal system, it is most effective to use a 1D (one-dimensional) vehicle system simulation model, which connects each unit model inside the vehicle, due to the system’s complexity. In order to create a long-term degradation simulation in a vehicle system model, it is important to reduce computational load. Therefore, in this paper, we studied a suitable battery degradation calculation for the vehicle system model based on an equivalent circuit model (ECM) and degradation approximation formulas. After implementing these models, we analyzed long-term degradation behavior through the real-world operation of an electric vehicle driver. We first implemented a high-accuracy ECM using transient charge–discharge tests and Bayesian Optimization. Next, we formulated approximation formulas for degradation prediction based on calendar and cycle degradation tests. Finally, we simulated real-world degradation behavior using these models. The simulation results revealed that even for users who frequently use electric vehicles, degradation under storage conditions is the dominant factor in overall degradation. Full article
Show Figures

Figure 1

17 pages, 706 KB  
Article
Empirical Energy Consumption Estimation and Battery Operation Analysis from Long-Term Monitoring of an Urban Electric Bus Fleet
by Tom Klaproth, Erik Berendes, Thomas Lehmann, Richard Kratzing and Martin Ufert
World Electr. Veh. J. 2025, 16(8), 419; https://doi.org/10.3390/wevj16080419 - 25 Jul 2025
Viewed by 1710
Abstract
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational [...] Read more.
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational data, how energy consumption and charging behavior affect battery aging and how operational strategies can be optimized to extend battery life under realistic conditions. This article presents an energy consumption analysis with respect to ambient temperatures and average vehicle speed based exclusively on real-world data of an urban bus fleet, providing a data foundation for range forecasting and infrastructure planning optimized for public transport needs. Additionally, the State of Charge (SOC) window during operation and vehicle idle time as well as the charging power were analyzed in this case study to formulate recommendations towards a more battery-friendly treatment. The central research question is whether battery-friendly operational strategies—such as reduced charging power and lower SOC windows—can realistically be implemented in daily public transport operations. The impact of the recommendations on battery lifetime is estimated using a battery aging model on drive cycles. Finally, the reduction in CO2 emissions compared to diesel buses is estimated. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

23 pages, 6922 KB  
Article
Cycling-Induced Degradation Analysis of Lithium-Ion Batteries Under Static and Dynamic Charging: A Physical Testing Methodology Using Low-Cost Equipment
by Byron Patricio Acosta-Rivera, David Sebastian Puma-Benavides, Juan de Dios Calderon-Najera, Leonardo Sanchez-Pegueros, Edilberto Antonio Llanes-Cedeño, Iván Fernando Sinaluisa-Lozano and Bolivar Alejandro Cuaical-Angulo
World Electr. Veh. J. 2025, 16(8), 411; https://doi.org/10.3390/wevj16080411 - 22 Jul 2025
Viewed by 997
Abstract
Given the rising importance of cost-effective solutions in battery research, this study employs an accessible testing approach using low-cost, sensor-equipped platforms that enable broader research and educational applications. It presents a comparative evaluation of lithium-ion battery degradation under two charging strategies: static charging [...] Read more.
Given the rising importance of cost-effective solutions in battery research, this study employs an accessible testing approach using low-cost, sensor-equipped platforms that enable broader research and educational applications. It presents a comparative evaluation of lithium-ion battery degradation under two charging strategies: static charging (constant current at 1.2 A) and dynamic charging (stepped current from 400 mA to 800 mA) over 200 charge–discharge cycles. A custom-built, low-cost test platform based on an ESP32 microcontroller was developed to provide real-time monitoring of voltage, current, temperature, and internal resistance, with automated control and cloud-based data logging. The results indicate that static charging provides greater voltage stability and a lower increase in internal resistance (9.3%) compared to dynamic charging (30.17%), suggesting reduced electrochemical stress. Discharge time decreased for both strategies, by 6.25% under static charging and 18.46% under dynamic charging, highlighting capacity fade and aging effects. Internal resistance emerged as a reliable indicator of degradation, closely correlating with reduced runtime. These findings underscore the importance of selecting charging profiles based on specific application needs, as dynamic charging, while offering potential thermal benefits, may accelerate battery aging. Furthermore, the low-cost testing platform proved effective for long-term evaluation and degradation analysis, offering an accessible alternative to commercial battery cyclers. The insights gained contribute to the development of adaptive battery management systems that optimize performance, lifespan, and safety in electric vehicle applications. Full article
(This article belongs to the Special Issue Impact of Electric Vehicles on Power Systems and Society)
Show Figures

Figure 1

11 pages, 5556 KB  
Article
Electromagnetic Analysis and Multi-Objective Design Optimization of a WFSM with Hybrid GOES-NOES Core
by Kyeong-Tae Yu, Hwi-Rang Ban, Seong-Won Kim, Jun-Beom Park, Jang-Young Choi and Kyung-Hun Shin
World Electr. Veh. J. 2025, 16(7), 399; https://doi.org/10.3390/wevj16070399 - 16 Jul 2025
Viewed by 679
Abstract
This study presents a design and optimization methodology to enhance the power density and efficiency of wound field synchronous machines (WFSMs) by selectively applying grain-oriented electrical steel (GOES). Unlike conventional non-grain-oriented electrical steel (NOES), GOES exhibits significantly lower core loss along its rolling [...] Read more.
This study presents a design and optimization methodology to enhance the power density and efficiency of wound field synchronous machines (WFSMs) by selectively applying grain-oriented electrical steel (GOES). Unlike conventional non-grain-oriented electrical steel (NOES), GOES exhibits significantly lower core loss along its rolling direction, making it suitable for regions with predominantly alternating magnetic fields. Based on magnetic field analysis, four machine configurations were investigated, differing in the placement of GOES within stator and rotor teeth. Finite element analysis (FEA) was employed to compare electromagnetic performance across the configurations. Subsequently, a multi-objective optimization was conducted using Latin Hypercube Sampling, meta-modeling, and a genetic algorithm to maximize power density and efficiency while minimizing torque ripple. The optimized WFSM achieved a 13.97% increase in power density and a 1.0% improvement in efficiency compared to the baseline NOES model. These results demonstrate the feasibility of applying GOES in rotating machines to reduce core loss and improve overall performance, offering a viable alternative to rare-earth permanent magnet machines in xEV applications. Full article
Show Figures

Figure 1

12 pages, 1393 KB  
Article
A Proactive Collision Avoidance Model for Connected and Autonomous Vehicles in Mixed Traffic Flow
by Guojing Hu, Kun Li, Weike Lu, Ouchan Chen, Chuan Sun and Yuanqi Zhao
World Electr. Veh. J. 2025, 16(7), 394; https://doi.org/10.3390/wevj16070394 - 14 Jul 2025
Viewed by 588
Abstract
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive [...] Read more.
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive collision avoidance model, aiming to avoid collisions by controlling the speed and lane-changing behavior of CAVs. In the model, the subject vehicle first collects information about surrounding lanes and judges the traffic conditions; it then chooses to decelerate or change lanes to avoid collisions. The subject vehicle also searches for the optimal vehicle in the surrounding lanes for cooperation. The effectiveness of the proposed collision avoidance model is verified through the Python-SUMO platform. The experimental results show that the performance of the collision avoidance model is better than that of the cooperative adaptive cruise control (CACC) model in terms of average speed, lost time and the number of vehicle conflicts, proving the advantages of the proposed model in safety and efficiency. Full article
(This article belongs to the Special Issue Modeling for Intelligent Vehicles)
Show Figures

Figure 1

25 pages, 9888 KB  
Article
An Optimal Multi-Zone Fast-Charging System Architecture for MW-Scale EV Charging Sites
by Sai Bhargava Althurthi and Kaushik Rajashekara
World Electr. Veh. J. 2025, 16(7), 389; https://doi.org/10.3390/wevj16070389 - 10 Jul 2025
Viewed by 850
Abstract
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS [...] Read more.
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS architectures, including those currently deployed in commercial sites. Most EVFS implementations use either a common AC-bus or a common DC-bus configuration, with DC-bus architectures being slightly more predominant. The paper analyzes the EV charging and battery energy storage system (BESS) requirements for future large-scale EVFSs and identifies key implementation challenges associated with the full adoption of the common DC-bus approach. To overcome these limitations, a novel multi-zone EVFS architecture is proposed that employs an optimal combination of isolated and non-isolated DC-DC converter topologies while maintaining galvanic isolation for EVs. The system efficiency and total power converter capacity requirements of the proposed architecture are evaluated and compared with those of other EVFS models. A major feature of the proposed design is its multi-zone division and zonal isolation capabilities, which are not present in conventional EVFS architectures. These advantages are demonstrated through a scaled-up model consisting of 156 EV fast chargers. The analysis highlights the superior performance of the proposed multi-zone EVFS architecture in terms of efficiency, total power converter requirements, fault tolerance, and reduced grid impacts, making it the best solution for reliable and scalable MW-scale commercial EVFS systems of the future. Full article
Show Figures

Figure 1

15 pages, 1301 KB  
Article
Applying a Deep Neural Network and Feature Engineering to Assess the Impact of Attacks on Autonomous Vehicles
by Sara Ftaimi and Tomader Mazri
World Electr. Veh. J. 2025, 16(7), 388; https://doi.org/10.3390/wevj16070388 - 9 Jul 2025
Viewed by 585
Abstract
Autonomous vehicles are expected to reduce traffic accident casualties, as driver distraction accounts for 90% of accidents. These vehicles rely on sensors and controllers to operate independently, requiring robust security mechanisms to prevent malicious takeovers. This research proposes a novel approach to assessing [...] Read more.
Autonomous vehicles are expected to reduce traffic accident casualties, as driver distraction accounts for 90% of accidents. These vehicles rely on sensors and controllers to operate independently, requiring robust security mechanisms to prevent malicious takeovers. This research proposes a novel approach to assessing the impact of cyber-attacks on autonomous vehicles and their surroundings, with a strong focus on prioritizing human safety. The system evaluates the severity of incidents caused by attacks, distinguishing between different events—for example, a pedestrian injury is classified as more critical than a collision with an inanimate object. By integrating deep neural network technology with feature engineering, the proposed system provides a comprehensive impact assessment. It is validated using metrics such as MAE, loss function, and Spearman’s correlation through experiments on a dataset of 5410 samples. Beyond enhancing autonomous vehicle security, this research contributes to real-world attack impact assessment, ensuring human safety remains a priority in the evolving autonomous landscape. Full article
Show Figures

Figure 1

26 pages, 793 KB  
Article
Holistic Approach for Automated Reverse Engineering of Unified Diagnostics Service Data
by Nico Rosenberger, Nikolai Hoffmann, Alexander Mitscherlich and Markus Lienkamp
World Electr. Veh. J. 2025, 16(7), 384; https://doi.org/10.3390/wevj16070384 - 8 Jul 2025
Viewed by 1024
Abstract
Reverse engineering of internal vehicle communication is a crucial discipline in vehicle benchmarking. The process presents a time-consuming procedure associated with high manual effort. Car manufacturers use unique signal addresses and encodings for their internal data. Accessing this data requires either expensive tools [...] Read more.
Reverse engineering of internal vehicle communication is a crucial discipline in vehicle benchmarking. The process presents a time-consuming procedure associated with high manual effort. Car manufacturers use unique signal addresses and encodings for their internal data. Accessing this data requires either expensive tools suitable for the respective vehicles or experienced engineers who have developed individual approaches to identify specific signals. Access to the internal data enables reading the vehicle’s status, and thus, reducing the need for additional test equipment. This results in vehicles closer to their production status and does not require manipulating the vehicle under study, which prevents affecting future test results. The main focus of this approach is to reduce the cost of such analysis and design a more efficient benchmarking process. In this work, we present a methodology that identifies signals without physically manipulating the vehicle. Our equipment is connected to the vehicle via the On-Board Diagnostics (OBD)-II port and uses the Unified Diagnostics Service (UDS) protocol to communicate with the vehicle. We access, capture, and analyze the vehicle’s signals for future analysis. This is a holistic approach, which, in addition to decoding the signals, also grants access to the vehicle’s data, which allows researchers to utilize state-of-the-art methodologies to analyze their vehicles under study by greatly reducing necessary experience, time, and cost. Full article
Show Figures

Figure 1

32 pages, 8765 KB  
Article
Hybrid Efficient Fast Charging Strategy for WPT Systems: Memetic-Optimized Control with Pulsed/Multi-Stage Current Modes and Neural Network SOC Estimation
by Marouane El Ancary, Abdellah Lassioui, Hassan El Fadil, Yassine El Asri, Anwar Hasni, Abdelhafid Yahya and Mohammed Chiheb
World Electr. Veh. J. 2025, 16(7), 379; https://doi.org/10.3390/wevj16070379 - 6 Jul 2025
Cited by 1 | Viewed by 812
Abstract
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a [...] Read more.
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a memetic algorithm (MA) to dynamically optimize the charging parameters, achieving an optimal balance between speed and battery longevity while maintaining 90.78% system efficiency at the SAE J2954-standard 85 kHz operating frequency. A neural-network-based state of charge (SOC) estimator provides accurate real-time monitoring, complemented by MA-tuned PI control for enhanced resonance stability and adaptive pulsed current–MCM profiles for the optimal energy transfer. Simulations and experimental validation demonstrate faster charging compared to that using the conventional constant current–constant voltage (CC-CV) methods while effectively preserving the battery’s state of health (SOH)—a critical advantage that reduces the environmental impact of frequent battery replacements and minimizes the carbon footprint associated with raw material extraction and battery manufacturing. By addressing both the technical challenges of high-power WPT systems and the ecological imperative of battery preservation, this research bridges the gap between fast charging requirements and sustainable EV adoption, offering a practical solution that aligns with global decarbonization goals through optimized resource utilization and an extended battery service life. Full article
Show Figures

Graphical abstract

35 pages, 2008 KB  
Article
From Simulation to Implementation: A Systems Model for Electric Bus Fleet Deployment in Metropolitan Areas
by Ludger Heide, Shuyao Guo and Dietmar Göhlich
World Electr. Veh. J. 2025, 16(7), 378; https://doi.org/10.3390/wevj16070378 - 5 Jul 2025
Cited by 1 | Viewed by 943
Abstract
Urban bus fleets worldwide face urgent decarbonization requirements, with Germany targeting net-zero emissions by 2050. Current electrification research often addresses individual components—energy consumption, scheduling, or charging infrastructure—in isolation, lacking integrated frameworks that capture complex system interactions. This study presents “eflips-X”, a modular, open-source [...] Read more.
Urban bus fleets worldwide face urgent decarbonization requirements, with Germany targeting net-zero emissions by 2050. Current electrification research often addresses individual components—energy consumption, scheduling, or charging infrastructure—in isolation, lacking integrated frameworks that capture complex system interactions. This study presents “eflips-X”, a modular, open-source simulation framework that integrates energy consumption modeling, battery-aware block building, depot–block assignment, terminus charger placement, depot operations simulation, and smart charging optimization within a unified workflow. The framework employs empirical energy models, graph-based scheduling algorithms, and integer linear programming for depot assignment and smart charging. Applied to Berlin’s bus network—Germany’s largest—three scenarios were evaluated: maintaining existing blocks with electrification, exclusive depot charging, and small batteries with extensive terminus charging. Electric fleets need 2.1–7.1% additional vehicles compared to diesel operations, with hybrid depot-terminus charging strategies minimizing this increase. Smart charging reduces peak power demand by 49.8% on average, while different charging strategies yield distinct trade-offs between infrastructure requirements, fleet size, and operational efficiency. The framework enables systematic evaluation of electrification pathways, supporting evidence-based planning for zero-emission public transport transitions. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

27 pages, 1344 KB  
Review
An Overview of Lithium-Ion Battery Recycling: A Comparison of Brazilian and International Scenarios
by Jean Furlanetto, Marcus V. C. de Lara, Murilo Simionato, Vagner do Nascimento and Giovani Dambros Telli
World Electr. Veh. J. 2025, 16(7), 371; https://doi.org/10.3390/wevj16070371 - 3 Jul 2025
Cited by 1 | Viewed by 5352
Abstract
Purely electric and hybrid vehicles are emerging as the transport sector’s response to meet climate goals, aiming to mitigate global warming. As the adoption of transport electrification increases, the importance of recycling components of the electric propulsion system at the end of their [...] Read more.
Purely electric and hybrid vehicles are emerging as the transport sector’s response to meet climate goals, aiming to mitigate global warming. As the adoption of transport electrification increases, the importance of recycling components of the electric propulsion system at the end of their life grows, particularly the battery pack, which significantly contributes to the vehicle’s final cost and generates environmental impacts and CO2 during production. This work presents an overview of the recycling processes for lithium-ion automotive batteries, emphasizing the developing Brazilian scenario and more established international scenarios. In Brazil, companies and research centers are investing in recycling and using reused cathode material to manufacture new batteries through the hydrometallurgical process. On the international front, pyrometallurgy and physical recycling are being applied, and other methods, such as direct processes and biohydrometallurgy, are also under study. Regardless of the recycling method, the main challenge is scaling prototype processes to meet current and future battery demand, driven by the growth of electric and hybrid vehicles, pursuing both environmental gains through reduced mining and CO2 emissions and economic viability to make recycling profitable and support global electrification. Full article
Show Figures

Figure 1

34 pages, 4495 KB  
Article
Charging Ahead: Perceptions and Adoption of Electric Vehicles Among Full- and Part-Time Ridehailing Drivers in California
by Mengying Ju, Elliot Martin and Susan Shaheen
World Electr. Veh. J. 2025, 16(7), 368; https://doi.org/10.3390/wevj16070368 - 2 Jul 2025
Viewed by 1782
Abstract
California’s SB 1014 (Clean Miles Standard) mandates ridehailing fleet electrification to reduce emissions from vehicle miles traveled, posing financial and infrastructure challenges for drivers. This study employs a mixed-methods approach, including expert interviews (n = 10), group discussions (n = 8), [...] Read more.
California’s SB 1014 (Clean Miles Standard) mandates ridehailing fleet electrification to reduce emissions from vehicle miles traveled, posing financial and infrastructure challenges for drivers. This study employs a mixed-methods approach, including expert interviews (n = 10), group discussions (n = 8), and a survey of full- and part-time drivers (n = 436), to examine electric vehicle (EV) adoption attitudes and policy preferences. Access to home charging and prior EV experience emerged as the most statistically significant predictors of EV acquisition. Socio-demographic variables, particularly income and age, could also influence the EV choice and sensitivity to policy design. Full-time drivers, though confident in the EV range, were concerned about income loss from the charging downtime and access to urban fast chargers. They showed a greater interest in EVs than part-time drivers and favored an income-based instant rebate at the point of sale. In contrast, part-time drivers showed greater hesitancy and were more responsive to vehicle purchase discounts (price reductions or instant rebates at the point of sale available to all customers) and charging credits (monetary incentive or prepaid allowance to offset the cost of EV charging equipment). Policymakers might target low-income full-time drivers with greater price reductions and offer charging credits (USD 500 to USD 1500) to part-time drivers needing operational and infrastructure support. Full article
Show Figures

Figure 1

18 pages, 277 KB  
Review
Battery Electric Vehicle Safety Issues and Policy: A Review
by Sanjeev M. Naiek, Sorawich Aungsuthar, Corey Harper and Chris Hendrickson
World Electr. Veh. J. 2025, 16(7), 365; https://doi.org/10.3390/wevj16070365 - 1 Jul 2025
Cited by 3 | Viewed by 3522
Abstract
Battery electric vehicles (BEVs) are seeing widespread adoption globally due to technological improvements, lower manufacturing costs, and supportive policies aimed at reducing greenhouse gas emissions. Governments have introduced incentives such as purchase subsidies and investments in charging infrastructure, while automakers continue to broaden [...] Read more.
Battery electric vehicles (BEVs) are seeing widespread adoption globally due to technological improvements, lower manufacturing costs, and supportive policies aimed at reducing greenhouse gas emissions. Governments have introduced incentives such as purchase subsidies and investments in charging infrastructure, while automakers continue to broaden their electric vehicle portfolios. Although BEVs show high overall safety performance comparable to internal combustion engine vehicles (ICEVs), they also raise distinct safety challenges that merit policy attention. This review synthesizes the current literature on safety concerns associated with BEVs, with particular attention to fire risks, vehicle weight, low-speed noise levels, and unique driving characteristics. Fire safety remains a significant issue, as lithium-ion battery fires, although less frequent than those in ICEVs, tend to be more severe and difficult to manage. Strategies such as improved thermal management, fire enclosures, and standardized response protocols are essential. BEVs are typically heavier than ICEVs, affecting crash outcomes and braking performance. These risks are especially important for interactions with pedestrians and smaller vehicles. Quiet operation at low speeds can also reduce pedestrian awareness, prompting regulations for vehicle sound alerts. Together, these issues highlight the need for policies that address both emerging safety risks and the evolving nature of BEV technology. Full article
25 pages, 9001 KB  
Article
Analysis of the Impact of Electromobility on the Distribution Grid
by Tomislav Kovačević, Ružica Kljajić, Hrvoje Glavaš and Milan Kljajin
World Electr. Veh. J. 2025, 16(7), 358; https://doi.org/10.3390/wevj16070358 - 27 Jun 2025
Viewed by 736
Abstract
This paper analyzes the impact of electromobility on distribution grids and voltage stability. In line with current legislation and the European Commission’s plans for the future of electromobility, the aim is to increase the share of electric vehicles to 50% by 2050. However, [...] Read more.
This paper analyzes the impact of electromobility on distribution grids and voltage stability. In line with current legislation and the European Commission’s plans for the future of electromobility, the aim is to increase the share of electric vehicles to 50% by 2050. However, achieving this target can be challenging due to the characteristics and features of the electric vehicle charging stations and the associated charging methods, which can lead to constraints within the network. The analysis includes the integration of single-phase and three-phase chargers on a radial feeder, as well as the determination of the maximum number of vehicles that can be accommodated on a given feeder without compromising voltage stability. Five scenarios are evaluated using the DigSilent software package to gain a better understanding of the impact of electromobility on the distribution grid. Full article
Show Figures

Figure 1

22 pages, 2478 KB  
Review
Thermal Management Systems for Lithium-Ion Batteries for Electric Vehicles: A Review
by Kenia Yadira Gómez Díaz, Susana Estefany De León Aldaco, Jesus Aguayo Alquicira, Mario Ponce Silva, Samuel Portillo Contreras and Oscar Sánchez Vargas
World Electr. Veh. J. 2025, 16(7), 346; https://doi.org/10.3390/wevj16070346 - 23 Jun 2025
Cited by 1 | Viewed by 5517
Abstract
Recently, electric vehicles (EVs) have proven to be a practical option for lowering greenhouse gas emissions and reducing reliance on fossil fuels. Lithium-ion batteries, at the core of this innovation, require efficient thermal management to ensure optimal performance, safety, and durability. This article [...] Read more.
Recently, electric vehicles (EVs) have proven to be a practical option for lowering greenhouse gas emissions and reducing reliance on fossil fuels. Lithium-ion batteries, at the core of this innovation, require efficient thermal management to ensure optimal performance, safety, and durability. This article reviews current scientific studies on controlling the temperature of lithium-ion batteries used in electric vehicles. Several cooling strategies are discussed, including air cooling, liquid cooling, the use of phase change materials (PCMs), and hybrids that combine these three types of cooling, with the primary objective of enhancing the thermal performance of the batteries. Additionally, the challenges and proposed solutions in battery pack design and energy management methodologies are explored. As the demand for electric vehicles increases, improving battery thermal management systems (BTMSs) is becoming increasingly important. Implementing and developing better BTMSs will help increase the autonomy and safety of electric vehicles in the long term. Full article
(This article belongs to the Special Issue Electric Vehicle Battery Pack and Electric Motor Sizing Methods)
Show Figures

Figure 1

22 pages, 1664 KB  
Article
Techno-Economic Assessment of Alternative-Fuel Bus Technologies Under Real Driving Conditions in a Developing Country Context
by Marc Haddad and Charbel Mansour
World Electr. Veh. J. 2025, 16(6), 337; https://doi.org/10.3390/wevj16060337 - 19 Jun 2025
Cited by 2 | Viewed by 1163
Abstract
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and [...] Read more.
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and the onset of hyperinflation. This study investigates the potential reductions in energy use, emissions, and costs from the possible introduction of natural gas, hybrid, and battery-electric buses compared to traditional diesel buses in local real driving conditions. Four operating conditions were considered including severe congestion, peak, off-peak, and bus rapid transit (BRT) operation. Battery-electric buses are found to be the best performers in any traffic operation, conditional on having clean energy supply at the power plant and significant subsidy of bus purchase cost. Natural gas buses do not provide significant greenhouse gas emission savings compared to diesel buses but offer substantial reductions in the emission of all major pollutants harmful to human health. Results also show that accounting for additional energy consumption from the use of climate-control auxiliaries in hot and cold weather can significantly impact the performance of all bus technologies by up to 44.7% for electric buses on average. Performance of all considered bus technologies improves considerably in free-flowing traffic conditions, making BRT operation the most beneficial. A vehicle mix of diesel, natural gas, and hybrid bus technologies is found most feasible for the case of Lebanon and similar developing countries lacking necessary infrastructure for a near-term transition to battery-electric technology. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

28 pages, 1004 KB  
Article
Assessing the Current State of Electric Vehicle Infrastructure in Mexico
by Lizbeth Salgado-Conrado, Carlos Álvarez-Macías, Alma Esmeralda-Gómez and Raúl Tadeo-Rosas
World Electr. Veh. J. 2025, 16(6), 333; https://doi.org/10.3390/wevj16060333 - 17 Jun 2025
Viewed by 5923
Abstract
This study evaluates the current state of electric vehicle (EV) charging infrastructure in Mexico, identifying strengths, weaknesses, and areas for improvement. Using a mixed-methods approach, it combines quantitative analysis of charging station distribution with qualitative insights from government officials, expert reports, and industry [...] Read more.
This study evaluates the current state of electric vehicle (EV) charging infrastructure in Mexico, identifying strengths, weaknesses, and areas for improvement. Using a mixed-methods approach, it combines quantitative analysis of charging station distribution with qualitative insights from government officials, expert reports, and industry sources. Mexico’s EV infrastructure has grown significantly, increasing from 100 charging stations in 2015 to over 3300 public points by 2023, along with nearly 28,000 residential installations. Despite this progress, rural areas remain underserved, and challenges such as high installation costs, lack of incentives, inconsistent policies, and technological integration issues hinder further growth. Comparisons with countries like Chile and Brazil show the importance of government incentives, public–private partnerships, and standardised charging technologies to address these barriers. While government programs and private investments have driven Mexico’s infrastructure development, continued growth requires expanding coverage in underserved regions, aligning regulatory frameworks, and fostering collaboration between the public and private sectors. Learning from the experiences of other countries, Mexico has the potential to accelerate the growth of its EV infrastructure through enhanced incentives, improved policies, and standardised technologies, positioning itself as a leader in sustainable mobility. Full article
Show Figures

Figure 1

19 pages, 1278 KB  
Article
The Expansion of Value Engineering Theory and Its Application in the Intelligent Automotive Industry
by Guangyu Zhu, Fuquan Zhao, Wang Zhang and Zongwei Liu
World Electr. Veh. J. 2025, 16(6), 329; https://doi.org/10.3390/wevj16060329 - 13 Jun 2025
Viewed by 630
Abstract
Value engineering (VE), as a conceptual approach and management technique, has allowed enterprises to capture value through mass production and market expansion during the industrial economic era. The VE method has enabled companies to produce products that meet user needs at a lower [...] Read more.
Value engineering (VE), as a conceptual approach and management technique, has allowed enterprises to capture value through mass production and market expansion during the industrial economic era. The VE method has enabled companies to produce products that meet user needs at a lower cost, leading to success. However, as the complexity of society and industry development increases, the lack of theoretical expansion in VE has limited its application in today’s more complex and macro management systems. With the development and evolution of vehicle–road collaborative intelligence, the intelligent automotive industry has become a complex system with multiple entities and interwoven values across different dimensions. Intelligent connected vehicles (ICVs), along with the external intelligent environment, will jointly participate in the realization of system functions. It is no longer sufficient to apply VE methods to analyze ICVs from a single product perspective. The pursuit of “maximizing value” is always the core driving force of industrial development. This study, building on the fundamental ideas of VE, expands and extends the connotation and theory of VE in three aspects: research objects, value dimensions, and associated entities, to adapt to the current situation. It also provides a new analysis process for the VE theory to better address systemic and complex issues. Taking the intelligent automotive industry as a case study, this study analyzes it based on the expanded VE theory. It considers not only the cost of system function realization and the product value of ICVs but also the external benefits of the system across different dimensions. The social value, user value, enterprise value are introduced in entity value analysis, and the relevant indicators are organized. This approach can better guide the collaboration and division of labor among multiple participating entities such as governments, enterprises, and users, achieving overall value maximization. Full article
Show Figures

Figure 1

18 pages, 2972 KB  
Article
An Improved Extraction Scheme for High-Frequency Injection in the Realization of Effective Sensorless PMSM Control
by Indra Ferdiansyah and Tsuyoshi Hanamoto
World Electr. Veh. J. 2025, 16(6), 326; https://doi.org/10.3390/wevj16060326 - 11 Jun 2025
Cited by 2 | Viewed by 1688
Abstract
High-frequency (HF) injection is a widely used technique for low-speed implementation of position sensorless permanent magnet synchronous motor control. A key component of this technique is the tracking loop control system, which extracts rotor position error and utilizes proportional–integral regulation as a position [...] Read more.
High-frequency (HF) injection is a widely used technique for low-speed implementation of position sensorless permanent magnet synchronous motor control. A key component of this technique is the tracking loop control system, which extracts rotor position error and utilizes proportional–integral regulation as a position observer for estimating the rotor position. Generally, this process relies on band-pass filters (BPFs) and low-pass filters (LPFs) to modulate signals in the quadrature current to obtain rotor position error information. However, limitations in filter accuracy and dynamic response lead to prolonged convergence times and timing inconsistencies in the estimation process, which affects real-time motor control performance. To address these issues, this study proposes an exponential moving average (EMA)-based scheme for rotor position error extraction, offering a rapid response under dynamic conditions such as direction reversals, step speed changes, and varying loads. EMA is used to pass the original rotor position information carried by the quadrature current signal, which contains HF components, with a specified smoothing factor. Then, after the synchronous demodulation process, EMA is employed to extract rotor position error information for the position observer to estimate the rotor position. Due to its computational simplicity and fast response in handling dynamic conditions, the proposed method can serve as an alternative to BPF and LPF, which are commonly used for rotor position information extraction, while also reducing computational burden and improving performance. Finally, to demonstrate its feasibility and effectiveness in improving rotor position estimation accuracy, the proposed system is experimentally validated by comparing it with a conventional system. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

23 pages, 1806 KB  
Article
A Framework for Optimal Sizing of Heavy-Duty Electric Vehicle Charging Stations Considering Uncertainty
by Rafi Zahedi, Rachel Sheinberg, Shashank Narayana Gowda, Kourosh SedghiSigarchi and Rajit Gadh
World Electr. Veh. J. 2025, 16(6), 318; https://doi.org/10.3390/wevj16060318 - 8 Jun 2025
Cited by 1 | Viewed by 1017
Abstract
The adoption of heavy-duty electric vehicles (HDEVs) is key to achieving transportation decarbonization. A major component of this transition is the need for new supporting infrastructure: electric charging stations (CSs). HDEV CSs must be planned considering charging requirements, economic constraints, the rollout plan [...] Read more.
The adoption of heavy-duty electric vehicles (HDEVs) is key to achieving transportation decarbonization. A major component of this transition is the need for new supporting infrastructure: electric charging stations (CSs). HDEV CSs must be planned considering charging requirements, economic constraints, the rollout plan for HDEVs, and local utility grid conditions. Together, these considerations highly differentiate HDEV CS planning from light-duty CS planning. This paper addresses the challenges of HDEV CS planning by presenting a framework for determining the optimal sizing of multiple HDEV CSs using a multi-period expansion model. The framework uses historical data from depots and applies a mixed-approach optimization solver to determine the optimal sizes of two types of CSs: one that relies entirely on power generated by a PV system with local battery storage, and another that relies entirely on utility grid power supply. A two-layer uncertainty model is proposed to account for variations in PV power generation, HDEV arrival/departure times, and charger failures. The multi-period expansion strategy achieves up to a 78% reduction in total annual costs during the first deployment period, compared to fully expanded CSs. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

28 pages, 3215 KB  
Article
Optimization of Solar Generation and Battery Storage for Electric Vehicle Charging with Demand-Side Management Strategies
by César Berna-Escriche, Lucas Álvarez-Piñeiro and David Blanco
World Electr. Veh. J. 2025, 16(6), 312; https://doi.org/10.3390/wevj16060312 - 3 Jun 2025
Cited by 1 | Viewed by 1492
Abstract
The integration of Electric Vehicles (EVs) with solar power generation is important for decarbonizing the economy. While electrifying transportation reduces Greenhouse Gas (GHG) emissions, its success depends on ensuring that EVs are charged with clean energy, requiring significant increases in photovoltaic capacity and [...] Read more.
The integration of Electric Vehicles (EVs) with solar power generation is important for decarbonizing the economy. While electrifying transportation reduces Greenhouse Gas (GHG) emissions, its success depends on ensuring that EVs are charged with clean energy, requiring significant increases in photovoltaic capacity and robust Demand-Side Management (DSM) solutions. EV charging patterns, such as home, workplace, and public charging, need adapted strategies to match solar generation. This study analyzes a system designed to meet a unitary hourly average energy demand (8760 MWh annually) using an optimization framework that balances PV capacity and battery storage to ensure reliable energy supply. Historical solar data from 22 years is used to analyze seasonal and interannual fluctuations. The results show that solar PV alone can cover around 30% of the demand without DSM, rising to nearly 50% with aggressive DSM measures, using PV capacities of 1.0–2.0 MW. The optimization reveals that incorporating battery storage can achieve near 100% coverage with PV power of 8.0–9.0 MW. Moreover, DSM reduces required storage from 18 to about 10 MWh. These findings highlight the importance of integrating optimization-based energy management strategies to enhance system efficiency and cost-effectiveness, offering a pathway toward a more sustainable and resilient EV charging infrastructure. Full article
Show Figures

Figure 1

14 pages, 1525 KB  
Article
A Methodology for Characterizing Lithium-Ion Batteries Under Constant-Current Charging Based on Spectral Analysis
by Anatolij Nikonov, Marko Nagode and Jernej Klemenc
World Electr. Veh. J. 2025, 16(6), 308; https://doi.org/10.3390/wevj16060308 - 30 May 2025
Viewed by 861
Abstract
This study addresses the challenge of gaining a deeper understanding of charging and discharging mechanisms in lithium-ion batteries to enhance their reliability and safety, necessitating the development of novel modeling techniques. A comprehensive analytical model is introduced, capable of accurately reconstructing the voltage [...] Read more.
This study addresses the challenge of gaining a deeper understanding of charging and discharging mechanisms in lithium-ion batteries to enhance their reliability and safety, necessitating the development of novel modeling techniques. A comprehensive analytical model is introduced, capable of accurately reconstructing the voltage rise during constant-current charging. The novelty of this approach lies in its use of spectral analysis (similar to that employed in linear viscoelasticity) to describe the physical processes occurring during battery charging. The model’s effectiveness was validated using experimental data from a rechargeable lithium-ion battery with a nominal capacity of 25 Ah and a nominal voltage of 3.2 V. The results demonstrate that spectral characterization is a reliable tool for modeling battery response to constant-current charging, with the potential for application in battery lifespan prediction. Full article
Show Figures

Figure 1

Back to TopTop