Permanent Magnet Motors and Driving Control for Electric Vehicles

A special issue of World Electric Vehicle Journal (ISSN 2032-6653).

Deadline for manuscript submissions: 31 October 2024 | Viewed by 5681

Special Issue Editor


E-Mail Website
Guest Editor
School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
Interests: motor model predictive control; electric vehicle safety technology

Special Issue Information

Dear Colleagues,

With global warming and increasingly serious environmental pollution, the development of electric vehicles (EV) has become an inevitable trend. At present, the efficiency, comfort and reliability of EVs have attracted more and more attention, and the corresponding higher requirements are put forward for the power transmission system of EVs.

Motor as a key component of EV power transmission, not only determines the performance of EVs, but also needs to meet the comfort and economic performance requirements. Permanent magnet motor has become the preferred driving motor for EVs because of its high efficiency, high power density and compact structure. However, the drive control methods of the permanent magnet motor have a great influence on the output torque ripple and robustness, different drive control methods have different characteristics and scope of application, it is necessary to choose the appropriate method according to the actual situation.

It is clear that advances in permanent magnet motors and drive methods will contribute to the development of EVs, and this Special Issue invites original papers and review articles on all aspects of EVs, permanent magnet motors and drive control.

Dr. Ming Yao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. World Electric Vehicle Journal is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • permanent magnet DC motor
  • permanent magnet AC motor
  • bidirectional synchronous motor
  • permanent magnet synchronous motor
  • moving component motor
  • model predictive flux control
  • model predictive current control
  • continuous-control-set model predictive control

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 5788 KiB  
Article
Mutual Inductance Identification and Bilateral Cooperation Control Strategy for MCR-BE System
by Ke Li, Yuanmeng Liu, Xiaodong Sun and Xiang Tian
World Electr. Veh. J. 2024, 15(5), 196; https://doi.org/10.3390/wevj15050196 - 2 May 2024
Viewed by 387
Abstract
Considering that the excitation method of an electric excitation synchronous motor has the disadvantages of the brush and slip ring, this article proposes a new brushless excitation system, which includes two parts: a wireless charging system and a motor. To meet the requirements [...] Read more.
Considering that the excitation method of an electric excitation synchronous motor has the disadvantages of the brush and slip ring, this article proposes a new brushless excitation system, which includes two parts: a wireless charging system and a motor. To meet the requirements of maximum transmission efficiency and constant voltage output of the system, a bilateral cooperation control strategy is proposed. For the strategy, the buck converter in the receiving side of the system can maintain maximum transmission efficiency through impedance matching, while the inverter in the transmitting side can keep the output voltage constant through phase shift modulation. In the control process, considering that the offset of coupling coils will affect the control results, a grey wolf optimization–particle swarm optimization algorithm is proposed to identify mutual inductance. Simulation and experimental results show that this identification algorithm can improve the identification accuracy and maximize the avoidance of falling into local optima. The final experimental result shows that the bilateral cooperation control strategy can maintain the output voltage around 48 V and the transmission efficiency around 84.5%, which meets the expected requirements. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

17 pages, 5418 KiB  
Article
Design and Implementation of Improved Gate Driver Circuit for Sensorless Permanent Magnet Synchronous Motor Control
by Indra Ferdiansyah and Tsuyoshi Hanamoto
World Electr. Veh. J. 2024, 15(3), 106; https://doi.org/10.3390/wevj15030106 - 9 Mar 2024
Viewed by 1017
Abstract
Reliable motor control is important for electric vehicle applications. The control process requires accurate measurements of the current and rotor position information to establish correct motor control design, particularly in sensorless permanent magnet synchronous motor control systems. Practical issues regarding the motor control [...] Read more.
Reliable motor control is important for electric vehicle applications. The control process requires accurate measurements of the current and rotor position information to establish correct motor control design, particularly in sensorless permanent magnet synchronous motor control systems. Practical issues regarding the motor control circuit, such as the effects of parasitic element behavior on the switching components in the insulated gate bipolar transistor-driven inverter, were discussed in this study. It analyzed the effects of parasitic elements that can cause the ringing of switching losses and affect the spike of the signal in the motor current, which must be avoided in the implementation of motor control. The gate driver circuit topology was improved to reduce this effect in motor control devices. The proposed gate driver circuit design with the ringing suppression circuit configuration achieved good performance by keeping the signal spike at less than 10% in the motor current. Furthermore, a signal spike or noise was not observed in the estimation results of rotor position when using current information as the parameter control process. Both conditions were verified by experiments on the designed motor control devices. Under these conditions, signal precision can be achieved in motor control. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

20 pages, 7383 KiB  
Article
Parameter Compensation for the Predictive Control System of a Permanent Magnet Synchronous Motor Based on Bacterial Foraging Optimization Algorithm
by Jiali Yang, Yanxia Shen and Yongqiang Tan
World Electr. Veh. J. 2024, 15(1), 23; https://doi.org/10.3390/wevj15010023 - 9 Jan 2024
Viewed by 1182
Abstract
The accurate identification of permanent magnet synchronous motor (PMSM) parameters is the foundation for high-performance driving in predictive control systems. The traditional PMSM multi-parameter identification method suffers from insufficient rank of the identification equation and is prone to getting stuck in local optimal [...] Read more.
The accurate identification of permanent magnet synchronous motor (PMSM) parameters is the foundation for high-performance driving in predictive control systems. The traditional PMSM multi-parameter identification method suffers from insufficient rank of the identification equation and is prone to getting stuck in local optimal solutions. This article combines the bacterial foraging optimization algorithm (BFOA) to establish a built-in PMSM predictive control parameter compensation model. Firstly, we analyzed the reasons why the distortion of PMSM motor parameters affects the actual speed and calculated the deviation of d-axis and q-axis currents caused by the distortion. Secondly, parameter compensation was applied to the prediction model, and BFOA was combined to optimize the compensation parameters. This algorithm does not use the traditional voltage equation as the fitness function but instead uses a brand-new set of four equations for parameter iteration optimization. The optimized compensation parameters can reduce current deviation and improve the robustness of the PMSM predictive control system. The proposed model can cover four kinds of motor distortion parameters, including stator resistance, D-axis inductance, Q-axis inductance, and permanent magnet flux linkage. Finally, the traditional PMSM predictive control model is compared with the predictive control model combined with BFOA. The simulation results show that the dynamic and static performance of the compensated system is improved when single or multiple parameters are distorted. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 2522 KiB  
Review
Overview of Position-Sensorless Technology for Permanent Magnet Synchronous Motor Systems
by Yulei Xu, Ming Yao and Xiaodong Sun
World Electr. Veh. J. 2023, 14(8), 212; https://doi.org/10.3390/wevj14080212 - 10 Aug 2023
Cited by 4 | Viewed by 2205
Abstract
In recent years, permanent magnet synchronous motors (PMSMs) have been widely used in industry. Position-sensorless control has the advantages of reducing costs and improving reliability, and is becoming one of the most promising technologies for permanent magnet synchronous motors. This article reviews the [...] Read more.
In recent years, permanent magnet synchronous motors (PMSMs) have been widely used in industry. Position-sensorless control has the advantages of reducing costs and improving reliability, and is becoming one of the most promising technologies for permanent magnet synchronous motors. This article reviews the main position-sensorless technologies. The advantages and disadvantages of model-based and saliency-based techniques were summarized and compared. Finally, the developmental trends and research directions of position-sensorless technology were discussed. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop