Simulative Consumption Analysis of an All-Electric Vehicle Fleet in an Urban Environment
Abstract
1. Introduction
2. Traffic Simulation
2.1. Street Network
2.2. Car-Following-Model
2.3. Vehicle Parameterization
2.3.1. Acceleration and Deceleration
2.3.2. Time Gap
2.3.3. Reaction Time
Parameter | Vehicle Class | SUMO Default Value | Distribution | or | or |
---|---|---|---|---|---|
bus | 1.2 | log-normal | 0 | 0.12 | |
accel | truck | 1.3 | log-normal | 0.25 | 0.16 |
PAC | 2.6 | log-normal | 0.5 | 0.2 | |
bus | 4 | log-normal | −0.5 | 0.12 | |
decel | truck | 4 | log-normal | −0.25 | 0.16 |
PAC | 4 | log-normal | 0.0 | 0.2 | |
tau | all | 1 | log-normal | 0.6 | 0.2 |
speedFactor | all | 1 | normal | 1.0 | 0.1 |
sigmaerror | all | 0.1 | normal | 0.1 | 0.01 |
ccoolness | all | 0.95 | normal | 0.95 | 0.01 |
treaction | all | 1 | log-normal | −1.1 | 0.2 |
2.3.4. Driving Inaccuracy
2.3.5. Further Adaptions and Validation
2.4. Modeling of Traffic Demand
2.5. Validation of the Traffic Simulation
2.5.1. Vehicle Parametrization
2.5.2. Traffic Demand
3. Vehicle Consumption Calculation
3.1. Fleet Composition
Segment A | Segment C | Segment J | Segment N1 | Segment N2 | Bus | |
---|---|---|---|---|---|---|
Deputy Vehicle | VW eUp | VW ID.3 |
Audi Q4
E-TRON |
Maxus
eDeliver 9 | MAN eTGL |
Mercedes
eCitaro G |
0.31 | 0.27 | 0.28 | 0.32 | 0.5 | 0.6 | |
in | 2.08 | 2.3 | 2.56 | 4.2 | 6 | 8 |
in kg | 1235 | 1815 | 2235 | 2460 | 5400 | 20,365 |
in kg | - | - | - | 250 | 3300 | 5475 |
engine type | PMSM | PMSM | ASM (front) PMSM (rear) | PMSM | PMSM | ASM |
max. Power in kW | 60 | 150 | 70 (front) 210 (rear) | 150 | 210 | 4 × 108.59 |
max. Torque in Nm | 210 | 310 | 160 (front) 545 (rear) | 310 | 750 | 4 × 485 |
gear ratio | 8.16 | 11.53 | 9.95 (front) 7.915 (rear) | 13.00 | first: 20.86 second: 8.69 | 22.66 |
tire radius in m | 0.29 | 0.34 | 0.37 | 0.36 | 0.38 | 0.48 |
sources | [33,34,35,36,37] | [38,39] | [40,41,42,43] | [44,45,46] | [46,47,48] | [46,49,50,51] |
3.2. Driving Consumption
3.3. Secondary Consumption
4. Results
4.1. Driving Consumption
4.2. Secondary Consumer
4.3. Fleet Consumption
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BEV | battery electric vehicle |
EIDM | Extended Intelligent Driver Model |
EMs | electric machines |
EU | European Union |
HVAC | Ventilation, and Air conditioning |
IDM | Intelligent Driver Model |
PAC | passenger car/passenger vehicle |
SC | secondary consumption |
SUMO | Simulation of Urban Mobility |
Appendix A
Component | Avg. Power Consumption [W] (Usage Share [%]) | Source | Avg. Power Consumption [W] | |||||
---|---|---|---|---|---|---|---|---|
eUp | ID.3 | Q4 | Maxus | MAN | ||||
lighting | Daytime Running Light | 11.4 (54.4) | [73,74] | 6.2 | ||||
Parking Light | 1.7 (50.1) | [73,74] | 0.9 | |||||
Low Beam Headlight | 54.0 (45.6) | [73,74] | 24.6 | |||||
Tail Light | 15 (50.1) | [73,74] | 7.5 | |||||
Brake Light | 5.6 (8.6 | [73,74] | 0.5 | |||||
Indicator Light | 6.9 (4.9) | [73,74] | 0.3 | |||||
Reverse Light | 5.2 (0.4) | [73,74] | 0.02 | |||||
Fog Light | 20 (-) | [73,74] | - | |||||
High Beam Headlight | 34.4 (4.5) | [73,74] | 1.5 | |||||
License Plate Light | 0.5 (50.1) | [73,74] | 0.25 | |||||
Ambient Lighting | 10.0 (40.0) | [74,75] | 4 | |||||
Spotlight | 5.0 (0.03) | [73,74] | 0.15 | |||||
Subtotal | 45.9 | |||||||
comfort, infotainment & connectivity | Audio system | 35.0 (100) | [76] | 25 | 35 | 40 | 35 | |
Infotainment screen | 20.0 (100) | [77] | 5 | 15 | 15 | 15 | ||
Digital instrument cluster | 7.2 (100) | [78] | 1 | 7.2 | 7.2 | 7.2 | ||
Head-up display | 2.0 (100) | [79] | – | 2 | 2 | 2 | ||
On-board computer | 18.0 (100) | (Estimate) | 8 | 18 | 18 | 18 | ||
Data transmission | 2.1 (100) | [80] | – | 2.1 | 2.1 | 2.1 | ||
Bluetooth/Carplay | 0.01 (100) | [81] | 0.01 | 0.01 | 0.01 | 0.01 | ||
Seat heating | 2.0 (100) | [82] | – | 2 | 2 | 2 | ||
Steering wheel heating | 0.3 (100) | [82] | – | 0.3 | 0.3 | 0.3 | ||
Electric windows | 9.0 (100) | [82] | 9 | 9 | 9 | 9 | ||
Electric sunroof | 0.2 (100) | [82] | – | 0.2 | 0.2 | 0.2 | ||
Subtotal | 48.0 | 90.8 | 95.8 | 90.8 | ||||
vehicle Systems and Safety | Wiper and washer system | 23.0 (100) | [82] | 23 | 23 | 23 | 23 | |
Front/rear window defroster | 8.5 (100) | [82] | 8.5 | 8.5 | 8.5 | 8.5 | ||
Heated washer nozzles | 0.4 (100) | [82] | 0.4 | 0.4 | 0.4 | 0.4 | ||
Ventilation system | 125.0 (100) | [75] | 125 | 125 | 125 | 125 | ||
Sensors | 40.0 (100) | [83] | 20 | 40 | 40 | 40 | ||
Horn | 1.2 (100) | [82] | 1.2 | 1.2 | 1.2 | 1.2 | ||
On-board power supply | 20.0 (100) | [82] | 20 | 20 | 20 | 20 | ||
Subtotal | 198.1 | 218.1 | 218.1 | 218.1 | ||||
driving & Powertrain | Powertrain control units | 63 (100) | [82] | 63 | 63 | |||
Coolant and water pumps | 100 (100) | [59] | 100 | 100 | ||||
Transmission oil pump | 300 (100) | Estimation based on [84] | - | 300.0 | ||||
Subtotal | 163 | 163 | 463 | |||||
Total | 455.0 | 517.8 | 522.8 | 517.8 | 817.8 |
References
- European Union. Regulation (EU) 2023/851 of the European Parliament and of the Council of 19 April 2023 amending Regulation (EU) 2019/631 as regards strengthening the CO2 emission performance standards for new passenger cars and new light commercial vehicles in line with the Union’s increased climate ambition. Off. J. Eur. Union 2023, L 110, 5–20. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023R0851 (accessed on 20 July 2025).
- Eßer, A. Realfahrtbasierte Bewertung des ökologischen Potentials von Fahrzeugantriebskonzepten. Ph.D. Dissertation, Technical University of Darmstadt, Darmstadt, Germany, 2021. Available online: https://tubiblio.ulb.tu-darmstadt.de/128814/ (accessed on 18 July 2025).
- Fraunhofer Institute for Solar Energy Systems (ISE). Energy-Charts: Carbon Dioxide Emissions of Electricity Generation in Germany; Fraunhofer ISE: Freiburg im Breisgau, Germany, 2025; Available online: https://www.energy-charts.info/charts/co2_emissions/chart.htm?l=de&c=DE (accessed on 1 July 2025).
- Agora Energiewende. Klimaneutrales Stromsystem 2035—Wie der Deutsche Stromsektor bis zum Jahr 2035 Klimaneutral Werden Kann; Agora Energiewende: Berlin, Germany, 2021; Available online: https://www.agora-energiewende.de/fileadmin/Projekte/2021/2021_11_DE_KNStrom2035/A-EW_264_KNStrom2035_WEB.pdf (accessed on 6 July 2025).
- Statista GmbH. Infografik: In Städten lebende Bevölkerung in Deutschland und Weltweit; Statista GmbH: Hamburg, Germany, 2025. [Google Scholar]
- Bundesministerium für Digitales und Verkehr. Mobilität in Deutschland: Autoverkehr und Elektromobilität—ein Einstieg 2025; Bundesministerium für Digitales und Verkehr: Berlin, Germany, 2025. [Google Scholar]
- Rosenberger, N.; Rosner, P.; Bilfinger, P.; Schöberl, J.; Teichert, O.; Schneider, J.; Abo Gamra, K.; Allgäuer, C.; Dietermann, B.; Schreiber, M.; et al. Quantifying the State of the Art of Electric Powertrains in Battery Electric Vehicles: Comprehensive Analysis of the Tesla Model 3 on the Vehicle Level. World Electr. Veh. J. 2024, 15, 268. [Google Scholar] [CrossRef]
- Mamala, J.; Graba, M.; Mitrovic, J.; Prażnowski, K.; Stasiak, P. Analysis of speed limit and energy consumption in electric vehicles. Combust. Engines 2023, 62, 83–89. [Google Scholar] [CrossRef]
- Kozłowski, E.; Wiśniowski, P.; Gis, M.; Zimakowska-Laskowska, M.; Borucka, A. Vehicle Acceleration and Speed as Factors Determining Energy Consumption in Electric Vehicles. Energies 2024, 17, 4051. [Google Scholar] [CrossRef]
- Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flotterod, Y.-P.; Hilbrich, R.; Lucken, L.; Rummel, J.; Wagner, P.; WieBner, E. Microscopic Traffic Simulation using SUMO. In Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018. [Google Scholar]
- Krajzewicz, D.; Flötteröd, Y.P. Simulative Untersuchungen abstrakter und realer Verkehrsmanagementansätze zur Emissionsreduktion. In Kolloquium Luftqualität an Straßen 2013; Bundesanstalt für Straßenwesen: Bergisch Gladbach, Germnay, 2013. [Google Scholar]
- Xie, X.F.; Smith, S.F.; Barlow, G.J. Schedule-Driven Coordination for Real-Time Traffic Network Control. Proc. Int. Conf. Autom. Plan. Sched. 2012, 22, 323–331. [Google Scholar] [CrossRef]
- Eichenlaub, T.; Rinderknecht, S. Anticipatory Longitudinal Vehicle Control using a LSTM Prediction Model. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 447–452. [Google Scholar] [CrossRef]
- OpenStreetMap Contributors. Planet Dump. 2025. Available online: https://planet.osm.org (accessed on 12 July 2025).
- 3D-Geodaten—Hessen; Hessische Verwaltung für Bodenmanagement und Geoinformation: Wiesbaden, Germany, 2024.
- Salles, D.; Kaufmann, S.; Reuss, H.C. Extending the Intelligent Driver Model in SUMO and Verifying the Drive Off Trajectories with Aerial Measurements. In SUMO User Conference Proceedings; TIB Open Publishing on behalf of DLR Institute of Transportation Systems: Hannover, Germany, 2022; pp. 1–25. Available online: https://sumo.dlr.de/2020/SUMO2020_paper_28.pdf (accessed on 18 July 2025).
- Treiber, M.; Helbing, D. Realistische Mikrosimulation von Straßenverkehr mit einem einfachen Modell. In Proceedings of the 16th Symposium Simulationstechnik ASIM, Rostock, Germany, 10–13 September 2002. [Google Scholar]
- Burhoff, D.; Lange, F. Anfahrtsbeschleunigungen. In VerkehrsRechtsReport; Verlag Dr. Otto Schmidt: Köln, Germany, 2006; Volume 2006. [Google Scholar]
- Bogdanović, V.; Ruškić, N.; Papić, Z.; Simeunović, M. The Research of Vehicle Acceleration at Signalized Intersections. Promet–Traffic Transp. 2013, 25, 33–42. [Google Scholar] [CrossRef]
- Omar, N.; Prasetijo, J.; Daniel, B.D.; Abdullah, M.A.E.; Ismail, I. Study of Car Acceleration and Deceleration Characteristics at Dangerous Route FT050. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012078. [Google Scholar] [CrossRef]
- Li, L.; Chen, X. Vehicle headway modeling and its inferences in macroscopic/microscopic traffic flow theory: A survey. Transp. Res. Part C Emerg. Technol. 2017, 76, 170–188. [Google Scholar] [CrossRef]
- Kostik, A.; Kjosevski, M.; Kocarev, L. Determination of reaction time and intervehicle spacing as important human based microscopic traffic parameters in urban environment. In Proceedings of the International Congress Motor Vehicles & Motors (MVM), Kragujevac, Serbia, 3–5 October 2012. [Google Scholar]
- Handbuch Verkehrsunfallrekonstruktion: Unfallaufnahme—Fahrdynamik—Simulation; Springer eBook Collection Computer Science & Engineering; Vieweg: Wiesbaden, Germany, 2007. [CrossRef]
- Kumm, M.S.M. Statistical Analysis of Temporal Headway Development through Empirical Data in Urban Traffic. In Proceedings of the 6th International Conference on Models and Technologies for Intelligent Transportation Systems: Cracow University of Technology, Kraków, Poland, 5–7 June 2019. [Google Scholar] [CrossRef]
- Eichenlaub, T. Simulative Untersuchungen zu effizienter Längsdynamikregelung von Fahrzeugen im städtischen Verkehr. Ph.D. Thesis, Technische Universität Darmstadt, Düren, Germany, 2023. [Google Scholar]
- Engelmann, M.; Wittmann, J.; Wohlgemuth, V. Erstellung eines Verkehrssimulationsmodells für Berlin in SUMO zur Simulation der möglichen Emissionen und daraus resultierendem Routing. In Proceedings of the 19th International Conference on Applied Research in Environmental Informatics (EnviroInfo), Hamburg, Germany, 26–28 September 2022. [Google Scholar] [CrossRef]
- Codeca, L.; Frank, R.; Faye, S.; Engel, T. Luxembourg SUMO Traffic (LuST) Scenario: Traffic Demand Evaluation. IEEE Intell. Transp. Syst. Mag. 2017, 9, 52–63. [Google Scholar] [CrossRef]
- Codeca, L.; Erdmann, J.; Cahill, V.; Haerri, J. SAGA: An Activity-based Multi-modal Mobility ScenarioGenerator for SUMO. SUMO Conf. Proc. 2022, 1, 39–58. [Google Scholar] [CrossRef]
- Stadt Darmstadt. Verkehrsdaten im Rohformat. 2024. Available online: https://opendata.darmstadt.de/dataset/verkehrsdaten-im-rohformat-2024 (accessed on 1 July 2025).
- Bundesministerium für Digitales und Verkehr. Fahrzeugbestand. 2025. Available online: https://www.bmv.de/SharedDocs/DE/Artikel/G/fahrzeugbestand.html (accessed on 23 July 2025).
- Kraftfahrt-Bundesamt. Fahrzeugzulassungen (FZ)—Bestand an Kraftfahrzeugen und Kraftfahrzeuganhängern nach Bundesländern, Fahrzeugklassen und Ausgewählten Merkmalen 1. Oktober 2024: FZ27. Available online: https://www.kba.de/DE/Statistik/Produktkatalog/produkte/Fahrzeuge/fz27_b_uebersicht.html (accessed on 1 July 2025).
- Kraftfahrt-Bundesamt Größenklassen—Bestand nach Größenklassen. 2021. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/Groessenklassen/2021/2021_b_groessenklassen_zeitreihen.html (accessed on 12 July 2025).
- Volkswagen AG. Der e-up!—Technik und Preise—Gültig für das Modelljahr. 2021. Available online: https://www.volkswagen.de/idhub/content/dam/onehub_pkw/importers/de/besitzer-und-nutzer/hilfe-und-dialogcenter/downloads/produktbroschueren/up-12/e-up_technische_daten_preisliste.pdf (accessed on 23 July 2025).
- Konzept, A.; Reick, B.; Kaufmann, A.; Hermanutz, R.; Stetter, R. Battery Electric Vehicle Efficiency Test for Various Velocities. Vehicles 2022, 4, 60–73. [Google Scholar] [CrossRef]
- Rieger, S. Untersuchungen zur Rekuperationsverzögerung von Elektroautos. VKU-Verkehrsunfall Fahrzeugtechnik 2022, 60, 386–391. [Google Scholar]
- Koch, L.; Buse, D.S.; Wegener, M.; Schoenberg, S.; Badalian, K.; Dressler, F.; Andert, J. Accurate physics-based modeling of electric vehicle energy consumption in the SUMO traffic microsimulator. In Proceedings of the 2021 IEEE International Intelligent Transportation 2021, Indianapolis, IN, USA, 19–22 September 2021; pp. 1650–1657. [Google Scholar] [CrossRef]
- Jelden, h.; Lück, P.M.; Kruse, G.; Tousen, J. The electric powertrain matrix from Volkswagen. Mot. Z. 2014, 2014, 4–9. [Google Scholar] [CrossRef]
- Volkswagen AG. Technische Daten ID.3. 2020. Available online: https://www.volkswagen-newsroom.com/de/der-neue-id3-6240/technische-daten-6249 (accessed on 17 July 2025).
- Geringer, B.; Lenz, H.P. (Eds.) 40. Internationales Wiener Motorensymposium 15.-17. Mai 2019: Band 1: Erster Tag; Band 2: Zweiter Tag/40th International Vienna Motor Symposium 15–17 May 2019 in Two Volumes. Volume 1: First Day; Volume 2: Second Day, 1st ed.; Verkehrstechnik/Fahrzeugtechnik; VDI Verlag: Düsseldorf, Germany, 2019; Volume 811. [Google Scholar] [CrossRef]
- Audi. Update für den Audi Q4 e-tron: Mehr Reichweite, mehr Effizienz, mehr Emotionen. Available online: https://www.audi-mediacenter.com/de/pressemitteilungen/update-fuer-den-audi-q4-e-tron-mehr-reichweite-mehr-effizienz-mehr-emotionen-15594 (accessed on 14 July 2025).
- Audi. Audi Q4 Sportback e-tron—Elektrischer Quattro. Available online: https://www.audi-mediacenter.com/de/elektro-suvs-im-premium-kompaktsegment-der-audi-q4-e-tron-und-der-q4-sportback-e-tron-13887/download (accessed on 14 July 2025).
- Audi. Preisliste Audi Q4 e-tron | Q4 Sportback e-tron. Available online: https://media.audi.com/is/content/audi/country/de/de/neuwagen/preislisten/my-2025/preislisten/preisliste_q4-e-tron_q4-sportback-e-tron.pdf (accessed on 14 July 2025).
- Helbing, C.; Bennewitz, K.; Lück, P.; Tousen, J. Der Antriebsstrang des ID.CROZZ—Volkswagen erweitert das Portfolio des MEB. In 41. Internationales Wiener Motorensymposium 22.-24. April 2020; Geringer, B., Lenz, H.P., Eds.; Verkehrstechnik/Fahrzeugtechnik; VDI Verlag: Düsseldorf, Germany, 2020; pp. 39–53. [Google Scholar]
- Maxus. Maxus eDeliver 9 Broschüre (05 August 2021). Available online: https://www.maxus-motors.at/media/y2ufbagi/maxus-edeliver9-broschuere-5-8-21.pdf (accessed on 14 July 2025).
- Maxus. Maxus eDeliver 9/EV90 Manual—Electric Drive System. Available online: https://cardiagn.com/maxus-edeliver-9-ev90-manual-electric-drive-system/ (accessed on 14 July 2025).
- Naunheimer, H.; Bertsche, B.; Ryborz, J.; Novak, W.; Fietkau, P. Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion, 3rd ed.; Springer Vieweg: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- MAN. Exponate MAN Truck—IAA 2024. Available online: https://www.abag.ch/images/content/MANTruck_BusAG,IAA_Exponate_2024.pdf (accessed on 14 July 2025).
- MAN. Der neue MAN eTGL: Der eTruck für den Urbanen Verteilerverkehr. Available online: https://www.man.eu/de/de/lkw/alle-modelle/der-man-etgl/etgl.html (accessed on 14 July 2025).
- Mercedes-Benz. Mit dem eCitaro Fuel Cell im Winter auf Erprobungsfahrt. Available online: https://www.mercedes-benz-bus.com/de_AT/brand/omnibus-magazin/test-drive-across-the-alps.html (accessed on 14 July 2025).
- Mercedes. Der eCitaro im Überblick. Available online: https://www.mercedes-benz-bus.com/de_LU/models/ecitaro/facts/facts-ecitaro.html (accessed on 14 July 2025).
- ZF. Achs-, Getriebe- und E-Mobility-Antriebssysteme für Busse: Produktübersicht. Available online: https://www.zf.com/public/org/AxleTransmissionE-MobilityDrivelineSystemsforBusesCoaches_72599.pdf (accessed on 17 July 2025).
- Heckelmann, P.; Rinderknecht, S. Influence of an Automated Vehicle with Predictive Longitudinal Control on Mixed Urban Traffic Using SUMO. World Electr. Veh. J. 2024, 15, 448. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Bobba, S.; Ardente, F.; Cellura, M.; Di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. 2019, 215, 634–649. [Google Scholar] [CrossRef]
- Blumenröder, K.; Bennewitz, K.; Lück, P.; Tousen, J.; Estorf, M. Der neue Modulare E-Antriebs-Baukasten von Volkswagen. In 40. Internationales Wiener Motorensymposium 15.-17. Mai 2019; Geringer, B., Lenz, H.P., Eds.; Verkehrstechnik/Fahrzeugtechnik; VDI Verlag: Düsseldorf, Germany, 2019. [Google Scholar]
- Wittich, H. Neuer Elektro-Antrieb für ID.7 und Co. Auto Motor und Sport. 2023. Available online: https://www.auto-motor-und-sport.de/tech-zukunft/alternative-antriebe/app550-neuer-elektro-antrieb-fuer-id-7-und-co/ (accessed on 16 July 2025).
- Healy, C.; Hayes, J.G. An Efficiency Optimized Gear-Shift Map to Maximise the Performance of a Modular E-Axle. In Proceedings of the 2024 24th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 15–17 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Esser, A.; Mölleney, J.; Rinderknecht, S. Potentials to Reduce the Energy Consumption of Electric Vehicles in Urban Traffic. In Proceedings of the 21st International Conference on Drivetrain, Transmission, and Electric Vehicle Technology (Drivetrain Congress—Dritev 2022), Baden-Baden, Germany, 6–7 July 2022; ATZlive: Baden-Baden, Germany, 2022; pp. 133–152. [Google Scholar]
- Witzig, D.I.J.; Wenger, M.; Januschewski, R. Electric Central Drive for Commercial Vehicles. MTZ-Mot. Z. 2018, 2018, 16–21. [Google Scholar] [CrossRef]
- VDE. VDE-Studien Elektrofahrzeuge; AAL-Schriftenreihe; VDE: Frankfurt, Germany, 2011; Volume 5. [Google Scholar]
- ADAC.VW e-Up im ADAC Dauertest: Ein E-Auto für den Berufspendler. Available online: https://www.adac.de/rund-ums-fahrzeug/autokatalog/autotest/vw-e-up-im-dauertest/ (accessed on 15 July 2025).
- Volkswagen. Der ID.3. Available online: https://www.volkswagen.de/idhub/content/dam/onehub_master/pc/models/id-3/early-pa/221121_VW_ID3-Early-PA-Tabelle-VD-DE-A4quer.pdf (accessed on 15 July 2025).
- ADAC. Maxus eDeliver 9 Kastenwagen L3H2 N1 (77 kWh) (ab 11/24): Technische Daten, Bilder, Preise. Available online: https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/maxus/deliver-9/1generation/337713/ (accessed on 15 July 2025).
- ADAC. Technische Daten des VW e-up! Edition (12/22–08/23): WLTP-City eUP. Available online: https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/vw/up/1generation-facelift/326958/#technische-daten (accessed on 15 July 2025).
- ADAC. VW ID.3 Pro S (4-Sitzer) (10/23–05/24): Technische Daten, Bilder, Preise. Available online: https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/vw/id3/1generation-facelift/326865/ (accessed on 15 July 2025).
- Blat Belmonte, B. Ökonomische Optimierung der Ladestrategie für Elektrobusflotten unter Teilnahme am Strommarkt. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2024. [Google Scholar] [CrossRef]
- Großmann, H. Pkw-Klimatisierung: Physikalische Grundlagen und Technische Umsetzung, 2nd ed.; VDI-Buch; Springer Vieweg: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- DWD. Climate Data Center (CDC): Hourly Air Temperature, Historical Observations, Germany. Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/air_temperature/historical/ (accessed on 15 July 2025).
- Puma-Benavides, D.S.; Cevallos-Carvajal, A.S.; Masaquiza-Yanzapanta, A.G.; Quinga-Morales, M.I.; Moreno-Pallares, R.R.; Usca-Gomez, H.G.; Murillo, F.A. Comparative Analysis of Energy Consumption between Electric Vehicles and Combustion Engine Vehicles in High-Altitude Urban Traffic. World Electr. Veh. J. 2024, 15, 355. [Google Scholar] [CrossRef]
- Zamboni, G.; André, M.; Roveda, A.; Capobianco, M. Experimental evaluation of Heavy Duty Vehicle speed patterns in urban and port areas and estimation of their fuel consumption and exhaust emissions. Transp. Res. Part D Transp. Environ. 2015, 35, 1–10. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Liu, H.; Huang, R.; Yang, L.; Li, Z.; Fu, L.; Hao, J. Real-world fuel consumption and CO2 emissions of urban public buses in Beijing. Appl. Energy 2014, 113, 1645–1655. [Google Scholar] [CrossRef]
- Keramydas, C.; Papadopoulos, G.; Ntziachristos, L.; Lo, T.S.; Ng, K.L.; Wong, H.L.; Wong, C. Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network. Energies 2018, 11, 2569. [Google Scholar] [CrossRef]
- Peichl, T.; Rinderknecht, S. Parameter Study on the Influence of Driving Cycle and Powertrain Parameterization on Fuel Consumption of wheel-hub driven Vehicles. In Dritev 2024; VDI Verlag: Düsseldorf, Germany, 2024; pp. 141–158. [Google Scholar] [CrossRef]
- Schoettle, B.; Sivak, M.; Fujiyama, Y. LEDs and Power Consumption of Exterior Automotive Lighting: Implications for Gasoline and Electric Vehicles; University of Michigan: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Vrazic, M.; Virtic, P. Auxiliary systems consumption in electric vehicle. Prz. Elektrotech. 2014, 90, 172–175. [Google Scholar] [CrossRef]
- Büchner, S. Energiemanagement-Strategien für Elektrische Energiebordnetze in Kraftfahrzeugen. Ph.D. Dissertation, Technische Universität Dresden, Dresden, Germany, 2008. [Google Scholar]
- Miri, I.; Fotouhi, A.; Ewin, N. Electric vehicle energy consumption modelling and estimation—A case study. Int. J. Energy Res. 2021, 45, 501–520. [Google Scholar] [CrossRef]
- Beetronics. 13 Zoll Touchscreen. Available online: https://www.beetronics.de/13-zoll-touchscreen (accessed on 22 July 2025).
- Wowuseful. 2025. Available online: https://de.aliexpress.com/item/1005007541592170.html (accessed on 22 July 2025).
- Valeo. Valeo-Montageanleitung BP-Speed Visio-NOMAD 632051. Available online: https://www.ez-catalog.nl/Asset/85371bfe4f5844b990f40366c65b6524/Original/Valeo-Montagehandleiding-BP-Speed-Visio-NOMAD-632051.pdf (accessed on 14 July 2025).
- Qu, X.; Zhong, L.; Zeng, Z.; Tu, H.; Li, X. Automation and connectivity of electric vehicles: Energy boon or bane? Cell Rep. Phys. Sci. 2022, 3, 101002. [Google Scholar] [CrossRef]
- Link Labs. Power Consumption & IoT: Bluetooth & Zigbee. Available online: https://www.link-labs.com/blog/bluetooth-zigbee-comparison (accessed on 22 July 2025).
- Helms, H.; Bruch, B.; Räder, D.; Hausberger, S.; Lipp, S.; Matzer, C. Energieverbrauch von Elektroautos (BEV). In Umweltbundesamt TEXTE 160/2022; Umweltbundesamt: Dessau-Roßlau, Germany, 2022. [Google Scholar]
- Rajashekara, K.; Koppera, S. Data and Energy Impacts of Intelligent Transportation—A Review. World Electr. Veh. J. 2024, 15, 262. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Jo, C.; Kim, Y.; Song, M.; Kim, J.; Kim, H. Development and Control of an Electric Oil Pump for Automatic Transmission-Based Hybrid Electric Vehicle. IEEE Trans. Veh. Technol. 2011, 60, 1981–1990. [Google Scholar] [CrossRef]
Segment A | Segment C | Segment J | Segment N1 | |
---|---|---|---|---|
Deputy Vehicle | VW eUp | VW ID.3 |
Audi Q4
E-TRON |
Maxus
eDeliver 9 |
real consumption WLTP in kWh/100 km | 14.5 [60] | 15.3 [61] | 16.8 [40] | 26.2 [62] |
simulated consumption WLTP in kWh/100 km | 12.5 | 14.8 | 16.9 | 25.4 |
deviation simulations vs. real in % | 13.8 | 3.2 | 0.5 | 3.0 |
real consumption WLTP-Low in kWh/100 km | 10.0 [63] | 11.5 [64] | 12.5 [40] | 16.6 [62] |
simulated consumption WLTP-Low in kWh/100 km | 8.5 | 11.6 | 13.4 | 17.4 |
deviation simulations vs. real in % | 15.0 | 0.8 | 6.7 | 4.5 |
Deputy Vehicle | VW eUp | VW ID.3 | Audi Q4 E-TRON | Maxus eDeliver 9 | MAN eTGL | Mercedes eCitaro G |
---|---|---|---|---|---|---|
Temperature-independent
secondary consumer power [W]: | 455.0 | 517.8 | 522.8 | 517.8 | 817.8 | 3506.0 |
Temperature-dependent secondary consumer power [W]: | 806.2 | 870.1 | 970.8 | 806.2 | 806.2 | 7711.0 |
Total secondary consumer power [W]: | 1261.2 | 1387.9 | 1493.6 | 1324.0 | 1624.0 | 110,217.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heckelmann, P.; Peichl, T.; Krettek, J.; Rinderknecht, S. Simulative Consumption Analysis of an All-Electric Vehicle Fleet in an Urban Environment. World Electr. Veh. J. 2025, 16, 500. https://doi.org/10.3390/wevj16090500
Heckelmann P, Peichl T, Krettek J, Rinderknecht S. Simulative Consumption Analysis of an All-Electric Vehicle Fleet in an Urban Environment. World Electric Vehicle Journal. 2025; 16(9):500. https://doi.org/10.3390/wevj16090500
Chicago/Turabian StyleHeckelmann, Paul, Tobias Peichl, Johanna Krettek, and Stephan Rinderknecht. 2025. "Simulative Consumption Analysis of an All-Electric Vehicle Fleet in an Urban Environment" World Electric Vehicle Journal 16, no. 9: 500. https://doi.org/10.3390/wevj16090500
APA StyleHeckelmann, P., Peichl, T., Krettek, J., & Rinderknecht, S. (2025). Simulative Consumption Analysis of an All-Electric Vehicle Fleet in an Urban Environment. World Electric Vehicle Journal, 16(9), 500. https://doi.org/10.3390/wevj16090500