Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

14 pages, 2339 KiB  
Article
Bio-Innovative Pretreatment of Coarse Wool Fibers
by Edita Vujasinović, Anita Tarbuk, Tanja Pušić and Tihana Dekanić
Processes 2023, 11(1), 103; https://doi.org/10.3390/pr11010103 - 29 Dec 2022
Cited by 4 | Viewed by 2037
Abstract
From the textile manufacturers’ point of view, coarse and medullated fibers are undesirable in the production of fine woolen materials, but highly desirable in the production of textiles and yarns with special effects, especially in carpet production. For sustainability, the entire sheep fleece [...] Read more.
From the textile manufacturers’ point of view, coarse and medullated fibers are undesirable in the production of fine woolen materials, but highly desirable in the production of textiles and yarns with special effects, especially in carpet production. For sustainability, the entire sheep fleece should be used, including the coarse and medullated fibers. The raw wool must be scoured to obtain clean wool fibers without damage or excessive fiber entanglement, with a certain moisture content, low dirt content and residual grease for further processing, and proper color. In order to remove the impurities in raw wool with maximum efficiency, save energy and minimize the environmental impact, this study investigated the changes in some fiber properties during the scouring process due to the effect of the enzyme complex on coarse wool fibers. The effects were studied through the amount of clean wool fibers and impurities within the fleece, the fiber diameter and color. Conventional and enzyme scoured coarse wool were bleached with an unconventional bleaching agent, percarbonate, and compared to bleaching with hydrogen peroxide to achieve higher whiteness and brilliant color with minimal fiber property changes. The changes after the bleaching process were determined based on the sorption of moisture and dyes and the color parameters. The bio-innovative pretreatment with enzyme complex scouring and percarbonate bleaching resulted in excellent fiber properties even for coarse wool. SEM analysis was performed to confirm these results. Taking into account the sustainability of the process and environmental protection, enzyme complex scouring and percarbonate bleaching are recommended as pretreatment processes for raw coarse wool. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability)
Show Figures

Figure 1

20 pages, 1939 KiB  
Article
Feasibility Study of Applying Anaerobic Step-Feeding Mode for the Treatment of High-Strength Wastewater in Granular Sequencing Batch Reactors (GSBRs)
by Elsayed Mady, Jan Oleszkiewicz and Qiuyan Yuan
Processes 2023, 11(1), 75; https://doi.org/10.3390/pr11010075 - 28 Dec 2022
Viewed by 1668
Abstract
This study investigated the feasibility of applying an anaerobic step-feeding strategy to enhance the performance of granular sequencing batch reactors (GSBRs) in terms of operational stability of the cultivated mature granules and nutrient removal efficiencies. Two identical 5 L reactors were operated with [...] Read more.
This study investigated the feasibility of applying an anaerobic step-feeding strategy to enhance the performance of granular sequencing batch reactors (GSBRs) in terms of operational stability of the cultivated mature granules and nutrient removal efficiencies. Two identical 5 L reactors were operated with a total cycle time of 8 h. GSBRs were operated with high-strength synthetic wastewater (COD = 1250 ± 43, ammonium (NH4-N) = 115.2 ± 4.6, and orthophosphate (PO4-P) = 17.02 ± 0.9 mg/L) for 360 days through three stages: (1) Cultivation, 125 days (>2.1 mm); (2) Maturation, 175 days (>3 mm); (3) alternate feed loading strategy for R2 only for 60 days (anaerobic step-feeding). The granulation process, the physical properties of the granules, the nutrients, and the substrate removal performance were recorded during the entire operational period. For the cultivation and maturation stages, both reactors followed the fast single feeding mode followed by anaerobic mixing, and the results indicated a strong correlation between R1 and R2 due to the same working conditions. During the cultivation stage, adopting high organic loading rate (OLR) at the reactor start-up did not accelerate the formation of granules. Removal efficiency of PO4-P was less than 76% during the maturation period, while it exceeded 90% for COD, and was higher than 80% for NH4-N without effect of nitrite or nitrate accumulations due to simultaneous nitrification–denitrification. After changing filling mode for R2 only, there was unexpected deterioration in the performance and a rapid disintegration of the matured granules (poor settleability) accompanied by poor effluent quality due to high content of suspended solids because of applying selection pressure of short settling time. Consequently, GSBRs operation under the effect of fast single feeding mode followed by anaerobic mixing favors stable long-term granule stability. Full article
(This article belongs to the Special Issue Environmental Protection by Aerobic Granular Sludge Process)
Show Figures

Figure 1

24 pages, 2394 KiB  
Article
Enhance the Injection Molding Quality Prediction with Artificial Intelligence to Reach Zero-Defect Manufacturing
by Bruno Silva, Ruben Marques, Dinis Faustino, Paulo Ilheu, Tiago Santos, João Sousa and André Dionisio Rocha
Processes 2023, 11(1), 62; https://doi.org/10.3390/pr11010062 - 27 Dec 2022
Cited by 3 | Viewed by 7621
Abstract
With the spread of the Industry 4.0 concept, implementing Artificial Intelligence approaches on the shop floor that allow companies to increase their competitiveness in the market is starting to be prioritized. Due to the complexity of the processes used in the industry, the [...] Read more.
With the spread of the Industry 4.0 concept, implementing Artificial Intelligence approaches on the shop floor that allow companies to increase their competitiveness in the market is starting to be prioritized. Due to the complexity of the processes used in the industry, the inclusion of a real-time Quality Prediction methodology avoids a considerable number of costs to companies. This paper exposes the whole process of introducing Artificial Intelligence in plastic injection molding processes in a company in Portugal. All the implementations and methodologies used are presented, from data collection to real-time classification, such as Data Augmentation and Human-in-the-Loop labeling, among others. This approach also allows predicting and alerting with regard to process quality loss. This leads to a reduction in the production of non-compliant parts, which increases productivity and reduces costs and environmental footprint. In order to understand the applicability of this system, it was tested in different injection molding processes (traditional and stretch and blow) and with different materials and products. The results of this document show that, with the approach developed and presented, it was possible to achieve an increase in Overall Equipment Effectiveness (OEE) of up to 12%, a reduction in the process downtime of up to 9% and a significant reduction in the number of non-conforming parts produced. This improvement in key performance indicators proves the potential of this solution. Full article
(This article belongs to the Special Issue Digitalized Industrial Production Systems and Industry 4.0, Volume II)
Show Figures

Figure 1

14 pages, 2800 KiB  
Article
Development of a SPE-HPLC-PDA Method for the Quantification of Phthalates in Bottled Water and Their Gene Expression Modulation in a Human Intestinal Cell Model
by Vincenzo Ferrone, Pantaleone Bruni, Teresa Catalano, Federico Selvaggi, Roberto Cotellese, Giuseppe Carlucci and Gitana Maria Aceto
Processes 2023, 11(1), 45; https://doi.org/10.3390/pr11010045 - 25 Dec 2022
Cited by 3 | Viewed by 1709
Abstract
Phthalates are ubiquitous pollutants that are currently classified as endocrine disruptor chemicals causing serious health problems. As contaminants of food and beverages, they come into contact with the epithelium of the intestinal tract. In this work, a SPE-HPLC-PDA method for the determination of [...] Read more.
Phthalates are ubiquitous pollutants that are currently classified as endocrine disruptor chemicals causing serious health problems. As contaminants of food and beverages, they come into contact with the epithelium of the intestinal tract. In this work, a SPE-HPLC-PDA method for the determination of phthalates in water from plastic bottles was developed and validated according to the food and drug administration (FDA) guidelines. A chromatographic separation was achieved using a mobile phase consisting of ammonium acetate buffer 10 mM pH 5 (line A) and a mixture of methanol and iso-propanol (50:50 v/v, line B) using gradient elution. Several SPE cartridges and different pH values were investigated for this study, evaluating their performance as a function of recovery. Among these parameters, pH 5 combined with the SPE sep pack C18 cartridge showed the best performance. Finally, the proposed method was applied to the analysis of real samples, which confirmed the presence of phthalates. A colonic epithelial cell model was used to evaluate the effects of these phthalates at the concentrations found in water from plastic bottles. In cells exposed to phthalates, the increased expression of factors, which control the signaling pathways necessary for intestinal epithelium homeostasis, inflammatory response, and stress was detected. The proposed method falls fully within the limits imposed by the guidelines with precision (RSD%) below 7.1% and accuracy (BIAS%) within −4.2 and +6.1. Full article
Show Figures

Figure 1

17 pages, 10831 KiB  
Article
Using Particle Residence Time Distributions as an Experimental Approach for Evaluating the Performance of Different Designs for a Pilot-Scale Spray Dryer
by Zelin Zhou, Timothy A. G. Langrish and Sining Cai
Processes 2023, 11(1), 40; https://doi.org/10.3390/pr11010040 - 24 Dec 2022
Cited by 1 | Viewed by 1881
Abstract
The performances of four different designs for a pilot-scale spray dryer have been evaluated and compared based on experimentally measured particle residence time distributions (RTD), recovery rates and physical properties of spray-dried fresh skim milk. The RTDs have been measured using a dye [...] Read more.
The performances of four different designs for a pilot-scale spray dryer have been evaluated and compared based on experimentally measured particle residence time distributions (RTD), recovery rates and physical properties of spray-dried fresh skim milk. The RTDs have been measured using a dye pulse injection method, and the measurements have been fitted to models using continuous stirred-tank reactors in series (CSTR-TIS) for quantitative performance evaluation and comparison. Conical drying chambers and a box connection design have been used in the latest dryer design to reduce the amount of wall deposition and provide a smoother gas flow pattern. The particle-to-gas mean residence time ratio for the latest design is significantly closer to unity (1.6 s/s to 1.0 s/s) compared with earlier designs (2.6 s/s to 1.5 s/s). The latest design has a wider spread of RTD (n = 5–8) compared with earlier designs (n = 13–18), which may be linked to the recirculation zone in the box connection. Although the latest design has a wider spread of RTD, the conical design has shown promising results compared with a cylindrical drying chamber in terms of overall wall deposition behaviours. Full article
Show Figures

Graphical abstract

10 pages, 1867 KiB  
Article
Using Photogrammetry to Obtain 3D-Printed Positive Foot Casts Suitable for Fitting Thermoconformed Plantar Orthoses
by Ana María Pérez Pico, Félix Marcos Tejedor, Luis Carlos de Cáceres Orellana, Pablo de Cáceres Orellana and Raquel Mayordomo
Processes 2023, 11(1), 24; https://doi.org/10.3390/pr11010024 - 23 Dec 2022
Cited by 2 | Viewed by 1659
Abstract
The use of photogrammetry provides an inexpensive, alternative method that can simplify the processes traditionally carried out in the orthotics workshop. The objectives of this study are to develop a method based on photogrammetry to obtain 3D-printed positive foot casts for fabricating thermoconformed [...] Read more.
The use of photogrammetry provides an inexpensive, alternative method that can simplify the processes traditionally carried out in the orthotics workshop. The objectives of this study are to develop a method based on photogrammetry to obtain 3D-printed positive foot casts for fabricating thermoconformed orthoses from a negative cast in phenolic foam. Using a basic Smartphone, a photo capture protocol for feet, free software and a 3D printer, we tested the suitability of the positive cast obtained to fabricate custom foot orthoses using thermoconformed 3 mm polypropylene in the orthotics laboratory. The results show that digitally fabricated casts provide a very close replicate of the positive casts obtained traditionally through plaster casting (maximum dimension discrepancy between casts of 2 mm in length and 0.4 mm in forefoot, midfoot and rearfoot measurements). They are also suitable for the process of fabricating 2- and 3-mm polypropylene thermoconformed plantar orthoses. Photogrammetry can be used as a new method to obtain a positive 3D foot cast suitable for fabricating custom orthoses, in a valid, safe, cleaner and more lasting procedure that removes the process of plaster casting. Full article
(This article belongs to the Section Advanced Digital and Other Processes)
Show Figures

Figure 1

21 pages, 5080 KiB  
Article
Real-Time Cell Growth Control Using a Lactate-Based Model Predictive Controller
by Kathleen Van Beylen, Janne Reynders, Ahmed Youssef, Alberto Peña Fernández, Ioannis Papantoniou and Jean-Marie Aerts
Processes 2023, 11(1), 22; https://doi.org/10.3390/pr11010022 - 22 Dec 2022
Viewed by 1132
Abstract
Providing a cost-efficient feeding strategy for cell expansion processes remains a challenging task due to, among other factors, donor variability. The current method to use a fixed medium replacement strategy for all cell batches results often in either over- or underfeeding these cells. [...] Read more.
Providing a cost-efficient feeding strategy for cell expansion processes remains a challenging task due to, among other factors, donor variability. The current method to use a fixed medium replacement strategy for all cell batches results often in either over- or underfeeding these cells. In order to take into account the individual needs of the cells, a model predictive controller was developed in this work. Reference experiments were performed by expanding human periosteum derived progenitor cells (hPDCs) in tissue flasks to acquire reference data. With these data, a time-variant prediction model was identified to describe the relation between the accumulated medium replaced as the control input and the accumulated lactate produced as the process output. Several forecast methods to predict the cell growth process were designed using multiple collected datasets by applying transfer function models or machine learning. The first controller experiment was performed using the accumulated lactate values from the reference experiment as a static target function over time, resulting in over- or underfeeding the cells. The second controller experiment used a time-adaptive target function by combining reference data as well as current measured real-time data, without over- or underfeeding the cells. Full article
Show Figures

Figure 1

22 pages, 10615 KiB  
Article
Applications and Development of X-ray Inspection Techniques in Battery Cell Production
by Steffen Masuch, Philip Gümbel, Nicolaj Kaden and Klaus Dröder
Processes 2023, 11(1), 10; https://doi.org/10.3390/pr11010010 - 21 Dec 2022
Cited by 6 | Viewed by 3522
Abstract
Demand for lithium-ion battery cells (LIB) for electromobility has risen sharply in recent years. In order to continue to serve this growing market, large-scale production capacities require further expansion and the overall effectiveness of processes must be increased. Effectiveness can be significantly optimized [...] Read more.
Demand for lithium-ion battery cells (LIB) for electromobility has risen sharply in recent years. In order to continue to serve this growing market, large-scale production capacities require further expansion and the overall effectiveness of processes must be increased. Effectiveness can be significantly optimized through innovative manufacturing technology and by identifying scrap early in the production chain. To enable these two approaches, it is imperative to quantify safety- and function-critical product features in critical manufacturing steps through appropriate measurement techniques. The overview in this paper on quality control in LIB production illustrates the necessity for improved inspection techniques with X-rays to realize a fast, online measurement of inner features in large-scale cell assembly with short cycle times and to visualize inner product-process interactions for the optimization in electrolyte filling. Therefore, two new inspection techniques are presented that contribute to overcoming the aforementioned challenges through the targeted use of X-rays. First, based on the results of previous experiments in which the X-ray beam directions were deliberately varied, a online coordinate measurement of anode-cathode (AC) overhang was developed using a line detector. Second, a new concept and the results of a continuous 2D visualization of the electrolyte filling process are presented, which can be used in the future to optimize this time-critical process step. By using a X-ray-permeable and portable vacuum chamber it is possible to quantify the influence of process parameters on the distribution of the electrolyte in the LIB. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 2562 KiB  
Article
Use of Small Internal Combustion Engines for LNG Boil-Off Gas Conversion: An Experimental and Numerical Analysis
by Luigi De Simio, Sabato Iannaccone, Piersabato Gambino and Dario Catanese
Processes 2023, 11(1), 14; https://doi.org/10.3390/pr11010014 - 21 Dec 2022
Viewed by 2074
Abstract
LNG technologies have long been used but only recently found widespread employment on medium and small scales compared to the traditional cycle of liquefaction, transport by ship, regasification and injection into the gas network. This has increased the direct use of LNG with [...] Read more.
LNG technologies have long been used but only recently found widespread employment on medium and small scales compared to the traditional cycle of liquefaction, transport by ship, regasification and injection into the gas network. This has increased the direct use of LNG with the problem of limiting greenhouse gas emissions, linked to gas released principally in the event of prolonged absence of fuel drawing from the cryogenic tank. This study analyzes the energetic exploitation of BOG in small internal combustion engines. The effect on CO2 equivalent emissions was evaluated, making a comparison with the BOG emission into the atmosphere directly or after burning. A 1 kW gasoline engine was selected for a 500-litre LNG tank and converted to gas fueling. The measured consumption and emissions resulted in compliance with a lower environmental impact compared to direct BOG release into the atmosphere despite simplified technical solutions, such a cheap and light 2-stroke engine. In contrast, only a 4-stroke engine has performance such as achieving a reduction in GHG emissions, up to zero, even compared to the case of BOG combustion before releasing it into the atmosphere. Full article
Show Figures

Graphical abstract

16 pages, 4654 KiB  
Article
Determination and Validation of Discrete Element Model Parameters of Soybeans with Various Moisture Content for the Discharge Simulation from a Cylindrical Model Silo
by Hwabin Jung and Won Byong Yoon
Processes 2022, 10(12), 2622; https://doi.org/10.3390/pr10122622 - 07 Dec 2022
Viewed by 1291
Abstract
This study investigates the physical parameters that affect the flow patterns of soybeans with various moisture content (12% to 60%) at varying orifice sizes (20, 40, and 60 mm) in a cylindrical silo. The flow conditions required to obtain a steady mass flow [...] Read more.
This study investigates the physical parameters that affect the flow patterns of soybeans with various moisture content (12% to 60%) at varying orifice sizes (20, 40, and 60 mm) in a cylindrical silo. The flow conditions required to obtain a steady mass flow during discharge were evaluated via experiments and three-dimensional discrete element method (DEM) simulation. The discharged mass flow rates at different flow conditions provided the critical size of the orifice. If the reduced diameter (Dred) of an orifice is >5.59, the flow showed a steady state. Based on the mass flow index (MFI), the flow patterns at 40% and 60% moisture content at 40 and 60 mm orifice sizes, respectively, showed funnel flows. although these flow conditions were satisfied to maintain a steady flow. The maximum wall pressure for the funnel flow showed the location of the interlocking phenomenon where the stagnant zone began during discharging. DEM simulation was validated through the mass profiles using the parameters obtained by the experiments. This study demonstrates that the experimental and analytical results with DEM simulation predict the flow behaviors of soybeans well at various moisture contents. These results are useful for designing silos for continuous food processing. Full article
Show Figures

Figure 1

11 pages, 652 KiB  
Article
Influence of the Drying Method on the Volatile Component Profile of Hypericum perforatum Herb: A HS-SPME-GC/MS Study
by Karolina Dudek, Marcelin Jan Pietryja, Slawomir Kurkiewicz, Małgorzata Kurkiewicz, Barbara Błońska-Fajfrowska, Sławomir Wilczyński and Anna Dzierżęga-Lęcznar
Processes 2022, 10(12), 2593; https://doi.org/10.3390/pr10122593 - 05 Dec 2022
Cited by 1 | Viewed by 1374
Abstract
Hypericum perforatum L. (St. John’s wort) is one of the most popular medicinal plants in the world. Due to its documented antimicrobial and antioxidant properties, it is used in the treatment of bacterial and viral infections as well as inflammations. It is also [...] Read more.
Hypericum perforatum L. (St. John’s wort) is one of the most popular medicinal plants in the world. Due to its documented antimicrobial and antioxidant properties, it is used in the treatment of bacterial and viral infections as well as inflammations. It is also used to treat gastrointestinal diseases and mild to moderate depression. In recent years, there has been an increase in the popularity of herbal medicine. Many people collect their own herbs and dry them at home. A common choice for quick drying of fruits, vegetables and herbs at home are food dehydrator machines. There are not many publications in the scientific literature examining the quality of dried herbal material obtained in such dryers. We characterized St. John’s wort harvested in southern Poland and investigated the effect of specific drying methods on the volatile component profile. The herbal raw material was dried using three methods: indoors at room temperature, in an incubator at 37 °C and in a food dehydrator machine. Volatile components were analysed by HS-SPME GC/MS. The herb dried in a food dehydrator, compared to other drying methods, retained similar or slightly smaller amounts of the compounds from the mono- and sesquiterpenes group, aromatic monoterpenes, aromatic monoterpenoids, sesquiterpenoids, aromatic sesquiterpenes and alkanes. However, monoterpenoids and compounds coming from decomposition reactions, such as alcohols, short-chain fatty acids and esters, were noticed in larger quantities. Usage of a food dehydrator at home can be a convenient alternative to drying herbs. However, due to a different profile of volatile components depending on the drying method, the amount of biologically active substances needs to be considered. By using various methods of drying, the medical effects of herbs can be enhanced or weakened; therefore, further research in this direction should be continued. Full article
Show Figures

Graphical abstract

14 pages, 3653 KiB  
Article
Using Numerical Analysis to Develop a Retort Process to Enhance Antioxidant Activity and Physicochemical Properties of White Radish (Raphanus sativus L.) in Different-Sized Packages
by Hwabin Jung, Yun Ju Lee and Won Byong Yoon
Processes 2022, 10(12), 2589; https://doi.org/10.3390/pr10122589 - 04 Dec 2022
Viewed by 1403
Abstract
Thermal processing of white radish using retort sterilization at different temperatures was investigated according to the dimension of the package. Four different samples with the same weight and volume were placed in packages with different dimensions. The degree of sterilization (i.e., F0 [...] Read more.
Thermal processing of white radish using retort sterilization at different temperatures was investigated according to the dimension of the package. Four different samples with the same weight and volume were placed in packages with different dimensions. The degree of sterilization (i.e., F0-value) at the cold point targeted at 6 min was determined based on experimental data and heat transfer simulation. The sterilization time was considerably increased with a decrease in surface area to unit volume ratio (φ) at each temperature. The sterilization time for the sample with the highest φ (155.56) was approximately five times faster than the sample with the lowest φ (72.22) at all heating temperatures. Numerical simulation conducted with a proper heat transfer coefficient (h) showed mostly good agreement with the experimental data (RMSE < 2 °C). Changes in color and total phenolic content were higher for samples heated at higher temperatures. Hardness values of white radish samples measured for center and edge parts separately were more uniform for samples with a high φ. Results in this study suggest that optimizing heating conditions of root vegetables must consider their package dimensions to satisfy quality attributes after sterilization. Numerical simulation can be utilized as a useful tool to design the sterilization process. Full article
(This article belongs to the Special Issue New Advances in Food Processing and Preservation)
Show Figures

Figure 1

15 pages, 1529 KiB  
Article
A Feedforward Model Predictive Controller for Optimal Hydrocracker Operation
by Esin Iplik, Ioanna Aslanidou and Konstantinos Kyprianidis
Processes 2022, 10(12), 2583; https://doi.org/10.3390/pr10122583 - 04 Dec 2022
Cited by 1 | Viewed by 1125
Abstract
Hydrocracking is an energy-intensive process, and its control system aims at stable product specifications. When the main product is diesel, the quality measure is usually 95% of the true boiling point. Constant diesel quality is hard to achieve when the feed characteristics vary [...] Read more.
Hydrocracking is an energy-intensive process, and its control system aims at stable product specifications. When the main product is diesel, the quality measure is usually 95% of the true boiling point. Constant diesel quality is hard to achieve when the feed characteristics vary and feedback control has a long response time. This work suggests a feedforward model predictive control structure for an industrial hydrocracker. A state-space model, an autoregressive exogenous model, a support vector machine regression model, and a deep neural network model are tested in this structure. The resulting reactor temperature decisions and final diesel product quality values are compared against each other and against the actual measurements. The results show the importance of the feed character measurements. Significant improvements are shown in terms of product quality as well as energy savings through decreasing the heat duty of the preheating furnace. Full article
Show Figures

Figure 1

21 pages, 3030 KiB  
Article
Decentralized Multi-Performance Fuzzy Control for Nonlinear Large-Scale Descriptor Systems
by Che-Lun Su, Wen-Jer Chang and Chin-Lin Pen
Processes 2022, 10(12), 2578; https://doi.org/10.3390/pr10122578 - 03 Dec 2022
Cited by 6 | Viewed by 1016
Abstract
This article addresses the decentralized multi-performance (MP) fuzzy control problem of nonlinear large-scale descriptor (LSD) systems. The considered LSD system contains several subsystems with nonlinear interconnection and external disturbances, and the Takagi–Sugeno fuzzy model (TSFM) is adopted to represent each nonlinear subsystem. Based [...] Read more.
This article addresses the decentralized multi-performance (MP) fuzzy control problem of nonlinear large-scale descriptor (LSD) systems. The considered LSD system contains several subsystems with nonlinear interconnection and external disturbances, and the Takagi–Sugeno fuzzy model (TSFM) is adopted to represent each nonlinear subsystem. Based on the proportional-plus-derivative state feedback (PDSF) scheme, we aim to design a decentralized MP fuzzy controller that guarantees the stabilization, mixed H, and passivity performance control (MHPPC), and the guaranteed cost control (GCC) performance of the closed-loop Takagi–Sugeno LSD (TSLSD) systems. Furthermore, we introduce the Lyapunov stability theory and the free-weighting matrix scheme to analyze the stability of the TSLSD system. The proposed sufficient conditions can be transformed as linear matrix inequality (LMI) forms through Schur’s complement, which can be easily solved with the LMI Toolbox. Finally, to illustrate the proposed approach, two examples and simulation results are presented. Full article
Show Figures

Figure 1

13 pages, 5794 KiB  
Article
Low-Temperature Joining of B4C Ceramics Using Cold-Sprayed Al-8wt%Si Alloy and Microstructure of the Vicinity of the Joint Interface
by Hideki Kita, Roujia Gou and Seiji Yamashita
Processes 2022, 10(12), 2573; https://doi.org/10.3390/pr10122573 - 02 Dec 2022
Viewed by 1124
Abstract
A series of studies were conducted to demonstrate the feasibility of low-temperature bonding by the forming and heating an Al-8wt%Si alloy thick film on a B4C surface by cold spraying. The results show that: (1) The cracks near the joining interface [...] Read more.
A series of studies were conducted to demonstrate the feasibility of low-temperature bonding by the forming and heating an Al-8wt%Si alloy thick film on a B4C surface by cold spraying. The results show that: (1) The cracks near the joining interface are closed by the Al alloy by the process studied in this study, and a joining strength of about 220 and 240 MPa is achieved by low temperature joining of 580 °C and 600 °C, respectively.; (2) The amount of weak intermetallic compounds at the joining interface is reduced; (3) It is assumed that the reduction in the amount of Al-B-C compounds is due to the formation of the β phase during the solidification process of the Al-Si alloy, which hinders the growth of the compounds.; (4) On the primary joint surface, a continuous void group is formed in the vicinity of the β phase that surrounds the α phase, causing a decrease in the joining strength. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

10 pages, 2444 KiB  
Article
Azithromycin Adsorption onto Different Soils
by Raquel Cela-Dablanca, Ana Barreiro, Lucía Rodríguez-López, Paula Pérez-Rodríguez, Manuel Arias-Estévez, María J. Fernández-Sanjurjo, Esperanza Álvarez-Rodríguez and Avelino Núñez-Delgado
Processes 2022, 10(12), 2565; https://doi.org/10.3390/pr10122565 - 02 Dec 2022
Cited by 2 | Viewed by 1684
Abstract
The antibiotic azithromycin (AZM) is one of the most persistent in the environment, with potential to cause serious health and environmental problems. As some polluting discharges containing this antibiotic can reach the soil, it is clearly relevant determining the ability of soils with [...] Read more.
The antibiotic azithromycin (AZM) is one of the most persistent in the environment, with potential to cause serious health and environmental problems. As some polluting discharges containing this antibiotic can reach the soil, it is clearly relevant determining the ability of soils with different characteristics to retain it. In this research, AZM adsorption and desorption were studied for a variety of soils, using batch-type experiments. The results show that, at low doses of antibiotic added (less than or equal to 50 µmol L−1), the adsorption always reached 100%, while when higher concentrations were added (between 200 and 600 µmol L−1) the highest adsorption corresponded to soils with higher pH values. Adsorption data were fitted to the Linear, Langmuir and Freundlich models, with the latter showing the best fit, in view of the determination coefficient. No desorption was detected, indicating that AZM is strongly adsorbed to the soils evaluated, suggesting that the risks of environmental problems due to this contaminant are minimized for these edaphic media. These results can be considered relevant with respect to risk assessment and possible programming of measures aimed at controlling environmental contamination by emerging contaminants, especially from the group of antibiotics, and in particular from AZM. Full article
Show Figures

Figure 1

15 pages, 3853 KiB  
Article
A New Approach for Increasing Speed, Loading Capacity, Resolution, and Scalability of Preparative Size-Exclusion Chromatography of Proteins
by Yating Xu, Si Pan and Raja Ghosh
Processes 2022, 10(12), 2566; https://doi.org/10.3390/pr10122566 - 02 Dec 2022
Cited by 2 | Viewed by 2043
Abstract
Low speed, low capacity, and poor scalability make size-exclusion chromatography (SEC) unattractive for use in the preparative separation of proteins. We discuss a novel z2 cuboid SEC device that addresses these challenges. A z2 cuboid SEC device (~24 mL volume) was [...] Read more.
Low speed, low capacity, and poor scalability make size-exclusion chromatography (SEC) unattractive for use in the preparative separation of proteins. We discuss a novel z2 cuboid SEC device that addresses these challenges. A z2 cuboid SEC device (~24 mL volume) was systematically compared with a conventional SEC column having the same volume and packed with the same resin. The primary objective of this study was to use the same volume of SEC medium in a much more efficient way by using the novel device. At any given flow rate, the pressure drop across the z2 cuboid SEC device was lower by a factor of 6 to 8 due to its shorter bed height and greater cross-sectional area. Under overloaded conditions, the peaks obtained during protein separation with the conventional column were poorly resolved and showed significant fronting, while those obtained with the z2 cuboid SEC device were much better resolved and showed no fronting. At any given flow rate, better resolution was obtained with the z2 cuboid SEC device, while for obtaining a comparable resolution, the flow rate that could be used with the z2 cuboid SEC device was higher by a factor of 2 to 3. Hence, productivity in SEC could easily be increased by 200 to 300% using the z2 cuboid SEC device. The scalability of the z2 cuboid SEC device was also demonstrated based on a device with a 200 mL bed volume. Full article
Show Figures

Figure 1

20 pages, 702 KiB  
Article
Hierarchical Deep LSTM for Fault Detection and Diagnosis for a Chemical Process
by Piyush Agarwal, Jorge Ivan Mireles Gonzalez, Ali Elkamel and Hector Budman
Processes 2022, 10(12), 2557; https://doi.org/10.3390/pr10122557 - 01 Dec 2022
Cited by 10 | Viewed by 1661
Abstract
A hierarchical structure based on a Deep LSTM Supervised Autoencoder Neural Network (Deep LSTM-SAE NN) is presented for the detection and classification of faults in industrial plants. The proposed methodology has the ability to classify incipient faults that are difficult to detect and [...] Read more.
A hierarchical structure based on a Deep LSTM Supervised Autoencoder Neural Network (Deep LSTM-SAE NN) is presented for the detection and classification of faults in industrial plants. The proposed methodology has the ability to classify incipient faults that are difficult to detect and diagnose with traditional and many recent methods. Faults are grouped into different subsets according to the degree of difficulty to classify them accurately in the proposed hierarchical structure. External pseudo-random binary signals (PRBS) are injected in the system to enhance the identification of incipient faults. The approach is illustrated on the benchmark process (Tennessee Eastman Process) in order to compare across different methodologies. The efficacy of the proposed method is shown by a comprehensive comparison between many recent and traditional fault detection and diagnosis methods in the literature for Tennessee Eastman Process. The proposed work results in significant improvements in the classification of faults over both multivariate linear model-based strategies and non-hierarchical nonlinear model-based strategies. Full article
(This article belongs to the Special Issue Manufacturing Industry 4.0: Trends and Perspectives)
Show Figures

Graphical abstract

8 pages, 2009 KiB  
Article
Synthesis, Hydration Processes and Ionic Conductivity of Novel Gadolinium-Doped Ceramic Materials Based on Layered Perovskite BaLa2In2O7 for Electrochemical Purposes
by Nataliia Tarasova, Anzhelika Bedarkova, Irina Animitsa and Evgeniya Verinkina
Processes 2022, 10(12), 2536; https://doi.org/10.3390/pr10122536 - 29 Nov 2022
Cited by 6 | Viewed by 1346
Abstract
The search for novel highly effective materials with target properties for different electrochemical purposes is active for now. Ceramic materials with high levels of ionic conductivity can be applied as electrolytic materials in solid oxide fuel cells and in electrolyzers. Layered perovskites are [...] Read more.
The search for novel highly effective materials with target properties for different electrochemical purposes is active for now. Ceramic materials with high levels of ionic conductivity can be applied as electrolytic materials in solid oxide fuel cells and in electrolyzers. Layered perovskites are a novel class of ionic conductors demonstrating almost-pure proton transportation at mid-temperatures. Gadolinium-doped ceramic materials based on layered perovskite BaLa2In2O7 were obtained and investigated for the first time in this study. The effect of the dopant concentrations on the hydration processes and on ionic conductivity was revealed. It was shown that compositions 0 ≤ x ≤ 0.15 of BaLa2–xGdxIn2O7 exhibited proton conductivity when under wet air and at mid-temperatures (lower than ~450 °C). Gadolinium doping led to an increase in the conductivity values up to an order of magnitude of ~0.5. The protonic conductivity of the most conductive composition BaLa1.85Gd0.15In2O7 was 2.7∙10−6 S/cm at 400 °C under wet air. The rare earth doping of layered perovskites is a prospective approach for the design of ceramics for electrochemical devices for energy applications. Full article
Show Figures

Figure 1

12 pages, 1534 KiB  
Article
Improving the Efficiency and Antioxidant Activity of Essential Oil Extraction from Abies sachalinensis by Underwater Shockwave Pretreatment for the Construction of Low-Energy and Sustainable Essential Oil Extraction System
by Hideaki Kawai, Eisuke Kuraya, Akiko Touyama, Osamu Higa, Kazuki Tokeshi, Yoshie Tsujikawa, Kazuyuki Hokamoto and Shigeru Itoh
Processes 2022, 10(12), 2534; https://doi.org/10.3390/pr10122534 - 29 Nov 2022
Cited by 1 | Viewed by 1736
Abstract
Essential oils (EOs) from Abies sachalinensis (Sakhalin fir), a conifer species found in Sakhalin Island and Hokkaido in Japan, effectively remove nitrogen dioxide and possess antifungal activity. EOs also exert a relaxing effect and enhance air quality. Underwater shock waves generate instantaneous high [...] Read more.
Essential oils (EOs) from Abies sachalinensis (Sakhalin fir), a conifer species found in Sakhalin Island and Hokkaido in Japan, effectively remove nitrogen dioxide and possess antifungal activity. EOs also exert a relaxing effect and enhance air quality. Underwater shock waves generate instantaneous high pressure that ruptures cell walls, enhancing the performance of steam distillation and oil extraction. In this study, we aimed to increase the yield and quality of A. sachalinensis extracts using shockwaves. Leaves and branches were subjected to shockwave pretreatment or left untreated before EO extraction by steam distillation. EO yield of untreated dried leaves was 2.4 g/kg of dry leaf weight (DW). Upon application of a 3.0 kV, 3.6 kJ shockwave, the yield increased with the number of shockwave cycles. After ten cycles, yield increased 13.6-fold. Pretreatment with shockwaves for 10 cycles resulted in approximately 6- and 13-fold reductions in total energy consumption relative to fresh and dried leaves, respectively. Antioxidant activity increased more than 30-fold in shockwave-pretreated leaves than in untreated dried leaves after 10 cycles. This novel process can significantly reduce the energy used for EO extraction in steam distillation, thereby contributing to the development of a sustainable, low-energy EO production system. Full article
Show Figures

Graphical abstract

13 pages, 711 KiB  
Article
Influence of Encapsulation Parameters on the Retention of Polyphenols in Blackthorn Flower Extract
by Nikolina Gaćina, Ivona Elez Garofulić, Zoran Zorić, Sandra Pedisić and Verica Dragović-Uzelac
Processes 2022, 10(12), 2517; https://doi.org/10.3390/pr10122517 - 28 Nov 2022
Cited by 2 | Viewed by 1600
Abstract
In order to utilize the benefits of blackthorn flower polyphenols and provide their stabilization during processing and storage, and to facilitate their application in functional food products, this study aimed to evaluate the encapsulation parameters during the spray-drying process of blackthorn flower extract. [...] Read more.
In order to utilize the benefits of blackthorn flower polyphenols and provide their stabilization during processing and storage, and to facilitate their application in functional food products, this study aimed to evaluate the encapsulation parameters during the spray-drying process of blackthorn flower extract. The effect of the type of wall material (maltodextrin (MD) and its mixtures with gum arabic (GA) and inulin (IN)), its ratio to extract dry matter (0.5, 1, and 2) and drying temperature (120, 150, and 180 °C) on the concentration of different polyphenolic groups was studied. While the lowest applied amount of wall material at the lowest drying temperature enabled efficient encapsulation of all polyphenolic groups, the type of wall material applied caused significant differences in retention. The highest concentrations of both phenolic acids and flavonoids were achieved with the addition of 25% of GA in MD. Unlike the addition of GA, mixtures of MD with IN did not show a positive effect on the retention of polyphenols. Selected encapsulation parameters ensured the high retention of total phenolics, namely 87.87% of the content determined in the liquid extract prior to spray drying, thereby providing a polyphenol-rich product with great potential for application in functional food and the nutraceutical industry. Full article
Show Figures

Figure 1

16 pages, 1560 KiB  
Article
Sustainable Operations of Last Mile Logistics Based on Machine Learning Processes
by Jerko Oršič, Borut Jereb and Matevž Obrecht
Processes 2022, 10(12), 2524; https://doi.org/10.3390/pr10122524 - 28 Nov 2022
Cited by 3 | Viewed by 2189
Abstract
The last-mile logistics is regarded as one of the least efficient, most expensive, and polluting part of the entire supply chain and has a significant impact and consequences on sustainable delivery operations. The leading business model in e-commerce called Attended Home Delivery is [...] Read more.
The last-mile logistics is regarded as one of the least efficient, most expensive, and polluting part of the entire supply chain and has a significant impact and consequences on sustainable delivery operations. The leading business model in e-commerce called Attended Home Delivery is the most expensive and demanding when a short delivery window is mutually agreed upon with the customer, decreasing possible optimizing flexibility. On the other hand, last-mile logistics is changing as decisions should be made in real time. This paper is focused on the proposed solution of sustainability opportunities in Attended Home Delivery, where we use a new approach to achieve more sustainable deliveries with machine learning forecasts based on real-time data, different dynamic route planning algorithms, tracking logistics events, fleet capacities and other relevant data. The developed model proposes to influence customers to choose a more sustainable delivery time window with important sustainability benefits based on machine learning to predict accurate time windows with real-time data influence. At the same time, better utilization of vehicles, less congestion, and fewer failures at home delivery are achieved. More sustainable routes are selected in the preplanning process due to predicted traffic or other circumstances. Increasing time slots from 2 to 4 h makes it possible to improve travel distance by about 5.5% and decrease cost by 11% if we assume that only 20% of customers agree to larger time slots. Full article
(This article belongs to the Special Issue Sustainable Supply Chains in Industrial Engineering and Management)
Show Figures

Figure 1

26 pages, 13275 KiB  
Article
Fault Detection for CNC Machine Tools Using Auto-Associative Kernel Regression Based on Empirical Mode Decomposition
by Seunghwan Jung, Minseok Kim, Baekcheon Kim, Jinyong Kim, Eunkyeong Kim, Jonggeun Kim, Hyeonuk Lee and Sungshin Kim
Processes 2022, 10(12), 2529; https://doi.org/10.3390/pr10122529 - 28 Nov 2022
Cited by 4 | Viewed by 1892
Abstract
In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machine tools significantly degrades [...] Read more.
In manufacturing processes using computerized numerical control (CNC) machines, machine tools are operated repeatedly for a long period for machining hard and difficult-to-machine materials, such as stainless steel. These operating conditions frequently result in tool breakage. The failure of machine tools significantly degrades the product quality and efficiency of the target process. To solve these problems, various studies have been conducted for detecting faults in machine tools. However, the most related studies used only the univariate signal obtained from CNC machines. The fault-detection methods using univariate signals have a limitation in that multivariate models cannot be applied. This can restrict in performance improvement of the fault detection. To address this problem, we employed empirical mode decomposition to construct a multivariate dataset from the univariate signal. Subsequently, auto-associative kernel regression was used to detect faults in the machine tool. To verify the proposed method, we obtained a univariate current signal measured from the machining center in an actual industrial plant. The experimental results demonstrate that the proposed method successfully detects faults in the actual machine tools. Full article
Show Figures

Figure 1

18 pages, 3418 KiB  
Article
Doubling the Space-Time Yield of a Pilot Biogas Reactor with Swine Manure and Cereal Residues by a Closed Loop Feedback Control Based on an Automated Fuzzy Logic Control System
by Paul Scherer, Anja Schreiber, Richard Arthur, Sebastian Antonczyk and Gerhard-Rainer Vollmer
Processes 2022, 10(12), 2511; https://doi.org/10.3390/pr10122511 - 25 Nov 2022
Cited by 1 | Viewed by 1248
Abstract
The anaerobic digestion of swine manure was performed for more than 2 years in a biogas pilot plant with cereal residues as a mono-input, either by a simple intermittent substrate feeding or by feeding with an automated “autopilot” system under the direction of [...] Read more.
The anaerobic digestion of swine manure was performed for more than 2 years in a biogas pilot plant with cereal residues as a mono-input, either by a simple intermittent substrate feeding or by feeding with an automated “autopilot” system under the direction of a Fuzzy logic control (FLC) system, working with a closed-loop feedback control. The pilot plant of the University of Applied Sciences in Nordhausen consisted of a 2.5 m3 dosage tank, a 2.5 m3 digestate tank, and a 1 m3 biogas reactor. Only three control parameters were used for FLC: pH, methane %, and the specific gas production rate (GPR) related to the organic loading rate (OLR), that is GPR/OLR m3 biogas/(kgVS d), vs = volatile solids. The specific GPR was referred to the OLR of the last feeding every 8 h in terms of kgVS/(m3 d). In test period I without an FLC system, a safe process with just an OLR of 4 kgVS/(m3 d) was reached, followed by an overloading and reactor disturbance at ≤6.3 kgVS/(m3 d) as indicated by acidification with volatile fatty acids up to 25,000 mg/L. However, test period II (585 trial days) with an integrated FLC system allowed a safe OLR up to 11 kgVS/(m3 d). Apparently, the microbes themselves directed the speed of substrate feeding by the dynamics of their substrate turnover and by the closed loop feedback control, while the three FLC parameters prevented acidification. Therefore, the application of FLC enabled a doubling of the throughput for a biogas reactor in the same time with a ‘turbo speed’. The concomitant hydraulic residence time (HRT) of only 10 days reduced the stirring and heating costs. The usage of an FLC system should open the door for networked biogas production to enable flexible biogas production on demand. Full article
(This article belongs to the Special Issue Biochar-Bioenergy Production Systems)
Show Figures

Figure 1

20 pages, 2051 KiB  
Article
Investigating the Possibilities for Simulation of the Interconnected Electric Power and Communication Infrastructures
by Matej Vrtal, Jan Benedikt, Radek Fujdiak, David Topolanek, Petr Toman and Jiri Misurec
Processes 2022, 10(12), 2504; https://doi.org/10.3390/pr10122504 - 25 Nov 2022
Cited by 2 | Viewed by 1766
Abstract
In recent years, we have seen an increasing dependency between different urban critical infrastructures, which raises the demands on their analysis and cybersecurity. Current open-source solutions do not provide simulations of interconnected data networks and power grids, which are essential for analysing of [...] Read more.
In recent years, we have seen an increasing dependency between different urban critical infrastructures, which raises the demands on their analysis and cybersecurity. Current open-source solutions do not provide simulations of interconnected data networks and power grids, which are essential for analysing of both infrastructures weak parts and reducing the risk of emerging threats. The main purpose of this paper is to describe the design of a simulation platform that provides this type of simulation to customers using the virtual user interface. The paper describes the development of a complex model of interconnected power and data infrastructures. Created virtualization platform that consists of several open-source tools is described in detail. Outputs of this paper can be used for analysis of critical infrastructures at the level of urban networks. Full article
(This article belongs to the Special Issue Recent Advances in Electrical Power Engineering)
Show Figures

Figure 1

16 pages, 2630 KiB  
Article
Occurrence of Selected Emerging Contaminants in Southern Europe WWTPs: Comparison of Simulations and Real Data
by Daniel Sol, Andrea Menéndez-Manjón, Paula Arias-García, Amanda Laca, Adriana Laca, Amador Rancaño and Mario Díaz
Processes 2022, 10(12), 2491; https://doi.org/10.3390/pr10122491 - 23 Nov 2022
Cited by 3 | Viewed by 1399
Abstract
Emerging contaminants (ECs) include a diverse group of compounds not commonly monitored in wastewaters, which have become a global concern due to their potential harmful effects on aquatic ecosystems and human health. In the present work, six ECs (ibuprofen, diclofenac, erythromycin, triclosan, imidacloprid [...] Read more.
Emerging contaminants (ECs) include a diverse group of compounds not commonly monitored in wastewaters, which have become a global concern due to their potential harmful effects on aquatic ecosystems and human health. In the present work, six ECs (ibuprofen, diclofenac, erythromycin, triclosan, imidacloprid and 17α-ethinylestradiol) were monitored for nine months in influents and effluents taken from four wastewater treatment plants (WWTPs). Except for the case of ibuprofen, which was in all cases in lower concentrations than those usually found in previous works, results found in this work were within the ranges normally reported. Global removal efficiencies were calculated, in each case being very variable, even when the same EC and facility were considered. In addition, the SimpleTreat model was tested by comparing simulated and real ibuprofen, diclofenac and erythromycin data. The best agreement was obtained for ibuprofen which was the EC with the highest removal efficiencies. Full article
Show Figures

Figure 1

12 pages, 3423 KiB  
Article
Investigation of Impulse and Continuous Discharge Characteristics of Large-Capacity Lithium-Ion Batteries
by Sergey V. Kuchak and Sergey V. Brovanov
Processes 2022, 10(12), 2473; https://doi.org/10.3390/pr10122473 - 22 Nov 2022
Viewed by 1114
Abstract
Lithium-ion batteries are one of the most popular and efficient energy storage devices. In this paper, the characteristics of high-capacity lithium-iron-phosphate batteries during the impulse and long-term operation modes of batteries with different levels of the discharge current are considered. A modified DP-model [...] Read more.
Lithium-ion batteries are one of the most popular and efficient energy storage devices. In this paper, the characteristics of high-capacity lithium-iron-phosphate batteries during the impulse and long-term operation modes of batteries with different levels of the discharge current are considered. A modified DP-model is proposed. The novelty of the model is the possibility to calculate the activation polarization parameters for different discharge currents. The state of charge is estimated using a high-order polynomial. Based on the developed model, transient processes with rapid load changes and the dependence of the battery voltage on the state of charge were obtained. Here, the model is intended to be used for the design of energy storage systems. The results showed that the DP-model is reliable under the tested conditions and can be used for the considered application. Full article
(This article belongs to the Special Issue Advanced Battery Material Design and Process)
Show Figures

Figure 1

17 pages, 1727 KiB  
Article
Waste Feathers Processing to Liquid Fertilizers for Sustainable Agriculture—LCA, Economic Evaluation, and Case Study
by Kamila Vavrova, Lenka Wimmerova, Jaroslav Knapek, Jan Weger, Zdenek Keken, Frantisek Kastanek and Olga Solcova
Processes 2022, 10(12), 2478; https://doi.org/10.3390/pr10122478 - 22 Nov 2022
Cited by 4 | Viewed by 2380
Abstract
The poultry meat industry generates about 60 million tons of waste annually. However, such waste can serve as a cheap material source for sustainable liquid fertilizers or biostimulant production. Moreover, its practical potential associated with the circular economy is evident. One of the [...] Read more.
The poultry meat industry generates about 60 million tons of waste annually. However, such waste can serve as a cheap material source for sustainable liquid fertilizers or biostimulant production. Moreover, its practical potential associated with the circular economy is evident. One of the options for waste feather reprocessing is to use a hydrolysis process, whose operating parameters vary depending on the waste material used. The better the quality of the waste feathers, the less energy is needed; moreover, a higher yield of amino acids and peptides can be achieved. These are the main operational parameters that influence the overall environmental and economic performance of the hydrolysis process. The assessment of process operational environmental aspects confirmed that the environmental impacts of hydrolysate production are highly dependent on the amount of electricity required and its sources. This fact influences the midpoint and the endpoint impacts on the observed environmental impact categories. It also minimizes the pressure associated with fossil resource scarcity and the related impact on climate change. During an economic evaluation of the process, it was found that the option of processing more fine waste, such as CGF, provided a 5% saving in energy costs related to the reduction in the cost per liter of hydrolysate of 4.5%. Finally, a case study experiment confirmed the fertilizing effect of the hydrolysate on pepper plants (biometric parameters, yield). Thus, the hydrolysate produced from the waste feathers can serve as a substitute for nitrate fertilizing, which is commonly drawn from raw fossil materials. Full article
(This article belongs to the Topic Advances in Biomass Conversion)
Show Figures

Figure 1

16 pages, 5429 KiB  
Article
Analysis of the Corrosion Process with the Application of the Novel Type of Coupon Installation
by Daniel Musik, Krzysztof Wójcik, Małgorzata Sekuła-Wybańska, Maciej Konopacki and Rafał Rakoczy
Processes 2022, 10(12), 2468; https://doi.org/10.3390/pr10122468 - 22 Nov 2022
Cited by 1 | Viewed by 1689
Abstract
The corrosion process leads to high power consumption, high maintenance costs and the loss of commercial income during downtime in various branches of industry. The proper methods to measure and forecast the corrosion process would help intervene in process production where corrosion is [...] Read more.
The corrosion process leads to high power consumption, high maintenance costs and the loss of commercial income during downtime in various branches of industry. The proper methods to measure and forecast the corrosion process would help intervene in process production where corrosion is a common phenomenon. Therefore, the main aim of this experimental study is to improve the widely used corrosion monitoring methods with corrosion coupons. As part of this work, the installation for testing corrosion process under controlled conditions and with the application of mild steel coupons is proposed. The measurement concept is to install the coupons in a stream with the corrosion liquid (these conditions should be controlled). The numerical simulations of the fluid flow in the coupon installation were carried out, and the obtained results in the form of a velocity map allowed us to propose the placement of the coupons in the tested installation in such a way that the flowing liquid evenly washed the coupon surface. The developed coupon installation was tested for aggressive corrosive conditions, which were assessed using the water stability indices (Langelier Saturation Index and Ryznar stability index). Moreover, the inductively coupled plasma optical emission spectroscopy analysis characterised the liquid samples from the tested coupon installation. The corrosion process for the applied conditions was defined based on the corrosion rate of the tested coupons. This process was also confirmed by obtaining the Raman spectrum for the used corrosion coupons. The obtained investigation contributes significantly by developing the novel coupon installation and demonstrating the procedure for testing the corrosion process with the application of coupons. This setup and method might be successfully applied for accelerated laboratory tests. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

13 pages, 3607 KiB  
Article
Utilization of Carbon Dioxide via Catalytic Hydrogenation Processes during Steam-Based Enhanced Oil Recovery
by Firdavs Aliev, Oybek Mirzaev, Temurali Kholmurodov, Olga Slavkina and Alexey Vakhin
Processes 2022, 10(11), 2306; https://doi.org/10.3390/pr10112306 - 05 Nov 2022
Cited by 8 | Viewed by 1477
Abstract
The concentration of carbon dioxide in the atmosphere has been increasing since immediately after the boom of industrialization. Novel technologies are required for carbon dioxide (CO2) capture, storage, and its chemical conversion into value-added products. In this study, we present a [...] Read more.
The concentration of carbon dioxide in the atmosphere has been increasing since immediately after the boom of industrialization. Novel technologies are required for carbon dioxide (CO2) capture, storage, and its chemical conversion into value-added products. In this study, we present a novel in situ CO2 utilization method via a hydrogenation process in the presence of nickel tallates during steam-based enhanced oil recovery. The light n-alkanes are the preferred products of in situ catalytic hydrogenation of CO2 due to their effective solubility, viscosity-reducing capacity, and hydrogen-donating capacity. A nickel tallate was evaluated for its carbon dioxide hydrogenation and oil-upgrading performance at 300 °C. The results showed that the content of saturated and aromatic fractions increased, while the content of heavier fragments decreased. Moreover, the relative content of normal C10–C20 alkanes doubled after the catalytic hydrogenation of CO2. Despite the noncatalytic hydrogenation of CO2, the viscosity was altered from 3309 mPa.s to 1775 mPa.s at a shear rate of 0.66 s−1. The addition of the catalyst further contributed to the reduction of the viscosity, down to 1167 mPa.s at the same shear rate. Thus, in situ catalytic hydrogenation of CO2 not only significantly reduces the concentration of anthropogenic carbon dioxide gas in the atmosphere, but it also enhances the oil-recovery factor by improving the quality of the upgraded crude oil and its mobility. Full article
Show Figures

Figure 1

11 pages, 2449 KiB  
Article
Biodegradation of Alachlor by a Newly Isolated Bacterium: Degradation Pathway and Product Analysis
by Hyosun Lee and Dong-Uk Kim
Processes 2022, 10(11), 2256; https://doi.org/10.3390/pr10112256 - 02 Nov 2022
Cited by 1 | Viewed by 1112
Abstract
Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl]acetamide] is a chloroacetanilide herbicide and has been widely used as a selective pre-emergent and post-emergent herbicide to control weeds and grass. Due to its wide usage, direct application on the ground, high solubility in water, and moderate [...] Read more.
Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl]acetamide] is a chloroacetanilide herbicide and has been widely used as a selective pre-emergent and post-emergent herbicide to control weeds and grass. Due to its wide usage, direct application on the ground, high solubility in water, and moderate persistence, alachlor and its metabolites have been detected in various environments. Therefore, there is an increasing concern about the environmental fate of alachlor and its metabolites. Microbial biodegradation is a main method of removal of alachlor in the natural environment. In this study, we isolated new alachlor degrading bacterium and proposed a novel alachlor-degrading pathway. The alachlor-degrading bacterial strain, GC-A6, was identified as Acinetobacter sp. using 16S rRNA gene sequence analysis. Acinetobacter sp. GC-A6 utilized alachlor as its sole carbon source and degraded 100 mg L−1 of alachlor within 48 h, which was the highest alachlor degradation efficiency. The degradation pathway of alachlor was studied using GC-MS analysis. Alachlor was initially degraded to 2-chloro-N-(2,6-diethylphenyl) acetamide, which was further degraded to 2,6-diethylaniline and 7-ethylindoline, respectively. 2,6-Diethylaniline was transformed into N-(2,6-diethylphenyl) formamide. N-(2,6-diethylphenyl) formamide was a first-reported intermediate during the degrading pathway of alachlor by single isolate. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

14 pages, 2587 KiB  
Article
Multi-Response Modelling and Optimisation of Mechanical Properties of Al-Si Alloy Using Mixture Design of Experiment Approach
by M. Poornesh, Shreeranga Bhat, E. V. Gijo, Pavana Kumara Bellairu and Olivia McDermott
Processes 2022, 10(11), 2246; https://doi.org/10.3390/pr10112246 - 01 Nov 2022
Cited by 2 | Viewed by 1378
Abstract
The research aims to produce, model, and optimise the mechanical properties of novel composite material through a structured multidisciplinary approach. The primary objective is to combine materials science, mechanical engineering, and statistical concepts to ensure Design for Manufacturability (DFM) from the industrial perspective. [...] Read more.
The research aims to produce, model, and optimise the mechanical properties of novel composite material through a structured multidisciplinary approach. The primary objective is to combine materials science, mechanical engineering, and statistical concepts to ensure Design for Manufacturability (DFM) from the industrial perspective. More specifically, the article is intended to determine the optimal mixture components and predictive model of Al-Si alloy with Al2O3 by accommodating multi-responses that enable DFM. The study adopted ASTM standards to prepare and test the novel composite material. Additionally, the Mixture Design of Experiment (DOE) approach was used to design the experimentation and subsequent analysis. In addition, microstructural images, Cox Response Trace plot, and Response Optimiser plot are effectively utilised to draw robust inferences. For multi-response modelling and optimisation, the composite material’s mechanical properties, like impact strength, hardness, density, and tensile strength, are considered. The study determines that innovative composite material will yield better results when Al-Alloy is 94.65 wt% and Al2O3 is 5.35 wt% from a multi-responses perspective. Further, it provides predictive models with a high level of predictability. Besides, the research shows that novel composite material has better mechanical properties from a practical perspective. The article not only provides the mechanical properties of a new class of material but also shows the effective utilisation of material science and statistical concepts to develop the novel material in a structured manner. This composite material can be used as a replacement for various parts of automobiles and aircraft. Additionally, researchers can use the article’s modelling and optimisation approach as a paradigm to create durable composite materials. Full article
Show Figures

Figure 1

13 pages, 3057 KiB  
Article
Improved Pilot-Plant-Scale Synthesis of Chlorin e6 and Its Efficacy as a Photosensitizer for Photodynamic Therapy and Photoacoustic Contrast Agent
by Til Bahadur Thapa Magar, Rajeev Shrestha, Pallavi Gurung, Junmo Lim and Yong-Wan Kim
Processes 2022, 10(11), 2215; https://doi.org/10.3390/pr10112215 - 27 Oct 2022
Cited by 6 | Viewed by 1876
Abstract
Photodynamic therapy and photoacoustic (PA) imaging are emerging therapeutic modalities for the diagnosis and treatment of various types of cancer or other diseases. In this study, the second-generation photosensitizer Chlorin e6 was prepared on a pilot scale by using the rapid, simple, and [...] Read more.
Photodynamic therapy and photoacoustic (PA) imaging are emerging therapeutic modalities for the diagnosis and treatment of various types of cancer or other diseases. In this study, the second-generation photosensitizer Chlorin e6 was prepared on a pilot scale by using the rapid, simple, and green synthetic method as compared to a conventional protocol. In the modified method, the extraction/reaction time and volume of solvents were significantly reduced. The dark and photodynamic cytotoxicity of Ce6 was measured against B16F10 melanoma cell line. Ce6 did not affect cancer cells in the dark up to 192 µM, ensuring their safety in the absence of light. After PDT, it displayed significant cytotoxicity at lower concentrations (IC50: 18.9 µM). For in vivo study, B16F10 allograft mice were treated with Ce6 at 2.5 mg/kg and then exposed to red light (660 nm) after 3 h. The Ce6-PDT caused the inhibition of tumor growth. Furthermore, Ce6 was also used as a photoacoustic imaging agent in ICR mice to visualize the internal organs. Therefore, this study provides valuable information about Ce6-PDT as a promising strategy for anti-cancer therapy as well as visualization of internal organs without surgery or x-rays. Full article
Show Figures

Graphical abstract

11 pages, 431 KiB  
Article
Beneficiation of Magnetically Separated Iron-Containing Ore Waste
by Kanat Chokin, Abdraman Yedilbayev, Vladimir Yugai and Alexandr Medvedev
Processes 2022, 10(11), 2212; https://doi.org/10.3390/pr10112212 - 27 Oct 2022
Cited by 1 | Viewed by 1216
Abstract
Rough processing of iron ore employs dry methods which means that equipment is tuned to process large particles, but fine magnetic material less than a few tenths of a millimeter in size is not separated as efficiently. The relevance of this study is [...] Read more.
Rough processing of iron ore employs dry methods which means that equipment is tuned to process large particles, but fine magnetic material less than a few tenths of a millimeter in size is not separated as efficiently. The relevance of this study is determined by the fact that dry beneficiation waste contains recoverable iron-bearing magnetite of commercial value. Commercial justification of waste beneficiation is associated with mining and grinding costs that are already included in the prime cost of the commercial concentrate. The future of tailings retreatment prospects depends on technology and efficiency of the employed equipment, the development of which is the subject of this paper. At first stage, fine iron is recovered by air sizing, with pitched curtain air classifiers embedding simple design and high performance. Powder materials were magnetically separated by a manufactured drum-type separator in which, to increase the separation efficiency, the process was performed at increased drum rotation speeds using Nd-Fe-B magnets and a drum made of electrically non-conductive materials. The separator performance was determined for various rotation speeds of the drum. Research has proven that a multi-stage magnetic separation with a consequent increase in drum rpm is reasonable. A new cascade separator was manufactured and tested for this purpose. It is shown that iron-containing ore tailings beneficiation is optimal without any additional grinding. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

35 pages, 2044 KiB  
Article
A Multiple Solution Approach to Real-Time Optimization
by Jack Speakman and Grégory François
Processes 2022, 10(11), 2207; https://doi.org/10.3390/pr10112207 - 26 Oct 2022
Cited by 2 | Viewed by 1070
Abstract
Modifier Adaptation (MA) is a method of real-time optimization (RTO) which modifies a single model to match the first order properties of the plant. Known uncertainties in the parameters of this model are discarded in favor of real-time measurements, but they can be [...] Read more.
Modifier Adaptation (MA) is a method of real-time optimization (RTO) which modifies a single model to match the first order properties of the plant. Known uncertainties in the parameters of this model are discarded in favor of real-time measurements, but they can be used to quantify the mismatch between the plant and model. Using multi-model methods increases the computation time, but can improve rate of convergence of the RTO scheme. This article proposes a framework, known as multiple solution modifier adaptation (MSMA), which produces several models which are all modified in the same way as standard MA, each producing a potential solution to be applied to the plant. From this framework, three recommended schemes are proposed on how to select the operating point to be applied to the plant: (1) Selecting the solution based off the modifiers; (2) Selecting the mean solution from convex models; (3) Selecting the closest solution to the current operating point. Each of these methods have different advantages, including limiting the increase in computational complexity and improving the model adequacy conditions of the scheme. These recommended schemes are shown on three different case studies of varying complexity with all three schemes showing improvements over standard MA. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

20 pages, 6086 KiB  
Article
Identification and Mapping of Three Distinct Breakup Morphologies in the Turbulent Inertial Regime of Emulsification—Effect of Weber Number and Viscosity Ratio
by Andreas Håkansson, Peyman Olad and Fredrik Innings
Processes 2022, 10(11), 2204; https://doi.org/10.3390/pr10112204 - 26 Oct 2022
Cited by 3 | Viewed by 1606
Abstract
Turbulent emulsification is an important unit operation in chemical engineering. Due to its high energy cost, there is substantial interest in increasing the fundamental understanding of drop breakup in these devices, e.g., for optimization. In this study, numerical breakup experiments are used to [...] Read more.
Turbulent emulsification is an important unit operation in chemical engineering. Due to its high energy cost, there is substantial interest in increasing the fundamental understanding of drop breakup in these devices, e.g., for optimization. In this study, numerical breakup experiments are used to study turbulent fragmentation of viscous drops, under conditions similar to emulsification devices such as high-pressure homogenizers and rotor-stator mixers. The drop diameter was kept larger than the Kolmogorov length scale (i.e., turbulent inertial breakup). When varying the Weber number (We) and the disperse-to-continuous phase viscosity ratio in a range applicable to emulsification, three distinct breakup morphologies are identified: sheet breakup (large We and/or low viscosity ratio), thread breakup (intermediary We and viscosity ratio > 5), and bulb breakup (low We). The number and size of resulting fragments differ between these three morphologies. Moreover, results also confirm previous findings showing drops with different We differing in how they attenuate the surrounding turbulent flow. This can create ‘exclaves’ in the phase space, i.e., narrow We-intervals, where drops with lower We break and drops with higher We do not (due to the latter attenuating the surrounding turbulence stresses more). Full article
(This article belongs to the Special Issue Nanoemulsion Processes Design and Applications)
Show Figures

Graphical abstract

15 pages, 5683 KiB  
Article
Deep-Learning Algorithmic-Based Improved Maximum Power Point-Tracking Algorithms Using Irradiance Forecast
by Chan Roh
Processes 2022, 10(11), 2201; https://doi.org/10.3390/pr10112201 - 26 Oct 2022
Cited by 1 | Viewed by 1392
Abstract
Renewable energy is a key technology for achieving carbon-free energy transitions, and solar power systems are one of the most reliable resources for achieving this. Solar power systems have a simple structure and are inexpensive. However, depending on the input irradiance, the existing [...] Read more.
Renewable energy is a key technology for achieving carbon-free energy transitions, and solar power systems are one of the most reliable resources for achieving this. Solar power systems have a simple structure and are inexpensive. However, depending on the input irradiance, the existing maximum output control algorithm (P&O) has disadvantages due to its slow transient response and steady-state vibration. Therefore, in this paper, we propose a maximum output control algorithm based on a deep learning algorithm that can predict the input irradiance. This can achieve a quick transient response and steady-state stability. The proposed method predicts the irradiance based on the output voltage/current and power of the photovoltaic (PV) system and calculates the duty ratio that can accurately follow the maximum output point according to the irradiance. The deep learning model applied in this study was trained based on the experimental results using a 100 W PV panel, and the performance of the proposed algorithm was verified by comparing its performance with that of the conventional algorithm under various input irradiance conditions. The proposed algorithm exhibits a maximum efficiency increase of 11.24% under the same input conditions as those of the existing algorithms. Full article
(This article belongs to the Special Issue Innovative Technology for Low Carbon Development)
Show Figures

Figure 1

16 pages, 11530 KiB  
Article
High-Temperature Pyrolysis for Elimination of Per- and Polyfluoroalkyl Substances (PFAS) from Biosolids
by Hanieh Bamdad, Sadegh Papari, Emma Moreside and Franco Berruti
Processes 2022, 10(11), 2187; https://doi.org/10.3390/pr10112187 - 25 Oct 2022
Cited by 10 | Viewed by 4565
Abstract
Biosolids generated as byproducts of wastewater treatment processes are widely used as fertilizer supplements to improve soil condition and ultimately agricultural products yields and quality. However, biosolids may contain toxic compounds, i.e., per- and polyfluoroalkyl substances (PFAS), which can end up in soils, [...] Read more.
Biosolids generated as byproducts of wastewater treatment processes are widely used as fertilizer supplements to improve soil condition and ultimately agricultural products yields and quality. However, biosolids may contain toxic compounds, i.e., per- and polyfluoroalkyl substances (PFAS), which can end up in soils, groundwater, and surface water, causing adverse environmental and health effects. The purpose of this study was to investigate the application of High-Temperature Pyrolysis (HTP) treatment for biosolids management, and its efficacy in eliminating PFAS from the solid fraction. Biosolid samples were pyrolyzed at two different temperatures, 500 and 700 °C, in a continuous bench-scale pyrolysis unit. The major finding is that the treatment process at higher pyrolysis temperatures can remarkably reduce or eliminate the level of PFAS (by ~97–100 wt%) in the resulting biochar samples. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability)
Show Figures

Graphical abstract

13 pages, 3245 KiB  
Article
Hydrothermal In-Reservoir Upgrading of Heavy Oil in the Presence of Non-Ionic Surfactants
by Temurali Kholmurodov, Firdavs Aliev, Oybek Mirzaev, Aleksey Dengaev, Arash Tajik and Alexey Vakhin
Processes 2022, 10(11), 2176; https://doi.org/10.3390/pr10112176 - 24 Oct 2022
Cited by 8 | Viewed by 1336
Abstract
The most widely applied methods to unlock heavy oil and natural bitumen resources in the world are still based on steam injection techniques. Improving the efficiency of hydrothermal processes poses a great challenge. The co-injection of various additives is practiced to lower the [...] Read more.
The most widely applied methods to unlock heavy oil and natural bitumen resources in the world are still based on steam injection techniques. Improving the efficiency of hydrothermal processes poses a great challenge. The co-injection of various additives is practiced to lower the steam-to-oil ratio (SOR), viscosity alteration and to improve heavy oil properties. Organic solvents, non-condensable gases, air and surfactants are the preferred chemicals to be combined with steam. This study provides an investigation of the surfactant-assisted hydrothermal upgrading of heavy oil at 200 °C. The thermal stability and salt resistivity of two non-ionic surfactants (SA–3 and Biolub Green) were investigated. Moreover, the improved performance of the surfactants was established by performing an SARA analysis, elemental analysis, FT-IR spectroscopy, and EPR analysis, and by studying the viscosity reduction degree. The experimental results showed that surfactants lead to the in-depth destructive hydrogenation of the high-molecular components of heavy oil such as resins and asphaltenes. However, the content of light fractions increased. According to the results of the elemental analysis, the surfactants assist in the hydrodesulphurization of heavy oil. Overall, the physical and chemical consequences of hydrothermal upgrading in the presence of surfactants led to the irreversible viscosity reduction of heavy oil. Full article
Show Figures

Figure 1

22 pages, 5178 KiB  
Article
Autoignition of Methane–Hydrogen Mixtures below 1000 K
by Vladimir Arutyunov, Andrey Belyaev, Artem Arutyunov, Kirill Troshin and Aleksey Nikitin
Processes 2022, 10(11), 2177; https://doi.org/10.3390/pr10112177 - 24 Oct 2022
Cited by 8 | Viewed by 1759
Abstract
In the range of 800–1200 K, both experiments and kinetic modeling demonstrate a significant difference in the dependence of the ignition delay time of methane and hydrogen on pressure and temperature, with the complex influence of these parameters on the autoignition delay time [...] Read more.
In the range of 800–1200 K, both experiments and kinetic modeling demonstrate a significant difference in the dependence of the ignition delay time of methane and hydrogen on pressure and temperature, with the complex influence of these parameters on the autoignition delay time of methane–hydrogen–air mixtures. In connection with the prospects for the widespread use of methane–hydrogen mixtures in energy production and transport, a detailed analysis of their ignition at temperatures below 1000 K, the most important region from the point of view of their practical application, is carried out. It is shown that such a complex behavior is associated with the transition in this temperature range from low-temperature mechanisms of oxidation of both methane and hydrogen, in which peroxide radicals and molecules play a decisive role, to high-temperature mechanisms of their oxidation, in which simpler radicals dominate. A kinetic interpretation of the processes occurring in this case is proposed. Full article
(This article belongs to the Special Issue Methane Reforming Processes)
Show Figures

Figure 1

19 pages, 2135 KiB  
Article
Separation of Molar Weight-Distributed Polyethylene Glycols by Reversed-Phase Chromatography—Analysis and Modeling Based on Isocratic Analytical-Scale Investigations
by Malvina Supper, Kathleen Heller, Jakob Söllner, Tuomo Sainio and Malte Kaspereit
Processes 2022, 10(11), 2160; https://doi.org/10.3390/pr10112160 - 22 Oct 2022
Cited by 3 | Viewed by 1863
Abstract
The separation of polyethylene glycols (PEGs) into single homologs by reversed-phase chromatography is investigated experimentally and theoretically. The used core–shell column is shown to achieve the baseline separation of PEG homologs up to molar weights of at least 5000 g/mol. A detailed study [...] Read more.
The separation of polyethylene glycols (PEGs) into single homologs by reversed-phase chromatography is investigated experimentally and theoretically. The used core–shell column is shown to achieve the baseline separation of PEG homologs up to molar weights of at least 5000 g/mol. A detailed study is performed elucidating the role of the operating conditions, including the temperature, eluent composition, and degree of polymerization of the polymer. Applying Martin’s rule yields a simple model for retention times that holds for a wide range of conditions. In combination with relations for column efficiency, the role of the operating conditions is discussed, and separations are predicted for analytical-scale chromatography. Finally, the approach is included in an efficient process model based on discrete convolution, which is demonstrated to predict with high accuracy also advanced operating modes with arbitrary injection profiles. Full article
(This article belongs to the Special Issue Advances in Green Chemistry Analytical Techniques)
Show Figures

Graphical abstract

24 pages, 5323 KiB  
Article
Preliminary Experimental Results and Modelling Study of Olive Kernel Gasification in a 2 MWth BFB Gasifier
by Athanasios Lampropoulos, Idoya Goñi Zubillaga, Raúl Pérez-Vega, Nikolaos Ntavos, Yannis Fallas and Georgios Varvoutis
Processes 2022, 10(10), 2020; https://doi.org/10.3390/pr10102020 - 07 Oct 2022
Cited by 2 | Viewed by 1727
Abstract
Gasification is a promising and attractive thermochemical method for biomass-to-energy conversion, with fluidized bed reactors being one of the best options for large-scale operations. Olive residues in particular are potentially excellent candidate biomass fuels in the Mediterranean area, due to the region’s increased [...] Read more.
Gasification is a promising and attractive thermochemical method for biomass-to-energy conversion, with fluidized bed reactors being one of the best options for large-scale operations. Olive residues in particular are potentially excellent candidate biomass fuels in the Mediterranean area, due to the region’s increased capacity in olive oil production. Herein, the gasification experiments of olive kernels in a 2 MWth air-blown, bubbling fluidized bed reactor located at CENER’s facilities (BIO2C) in Navarra, Spain are presented. Even though technical issues were demonstrated due to the operation of the plant with a high-density biomass fuel and given the scale of the process, a quasi-steady-state and isothermal 12 h operation at an equivalence ratio of 0.25 ± 0.03 was attained. Given the satisfactory experimental results, an Aspen Plus simulation model of the process was also attempted. Notably, the proposed methodology agrees well with the experimental results and can be regarded as a starting point in future studies examining the gasification of relevant biomass in a MW-scale unit. Next, the effect of equivalence ratio and residual biomass moisture content were also evaluated, with the scope of designing future experiments that require minor modifications in the already existing apparatus. Finally, a syngas utilization route through the provision of energy for district heating purposes in the nearby village of Aoiz was proposed. Full article
(This article belongs to the Special Issue Gas Emissions Control and Utilization)
Show Figures

Figure 1

12 pages, 3428 KiB  
Article
Modelling for the Efficient Effluent Dye Removal to Reuse Water and Salt
by Valentina Buscio, Víctor López-Grimau, Bettina Vallés, Montserrat Pepió and Carmen Gutiérrez-Bouzán
Processes 2022, 10(10), 2024; https://doi.org/10.3390/pr10102024 - 07 Oct 2022
Cited by 1 | Viewed by 1109
Abstract
The objective of this work was to determine the optimal conditions for the electrooxidation treatment in order to decolourise the effluents that contain reactive dyes. According to the results, when Na2SO4 is used as an electrolyte, the decolouration reactions follow [...] Read more.
The objective of this work was to determine the optimal conditions for the electrooxidation treatment in order to decolourise the effluents that contain reactive dyes. According to the results, when Na2SO4 is used as an electrolyte, the decolouration reactions follow first-order kinetics. However, when NaCl is present in the effluent, the first-order kinetics is stabilised after applying a minimal electric current value. The models obtained from the results show that the higher the concentration of NaCl, the lower the energy consumption. On the other hand, an increase in dye concentration leads to an increase in electrical consumption. In relation to the pH, the results show that it is not a key factor in the decolouration efficiency. Finally, the obtained model was applied to two real effluents. The feasibility of individually treating the effluents from the dyeing process and those from the subsequent wash-off process was evaluated. From an industrial application point of view, it is recommended to mix both effluents before treatment, especially when the dye concentration is high. Full article
Show Figures

Figure 1

13 pages, 6272 KiB  
Article
Optimizing the Geometric Parameters of a Stepped Labyrinth Seal to Minimize the Discharge Coefficient
by Ye Hwan Chun and Joon Ahn
Processes 2022, 10(10), 2019; https://doi.org/10.3390/pr10102019 - 06 Oct 2022
Cited by 3 | Viewed by 1929
Abstract
A series of numerical simulations were performed to study the discharge coefficient based on the geometric parameters of a stepped labyrinth seal that sealed the secondary flow path of a gas turbine. In contrast with straight-through seals, stepped labyrinth seals introduce additional geometrical [...] Read more.
A series of numerical simulations were performed to study the discharge coefficient based on the geometric parameters of a stepped labyrinth seal that sealed the secondary flow path of a gas turbine. In contrast with straight-through seals, stepped labyrinth seals introduce additional geometrical parameters related to the steps. In this study, three shape variables were observed: step height (SH), position, and cavity width (CW). The sensitivity to the leakage flow of the shape variable in the stepped labyrinth seal was analyzed. The mechanism for improving the sealing performance of stepped labyrinth seals was investigated. The results indicated that the stepped labyrinth seal exhibited up to 17.9% higher leakage-suppression performance than the straight labyrinth seal. Seals with large discharge coefficients had a large vena contracta upstream of each tooth structure and a rapidly accelerated axial velocity in the radial direction. We could observe that the discharge coefficient changed according to the flow field in the cavity. The wall shear stress was sensitive to the SH but not to the CW or step position. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

13 pages, 4876 KiB  
Article
Hybrid Methodology Based on Symmetrized Dot Pattern and Convolutional Neural Networks for Fault Diagnosis of Power Cables
by Meng-Hui Wang, Hong-Wei Sian and Shiue-Der Lu
Processes 2022, 10(10), 2009; https://doi.org/10.3390/pr10102009 - 05 Oct 2022
Cited by 1 | Viewed by 2588
Abstract
This study proposes a recognition method based on symmetrized dot pattern (SDP) analysis and convolutional neural network (CNN) for rapid and accurate diagnosis of insulation defect problems by detecting the partial discharge (PD) signals of XLPE power cables. First, a normal and three [...] Read more.
This study proposes a recognition method based on symmetrized dot pattern (SDP) analysis and convolutional neural network (CNN) for rapid and accurate diagnosis of insulation defect problems by detecting the partial discharge (PD) signals of XLPE power cables. First, a normal and three power cable models with different insulation defects are built. The PD signals resulting from power cable insulation defects are measured. The frequency and amplitude variations of PD signals from different defects are reflected by comprehensible images using the proposed SDP analysis method. The features of different power cable defects are presented. Finally, the feature image is trained and identified by CNN to achieve a power cable insulation fault diagnosis system. The experimental results show that the proposed method could accurately diagnose the fault types of power cable insulation defects with a recognition accuracy of 98%. The proposed method is characterized by a short detection time and high diagnostic accuracy. It can effectively detect the power cable PD to identify the fault type of the insulation defect. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

16 pages, 3243 KiB  
Article
Towards Autonomous Process Control—Digital Twin for HIV-Gag VLP Production in HEK293 Cells Using a Dynamic Metabolic Model
by Heribert Helgers, Alina Hengelbrock, Jamila Franca Rosengarten, Jörn Stitz, Axel Schmidt and Jochen Strube
Processes 2022, 10(10), 2015; https://doi.org/10.3390/pr10102015 - 05 Oct 2022
Cited by 3 | Viewed by 1586
Abstract
Despite intensive research over the last three decades, it has not yet been possible to bring an effective vaccine against human immunodeficiency virus (HIV) and the resulting acquired immunodeficiency syndrome (AIDS) to market. Virus-like particles (VLP) are a promising approach for efficient and [...] Read more.
Despite intensive research over the last three decades, it has not yet been possible to bring an effective vaccine against human immunodeficiency virus (HIV) and the resulting acquired immunodeficiency syndrome (AIDS) to market. Virus-like particles (VLP) are a promising approach for efficient and effective vaccination and could play an important role in the fight against HIV. For example, HEK293 (human embryo kidney) cells can be used to produce virus-like particles. In this context, given the quality-by-design (QbD) concept for manufacturing, a digital twin is of great importance for the production of HIV-Gag-formed VLPs. In this work, a dynamic metabolic model for the production of HIV-Gag VLPs was developed and validated. The model can represent the VLP production as well as the consumption or formation of all important substrates and metabolites. Thus, in combination with already described process analytical technology (PAT) methods, the final step towards the implementation of a digital twin for process development and design, as well as process automation, was completed. Full article
(This article belongs to the Special Issue Towards Autonomous Operation of Biologics and Botanicals)
Show Figures

Figure 1

10 pages, 1727 KiB  
Article
Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III)
by Nikolay A. Bezhin, Mariya A. Frolova, Ol’ga N. Kozlovskaia, Evgeniy V. Slizchenko, Iuliia G. Shibetskaia and Ivan G. Tananaev
Processes 2022, 10(10), 2010; https://doi.org/10.3390/pr10102010 - 05 Oct 2022
Cited by 6 | Viewed by 1138
Abstract
The paper investigates the physicochemical regularities (kinetics and isotherm) of phosphorus and beryllium recovery by sorbents based on polyacrylonitrile (PAN) fiber and Fe(OH)3 obtained by various methods: PAN or pre-hydrolyzed PAN with precipitation of FeCl3 with ammonia, using ready-made or electrochemically [...] Read more.
The paper investigates the physicochemical regularities (kinetics and isotherm) of phosphorus and beryllium recovery by sorbents based on polyacrylonitrile (PAN) fiber and Fe(OH)3 obtained by various methods: PAN or pre-hydrolyzed PAN with precipitation of FeCl3 with ammonia, using ready-made or electrochemically generated Na2FeO4, pre-hydrolyzed PAN treated with an alkaline solution of Na2FeO4, as well as their comparison with granular aluminum oxide. The Langmuir, Freudlich and Dubinin–Radushkevich models show high performance of materials for sorption of stable P and Be used as tracers for the release of 7Be, 32P, and 33P from seawater. The obtained kinetic data are processed using kinetic models of intraparticle diffusion and the pseudo-first-order, pseudo-second-order, and Elovich models. Optimal conditions for obtaining sorbents are established, namely, the effect of NaOH concentration at the stages of preparation on the properties of sorbents based on the PAN fiber and Fe(OH)3 obtained by various methods. Full article
Show Figures

Figure 1

11 pages, 2668 KiB  
Article
Effects of Calcium Sulfate and Chitosan on Textural Modification and Microstructure of Tofu Made from Lentils (Lens culinaris)
by Cheng-Hsun Jao, Chieh-Yi Lin, Chao-Jung Chen and Jung-Feng Hsieh
Processes 2022, 10(10), 2000; https://doi.org/10.3390/pr10102000 - 03 Oct 2022
Cited by 3 | Viewed by 2060
Abstract
This study investigated calcium sulfate and chitosan on the textural modification and microstructure of tofu made from lentils. The addition of varying amounts of calcium sulfate (0–12 mM) and chitosan (0–1.0%) into lentil milk could affect the gel properties of lentil-based tofu. The [...] Read more.
This study investigated calcium sulfate and chitosan on the textural modification and microstructure of tofu made from lentils. The addition of varying amounts of calcium sulfate (0–12 mM) and chitosan (0–1.0%) into lentil milk could affect the gel properties of lentil-based tofu. The gel properties, including the hardness and cohesiveness, of lentil-based tofu significantly increased with the addition of 12 mM calcium sulfate, exhibiting a slightly discontinuous network structure and a slightly regular pore network. However, the gel properties including hardness and cohesiveness significantly decreased with the addition of 1.0% chitosan, presenting a slightly continuous network structure with pores. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that the aggregation of the vicilin, legumin acidic unit and legumin basic unit proteins in lentil milk was induced both by 12 mM calcium sulfate and 1.0% chitosan. Our results suggested that calcium sulfate and chitosan could affect the gel properties, such as hardness and cohesiveness, of lentil-based tofu. Therefore, calcium sulfate and chitosan can be used as practical food additives for the development of texture-modified lentil-based tofu. Full article
Show Figures

Graphical abstract

17 pages, 1963 KiB  
Article
Physicochemical Analysis of Cold Brew and Hot Brew Peaberry Coffee
by Evan T. Schwarzmann, Marlena P. Washington and Niny Z. Rao
Processes 2022, 10(10), 1989; https://doi.org/10.3390/pr10101989 - 02 Oct 2022
Cited by 3 | Viewed by 2277
Abstract
Peaberry coffee is the result of a natural mutation of coffee beans, and they make up only about 5–7% of coffee crops. A typical coffee cherry contains two seeds that are developed against each other, resulting in the distinctive half-rounded shape of coffee [...] Read more.
Peaberry coffee is the result of a natural mutation of coffee beans, and they make up only about 5–7% of coffee crops. A typical coffee cherry contains two seeds that are developed against each other, resulting in the distinctive half-rounded shape of coffee beans. However, failing to fertilize both ovules of one of the seeds or failure in endosperm development can cause only one of the seeds to develop, resulting in smaller, denser beans with a more domed shape. Peaberry coffees are said to be sweeter, lighter, and more flavorful since the peaberry beans receive all nutrients from the coffee cherry. Due to its exclusive nature, the chemical characteristic of peaberry coffee is not well understood. This study explores the acidities and antioxidant activity of peaberry coffee sourced from multiple regions. Total antioxidant capacity, total caffeoylquinic acid (CQA), total caffeine concentration, and pH levels were evaluated for peaberry coffee extracts prepared by cold and hot brewing methods. Little correlation between antioxidant activity and the concentrations of caffeine and CQA in peaberry beans was shown. Six methods were performed for the characterization of total antioxidant capacity including cyclic voltammetry, ABTS assay, and FRAP assay. Peaberry bean extract demonstrated higher average total caffeine concentrations compared to traditional coffee bean extracts. Full article
(This article belongs to the Special Issue Total Antioxidant Capacity: Idea, Methods and Limitations)
Show Figures

Figure 1

19 pages, 2329 KiB  
Article
Chemical Vapor Deposition of Longitudinal Homogeneous Parylene Thin-Films inside Narrow Tubes
by David Redka, Milan Buttberg and Gerhard Franz
Processes 2022, 10(10), 1982; https://doi.org/10.3390/pr10101982 - 01 Oct 2022
Cited by 2 | Viewed by 1695
Abstract
The effect of quasi-exponentially decreasing film thicknesses of thin poly-para-xylylene (PPX-N) coatings inside narrow tubes or micro scaled gaps is well known and has been discussed by many authors since the late 1970s. However, for technical applications it is often necessary [...] Read more.
The effect of quasi-exponentially decreasing film thicknesses of thin poly-para-xylylene (PPX-N) coatings inside narrow tubes or micro scaled gaps is well known and has been discussed by many authors since the late 1970s. However, for technical applications it is often necessary to provide a longitudinal homogeneous film thickness to ensure the constant properties that are required. In a previous work, it was shown, in principle and for the first time, that a temperature gradient along the tube will effectively counteract the longitudinal decreasing film thickness of the PPX-N coating of the interior wall of a capillary. Therefore, this effect is discussed in theory and the provided model is verified by experiments. Our prediction of a required sticking coefficient curve yields experimentally measured homogeneous film thicknesses and shows a good agreement with the given prognosis. Further, it is shown in theory that there is a maximum achievable homogeneous film thickness in the tube in comparison to a blank surface, which can be understood as a coating efficiency for this type of deposition. Full article
(This article belongs to the Special Issue Design and Optimization in Process Engineering)
Show Figures

Figure 1

Back to TopTop