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Abstract: Turbulent emulsification is an important unit operation in chemical engineering. Due to its
high energy cost, there is substantial interest in increasing the fundamental understanding of drop
breakup in these devices, e.g., for optimization. In this study, numerical breakup experiments are used
to study turbulent fragmentation of viscous drops, under conditions similar to emulsification devices
such as high-pressure homogenizers and rotor-stator mixers. The drop diameter was kept larger
than the Kolmogorov length scale (i.e., turbulent inertial breakup). When varying the Weber number
(We) and the disperse-to-continuous phase viscosity ratio in a range applicable to emulsification,
three distinct breakup morphologies are identified: sheet breakup (large We and/or low viscosity
ratio), thread breakup (intermediary We and viscosity ratio > 5), and bulb breakup (low We). The
number and size of resulting fragments differ between these three morphologies. Moreover, results
also confirm previous findings showing drops with different We differing in how they attenuate the
surrounding turbulent flow. This can create ‘exclaves’ in the phase space, i.e., narrow We-intervals,
where drops with lower We break and drops with higher We do not (due to the latter attenuating the
surrounding turbulence stresses more).

Keywords: emulsification; drop breakup; high-pressure homogenizer; rotor-stator mixer; turbulence;
direct numerical simulation

1. Introduction

Turbulent emulsification using high-pressure homogenizers and rotor-stator mixers
is an important chemical engineering process with applications ranging from foods to
pharmaceutical and healthcare products [1–4]. These devices have many advantages; they
allow for high productivity and are available on a large range of scales. However, turbulent
emulsification comes at a high energy cost. We argue that an improved understanding of
turbulent emulsification is required to improve its energy efficiency.

The traditional approach to studying emulsification devices is via emulsification
experiments, pumping coarse emulsions through the apparatus using different valve
designs and operational conditions, and measuring the resulting drop sizes [5–10]. These
investigations suggest that the largest drop diameter surviving passage, Dmax, can be
accurately predicted by the viscosity-corrected Kolmogorov –Hinze theory [8,11]. This
theoretical framework is based on a balance where disruptive (turbulent) stress is compared
to the total resistance to deformation resulting from Laplace pressure and viscous resistance.
Breakup events occur in one of two regimes: in the turbulent inertial regime, if the drop
diameter is larger than the Kolmogorov length scale, D > η,

η =
µ3/4

C
ρ3/4

C
· ε1/4 , (1)
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(where µC denotes continuous phase viscosity, ρC denotes continuous phase viscosity and ε
denotes dissipation rate of turbulent kinetic energy) and in the turbulent viscous regime
if the drop is smaller, D < η. For the turbulent inertial regime, the viscosity-corrected
Kolmogorov–Hinze theory predicts [8,11]:

Dmax = c1

(
1 + c2

µDε1/3Dmax
1/3

γ

)
ε−2/5γ3/5ρ−3/5

C , (2)

where c1 and c2 are empirical constants (c1 = 0.86 and c2 = 0.37, [8]), γ is interfacial tension
and µD is the disperse phase viscosity. This semi-empirical relationship can be transformed
into a dimensionless form using a Weber number,

We =
2 · ρC · ε2/3 · D5/3

γ
, (3)

a disperse to continuous phase viscosity ratio, µD/µC, and the ratio between drop diameter
and Kolmogorov length scale, D/η, resulting in [12]:

We3/5 = c1

(
1 + c2

µD
µC

( η

D

)4/3
We
)

. (4)

Note that disperse phase viscosity enters the Kolmogorov–Hinze theory as an added
stability factor (the factor multiplied with c2 in Equation (2)). Thus, in terms of how
it influences the largest surviving drop diameter, increasing the interfacial tension or
increasing the disperse phase viscosity (ratio) are two interchangeable effects, according to
the theoretical framework.

During the last decades, several new insights on the nature of turbulent emulsification
have been obtained by single drop breakup studies. These include both experimental visu-
alizations using high-speed photography [13–20] and numerical breakup experiments com-
bining direct numerical simulation (DNS) and highly resolved interface tracking [21–27].

In a previous contribution, we used numerical single drop breakup experiments to
show that drops deform and break in fundamentally different ‘morphological sub-regimes’
depending on the Weber number [12]; large drops (high We) are rapidly deformed into
multiple directions giving rise to a large number of small fragments, whereas smaller drops
(low We) are elongated, deforming so as to create a thin neck separating two bulbs and
later breaking into two larger fragments and an array of small satellite drops. Both these
breakup morphologies were found in what is described as the turbulent inertial regime
in Kolmogorov–Hinze theory. These results were, however, obtained at a single viscosity
ratio. Recently, we have used this numerical methodology to show how small variations
in drop viscosity (µD/µC = 10–24) translate into small variations in the morphology at the
initial breakup (e.g., extending the length of the thin neck before breakup and delaying
the deformation sequence). These results also comply rather well with emulsification
experiments [28].

However, the range of drop sizes (We) and viscosities (µD/µC) in these previous studies
is small in comparison to the industrially relevant conditions for emulsification. Little is still
known on at what We the transition between different breakup morphologies occur, and it
is still unknown if larger viscosity differences can lead to not only a slight modification of
breakup morphology [28] but also transitions between breakup morphologies.

A good understanding of under which conditions different breakup morphologies
prevail is essential for understanding a turbulent breakup. Moreover, it is vital for improv-
ing emulsification modeling. A growing number of studies are attempting to predict the
outcome of turbulent emulsification run under different conditions [29–33]. These attempts
depend on models that accurately describe breakup frequency and fragment drop size
distributions [34–36]. In order to evaluate and develop such models, it is critical to fully
understand differences in breakup morphologies.
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The aim of this study is to improve our understanding of how Weber number and drop
viscosity influence initial breakup morphology in turbulent emulsification under conditions
similar to those occurring in an emulsification device and, more specifically, to create a
parameter map over We and viscosity ratio in the turbulent inertial regime, to distinguish
the different breakup morphologies. This is achieved using numerical single drop breakup
experiments. Due to the large computational costs involved, some limitations are imposed.
Firstly, investigations are limited to isotropic homogeneous turbulence with a Taylor–
Reynolds number of 33. Secondly, the investigations focus on a single flow realization.

2. Materials and Methods
2.1. Numerical Drop Breakup Experiments

Each numerical experiment is carried out by injecting a single drop with a given
Weber number and viscosity ratio into a homogeneous isotropic turbulent flow. The drop
is tracked, either until the point where the first fragment detached from it (‘initial breakup’
in the terminology of Solsvik et al., [37]) or until it has spent time comparable to passage
through the efficient breakup region of an emulsification device in the turbulent flow. Care is
taken to ensure that conditions are similar to those in a turbulent emulsification device such
as a high-pressure homogenizer. A full methodological description is found elsewhere [12].
Details of the numerical implementations can be found in previous studies [25,38,39]. A
brief summary of the methodology is presented below:

In-house code is used, combining DNS for describing turbulent flow and a highly
resolved volume-of-fluid (VOF) method [25,40] for describing how the drop interface
evolves in time. The simulation domain consists of a periodic box, with size (π D0)3, where
D0 is the size of the initial injected drop. This corresponds to a volume fraction of 1.7%,
which can be compared to the 1–20% typically used in emulsification using high-pressure
homogenizers in industrially relevant settings. Turbulence is continuously injected into the
domain using ABC-forcing [41,42], ensuring a Taylor-scale Reynolds number of 33.

Before injecting the drop, the continuous phase flow is run until statistical convergence
(measured by the dissipation rate of turbulent kinetic energy averaged across the domain),
corresponding to 900 Kolmogorov timescales,

τη =

√
µC

ρC · ε
. (5)

The maximum simulation end-time, i.e., time for passing through the efficient breakup
region, is estimated to be 90 τη [12]. A drop that does not reach a critically deformed
state [43] during this time is considered to survive passage.

The spatial resolution corresponds to 41 cells across the drop diameter and two cells
across a Kolmogorov length scale, and doubling the mesh resolution has no significant effect
on the resulting breakup morphology [12]. The simulation time-step was set adaptively,
ensuring a Courant–Friedrichs–Lewy number of less than 0.25, which ensures a time-step
independent solution according to experience from previous studies [39]. This results in a
typical time-step of 0.002 τη .

Turbulent intermittency implies that the flow field varies stochastically. Consequently,
turbulent stresses acting on a drop are occasionally substantially larger (or smaller) than the
time-averaged ones [44,45]. Thus, in an experimental setting, each drop traveling through
the device will experience a different trajectory and stress history. This is a challenge when
attempting to study the systematic effects of parameters in an experimental setting. To
study the effect of Weber number and viscosity ratio in isolation, each drop was injected
into the same flow realization in the present study.

2.2. Investigated Cases

Numerical breakup experiments are run for viscosity ratios between 1.0 and 40, corre-
sponding to the conditions of industrially relevant emulsification in, e.g., high-pressure
homogenizers or rotor-stator mixers.
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The Weber number is varied in the range of 0.96–100. The upper limit (We = 100)
corresponds approximately to the Weber number of the largest drops entering an industrial
device, whereas the largest drops surviving passage through an HPH have a Weber number
slightly larger than 1.0 [12]. A varying Weber number is obtained by adjusting the interfacial
tension between simulations. The drop diameter, D0, and the drop diameter to Kolmogorov
length scale ratio, D0/η, were kept constant throughout all simulations in order to ensure
that the spatial resolution (in terms of computational cells per drop diameter), as well as
the breakup regime as described by the viscosity-corrected Kolmogorov–Hinze framework
did not vary between condition (i.e., remained in the turbulent inertial regime, D0/η = 22).
Furthermore, note that the viscosity-corrected Kolmogorov–Hinze theory suggests that
the outcome of an emulsification experiment is determined by only three dimensionless
numbers: the Weber number, the viscosity ratio and the drop diameter to Kolmogorov
length scale (Equation (4)). Keeping the latter constant suggests that all remaining variation
could be described in terms of the first two.

Table 1 displays the investigated Weber numbers for each viscosity ratio. Due to the
high computational cost of the simulations, only a subset of all possible combinations was
investigated. Each new set of simulation cases was chosen iteratively from an investigation
of previous sets. The emphasis is on resolving the demarcation between breakup morpholo-
gies in general and identifying breakup morphologies close to the critical Weber number in
particular. (See Appendix A for the individual parameter values used to generate the cases
in Table 1 in the code used for the numerical breakup experiments).

Table 1. Investigated cases (marked X).

We µD/µC = 1.0 µD/µC = 5.0 µD/µC = 10 µD/µC = 22 µD/µC = 40

100 X X X X X
60 X X X X X
30 X X X X X
20 X X
13 X X X X X
11 X X X X X
9.0 X X X X X
7.0 X X X X X

4.85 X X X X X
2.85 X X X X X
2.60 X
2.55 X
2.40 X
2.20 X
2.00 X X X X X
1.80 X
1.60 X
1.40 X
1.20 X
0.96 X X X X

2.3. Dissipation Rate of Turbulent Kinetic Energy

The local dissipation rate of turbulent kinetic energy (TKE) is calculated directly from
its definition [46],

ε =
1
2

µC
ρC

(
∂ui
∂xj

+
∂uj

∂xi

)2

, (6)

(where ui denotes velocity in dimension xi), based on the continuous phase DNS data and
averaged across the computational domain.
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2.4. Quantifying Interfacial Area

The total drop interfacial area is used to quantify the global extent of deformation. It
is calculated by integrating the VOF-gradient (cf. refs. [47,48]):

A =
∫
|∇α|dV , (7)

where α denotes the VOF level-set method distance function.

3. Results and Discussion

The results and discussion section is organized as follows: First, the effect on breakup
morphology is investigated by varying the Weber number but keeping the viscosity ra-
tio constant: Section 3.1 discusses the low viscosity case (µD/µC = 1), Section 3.2 the
intermediary-viscosity case (µD/µC = 22) and Section 3.3 the high-viscosity case (µD/µC = 40).
Section 3.4 discusses the phenomenon of non-monotonic transitions between breakup mor-
phologies and its relation to turbulence modulation. Section 3.5 constructs an initial breakup
morphology map based on We and the viscosity ratio, and Section 3.6 discusses implications
for emulsification processing.

3.1. Effect of We at a Low Viscosity Ratio (µD/µC = 1.0)

Figure 1 shows a large drop (We = 100) with a low viscosity (µD/µC = 1) deforming
in the turbulent flow (iso-surface at α = 0.5). Results comply with previous investiga-
tions [12,22,26]: The spherical shape is lost almost instantly, and the drop deforms in
several directions. As time progresses, a sheet structure develops. When sufficiently thin,
holes appear and deform further into narrow threads from which the first fragment de-
taches. The time of initial breakup—defined from when the first fragment detached [37]—is
7.2 τη . However, note that the initial breakup time is difficult to characterize under this
morphology since the limiting spatial resolution makes it difficult to fully distinguish
detachment from rupture without fragmentation (i.e., hole formation) (see Figure 1).

Figure 2 shows the drop morphology at the initial breakup for the whole range of
Weber numbers (1 < We < 100, µD/µC = 1). As the external stress becomes smaller in relation
to stabilization (i.e., as We decreases from 100 to 11), the morphology gradually shifts from
a case where the drop is breaking as a sheet that almost appears to be ‘dissolving’ due to its
poor ability resist external stress (We = 100), to a case with a sheet breaking into a coherent
network of threads (We = 11). However, throughout this range (We = 11–100), a breakup
occurs via a highly deformed sheet. This will be referred to as a ‘sheet breakup morphology’
in the present study. Sheet breakup, with its high multi-directional deformation and
with rupture occurring almost simultaneously in several locations, is similar to what
Komrakova [22] refers to as ‘burst breakup’ and has elements of what is referred to as ‘bag
breakup’ under conditions of liquid drops breaking in gaseous jets [49].
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Figure 3 displays the initial breakup time as a function of Weber number (at a constant,
low viscosity ratio, µD/µC = 1). Within the sheet breakup regime (We = 11–100), there is a
trend of increased breakup time with decreasing Weber number. The trend is comparable
but less steep than the breakup time prediction suggested by Rivière et al. [24]; see line in
Figure 3.
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Figure 3. Time of initial breakup, tB, as a function of Weber number, We, for a low viscosity drop
(µD/µC = 1). Solid line displays average breakup time as suggested by Rivière et al. [24]. Arrows
indicate cases with tB > 90 τη . Colored fields show breakup morphology; see Figure 2. Red box
displays the non-monotonic breakup time trend; see Section 3.4.

Turning to Weber numbers below 11, Figure 2 shows a different breakup morphology.
At Weber numbers between 13 and 1.6, the sheet never develops (apparently, the cohesive
Laplace pressure is large enough to ensure that this extent of deformation is not possible
given the external stress levels). The drop is, instead, elongated followed by a gradual
development of a narrowing neck separating two bulbs (Figure 4). The morphological
details and mechanism of how external stress deforms the neck until reaching a critical
state have been discussed in more detail elsewhere [43]. This breakup morphology will
be referred to as ‘bulb breakup’ and is similar to the breakup morphology seen in several
experimental high-speed photography visualizations [13–15,17,18,20,50,51].

It is interesting to note that although the breakup morphology is similar in the entire
bulb-breakup range (We = 13–1.6), a minor shift can be seen. The point of first detachment
switches from a position in the middle of the neck for higher Weber numbers (We ≥ 5)
to a position where the neck is connected to one of the bulbs at lower Weber numbers
(We ≤ 2.85); see Figure 2, where the green arrow indicates the point of first detachment.
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Figure 4. Breakup sequence for We = 7.0, µD/µC = 1, illustrating the bulb breakup morphology.
(Iso-surfaces at α = 0.5).

As in the sheet regime, the time required to reach the initial breakup also increases
with decreasing Weber number (see Figure 3, We = 1.6–13). However, note that between
We = 2.85 and 5 (red box in Figure 3), breakup time decreases with increasing Weber number.
Furthermore, note that this effect occurs at the same point where the minor transition in
detachment point location is found (Figure 2). Such behavior is somewhat counterintuitive
at first glance suggesting that the drop breaks earlier when better stabilized (at least in a
narrow We interval) and is discussed in more detail in Section 3.4.

As seen in Figure 2, drops with a Weber number below 1.6 do not break (under the
investigated time interval, i.e., tB > 90 τη). These drops go through several sequences of
deformation–relaxation but never reach a critically deformed state. Thus, the critical Weber
number for the low viscosity ratio (at the investigated flow realization) is in the range of
1.4–1.6.

3.2. Effect of We at an Intermediate Viscosity Ratio (µD/µC = 22)

Figure 5 shows the morphology at initial breakup for an intermediary viscosity ratio
drop (µD/µC = 22) as a function of Weber number. In a previous investigation, we identified
sheet breakup at a high Weber number and bulb breakup at lower values for this viscosity
ratio [12]. Figure 5 suggests that the sheet regime extends down to We = 30, and the bulb
breakup regime starts from We = 11. The corresponding initial breakup times can be seen
in Figure 6.
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However, the more detailed investigations underlying Figure 5 suggest a third interme-
diary breakup morphology in-between sheet and bulb breakup, where the first detachment
is of a small drop from a narrow thread (Figure 5, We = 20). At We = 13–20, the Laplace
pressure is sufficient to resist external stress deforming the drop into a sheet thin enough to
give rise to direct breakup (see sequence in Figure 7). However, the stress is still sufficiently
large to flatten the drop considerably. The flattened drop relaxes into an elongated form (as
for the bulb breakup morphology, cf. Figure 4). However, before a critical deformed neck
has had time to form, a thin thread detangles itself from the surface (t/τη = 10–13, Figure 7).
When the thread-neck has become sufficiently thin, the structure is critically deformed and
will eventually release a small fragment from the top of the thread (Figure 7, t/τη = 15).
This breakup morphology is referred to as ‘thread breakup’ in the present study.
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Figure 7. Breakup sequence for We = 7.0, µD/µC = 1. Illustrating the thread breakup morphology.
(Iso-surfaces at α = 0.5).

Returning to Figure 5, the bulb breakup morphology persists to We = 2.85, whereas
We = 2.60 results in no breakup occurring before t = 90 τη . This suggests that the critical
Weber number for the intermediary viscosity ratio is in the range 2.6–2.85, i.e., somewhat
higher than for the low viscosity case (which is expected due to the extra resistance to
deformation offered by the viscous resistance, cf. Equation (4)). However, as seen in
Figure 5, if We is decreased further (from We = 2.55 to 2.4), bulb breakup re-appears in a
narrow range (We = 2.2–2.4). Lowering the Weber number below We = 2.2, again, results in
no breakup taking place during the investigated time span. This non-monotonous effect is,
again, surprising (suggesting a more stabilized drop breaking when a less stabilized do not)
and relates to the non-monotonous trend in breakup time observed for the low-viscosity
case (red box in Figure 3). This phenomenon is discussed further in Section 3.4.
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3.3. Effect of We at a High Viscosity Ratio (µD/µC = 40)

Figure 8 displays the morphology at initial breakup for the high-viscosity ratio drop
(µD/µC = 40), as a function of Weber number. The corresponding breakup time can be seen
in Figure 9. As seen in Figure 8, the drop is always stabilized enough to avoid it from
thinning into a sheet (in the Weber number range investigated). The cases with a high
Weber number (We = 100 and We = 60), result in thread breakup. At lower Weber numbers
(We from 30 to 2.85), the combination of Laplace pressure and viscous stabilization hinders
the thread from being pulled out from the drop, and deformation proceeds onwards to
bulb breakup. A drop with a Weber number of two or below passes through a sequence
of deformation–relaxation cycles but does not reach critical deformation under the investi-
gated time span (i.e., tB > 90 τη). Thus, the critical Weber number is in the range 2.0–2.85 at
this viscosity ratio.
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As seen from comparing Figure 8 (high viscosity) and Figure 2 (low viscosity), the
viscosity clearly influences the breakup morphology. From previous investigations using
emulsification experiments, it is well-known that viscosity adds a stabilizing term to
the stress balance (Equation (2)), making larger fragments survive at increasing drop
viscosities [6,8,11]. Furthermore, comparing Figures 2 and 8 shows that viscosity also affects
the fundamental morphology through which breakup takes place, i.e., modifying at which
Weber number the transition between sheet and bulb breakup takes place and introducing
an intermediary thread breakup under conditions of non-negligible viscous resistance.

3.4. Non-Monotonous Breakup and Turbulence Modulation

For both the low and the intermediary viscosity drop, we observe non-monotonic
effects when varying the Weber number. In Figure 3 (µD/µC = 1.0), We = 2.85 breaks before
We = 4.85, despite being more stabilized. Moreover, for the intermediary viscosity ratio
case (µD/µC = 22), a We = 2.4 drop breaks, whereas at We = 2.6, the drop does not (see
Figure 5). Both phenomena appear in relatively narrow We-intervals, indicating that they
are secondary effects—the main effect is still an increased breakup tendency with increasing
Weber number (as seen from breakup times in Figures 3, 6 and 9). However, the cause
of this deviatory behavior must be understood in order to understand what controls the
transition between breakup regimes.

The observed effects appear contra-intuitive at first glance since the Weber number
is a direct measure of the external deforming stress in relation to the stabilizing Laplace
pressure. Moreover, the viscosity ratio is constant, and the Ohnesorge number [52,53],

Oh =
µD√

ρD · γ · D
, (8)

(where ρD denotes disperse phase density), describing the relative effect of viscous stabi-
lization, is monotonically increasing across Weber numbers. Thus, there is no reason to
expect drops with a lower Weber number to be more susceptible to breakup than higher
Weber number drops simply due to viscous stabilization.

To understand the cause of this phenomenon, it must be kept in mind that We is
defined based on the value of the time-averaged dissipation rate of turbulent kinetic
energy, obtained from averaging before injecting the drop. All numerical experiments
are conducted using a single flow realization (to ensure that the initial condition for the
continuous phase is identical; see Section 2.2). However, it is well-known that the presence
(as well as the deformation/breakup and coalescence) of dispersed drops, modulate the
turbulence [45–57]. Thus, if the drops have different turbulence modulating effects, they do
not necessarily experience the same turbulent stress, despite starting from the same flow
realization. Figure 10A displays the dissipation rate of TKE (averaged across the simulation
domain) as a function of time, comparing different Weber numbers, for the low-viscosity
case. The dissipation rate of TKE varies over time, as expected due to intermittency [44,45].
A peak in turbulent dissipation can be seen close to t = 4 τη . This appears to correlate to
the time when the total interfacial area of the deforming drop starts to increase rapidly
(indicating fast deformation globally; see Figure 10B). As seen in Figure 10A, there is a
systematic effect of the turbulence being slightly more suppressed the higher the Weber
number. Thus, the more stabilized drop encounters somewhat stronger turbulent stresses.
This trend of increased turbulence suppression with increasing Weber number is consistent
with previous investigations of turbulence modulation in isotropic homogenous turbulence
and has been hypothesized to relate to the increased extent of energy exchange for more
deformable interfaces [39].
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Figure 10. Suppression of turbulence for the low viscosity drop (µD/µC = 1.0). (A) Dissipation rate of
TKE, ε, normalized to the one-phase flow time-averaged value, ε*, as a function of time, t. (B) Total
interfacial area, A, normalized with its initial value, A0.

Since turbulence suppression is a relatively weak function of Weber number, the
general trend is still a faster deformation at lower Weber numbers at the low viscosity ratio.
However, as seen in Figure 3, the effect is large enough to bring about a non-monotonic
jump in breakup time, delaying breakup for a narrow range close to the critical Weber
number (see red box in Figure 3).

Figure 11A displays the modulation of dissipation rate of TKE in the intermediary
viscosity case (µD/µC = 22). From Figure 11B, showing the evolution of interfacial area with
time, there appears to be two major periods of intense deformation (~8 τη and ~35 τη).
Especially in the later deformation period, a clear and monotonic effect can be seen where
the higher the Weber number, the greater the dissipation rate of TKE. The effect is still minor.
However, when comparing drops with a relatively small difference in Weber number, it
explains why more stabilized drops can sometimes break when less stabilized ones do not.
From Figure 5, we see that We = 2.60 (less stabilized) does not break, whereas We = 2.40
(more stabilized) does break. The Laplace pressure stabilization is 7.4% higher for We = 2.40
compared to We = 2.6. This can be compared to the turbulence modulation effect, which
gives a 3.1% lower dissipation rate of TKE for the high We drop. Since the turbulent
disruptive stress scales with a dissipation rate of TKE to a power of 2/3 (Equation (3)), this
results in a 9.9% higher disruptive stress for the We = 2.4 drop. Consequently, the turbulent
decreases faster than the Laplace stabilization in this region of Weber numbers and the
We = 2.4 drop breaks, despite being more stabilized, as observed in Figure 5.
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Figure 11. Suppression of turbulence for an intermediary viscosity drop (µD/µC = 22). (A) Dissipation
rate of TKE, ε, normalized to the one-phase flow time-averaged value, ε*, as a function of time, t.
(B) Total interfacial area, A, normalized with its initial value, A0.

Finally, Figure 12A shows the turbulence modulation for the high viscosity case
(µD/µC = 40). The same effect of increased turbulence attenuation with increasing We can
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be seen for the lower viscosity cases, at least for some intervals (i.e., at the deformation
occurring at t/τη = 20 and between t/τη = 30–40; see Figure 12B). However, non-monotonic
effects were not observed, either in terms of critical Weber number nor in terms of breakup
time (see Figures 8 and 9). This might be due to the increased stabilizing effect of viscosity
(Oh = 0.5 at the critical Weber number for the high-viscosity case, as compared to Oh = 0.25
for the intermediary viscosity case).
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Figure 12. Suppression of turbulence for a high viscosity drop (µD/µC = 40). (A) Dissipation rate of
TKE, ε, normalized to the one-phase flow time-averaged value, ε*, as a function of time, t. (B) Total
interfacial area, A, normalized with its initial value, A0.

3.5. A Parameter Map for Initial Breakup

A parameter map for the morphology of the initial breakup can be seen in Figure 13.
Each marker displays the result of a numerical single drop breakup experiment, labeled
according to type: S (sheet), T (thread), B (bulb) or N (no break occurring in the investi-
gated time span). Note that Figure 13 includes all five viscosity ratios investigated (see
Section 2.2). The horizontal axis displays the Weber number, and the vertical axis displays
the viscosity ratio. Solid lines and colored fields have been added (free-hand) to illustrate
the demarcation between regimes. As discussed above (Section 3.4), the opposing effect of
turbulence modulation (suppression increases with increasing We) and stability (resisting
Laplace pressure increases with We) can lead to non-monotonic transitions between regimes.
This corresponds to narrow ‘exclaves’ in the phase space (see Figure 13). Only one such
region was observed in the numerical experiments, but since the underlying phenomena
can be seen at other viscosity ratios as well, narrow exclaves are expected to exist in the
demarcation zone between bulb breakup and no breakup more generally.

The map in Figure 13 can be used for obtaining an overview of how the different factors
influence breakup morphology: First, if the Weber number is sufficiently low, no breakup
occurs. The demarcation line to the grey region (‘no breakup’) corresponds to the critical
Weber number. As seen in Figure 13 (and discussed above) it increases slowly with in-
creasing viscosity ratio. Such a gradual increase is also predicted by the viscosity-corrected
Kolmogorov–Hinze theory (Equation (2)). The particular fitting parameters suggested by
Vankova et al. [8] predict a lower critical Weber number than above (c1 = 0.86 and c2 = 0.37
corresponds to WeCr = 0.61 at µD/µC = 1). To allow for a quantitative comparison of how
the critical Weber number scales with viscosity according to Kolmogorov–Hinze theory,
however, the semi-empirical prediction of critical Weber number has been introduced as a
dashed line in Figure 13, scaled so as to give a critical Weber number of 1.8 at µD/µC = 1.
As seen in the figure, similar trends of how viscosity influences the critical Weber number
are obtained after rescaling.
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Figure 13. Parameter map, showing the initial breakup morphology (S: Sheet, T: Thread, B: bulb;
N: none) as a function of Weber number, We, and viscosity ratio, µD/µC. Solid lines and col-
ored fields are free-hand attempts to illustrate demarcations between morphologies. Dashed line
shows the effect of the viscosity ratio on critical Weber number according to the viscosity-corrected
Kolmogorov–Hinze theory [8] (rescaled with a proportionality constant complying with the numeri-
cal simulations; see text).

Returning to the parameter map in Figure 13, the lower right corner of the map
corresponds to conditions where the drops are poorly stabilized (high We and low viscosity).
The lack of resistance to breakup results in the heavily and multi-directionally deformed
sheet breakup morphology. The parameter range of sheet breakup grows narrower the
higher the viscosity ratio, further illustrating the effect of viscosity in contributing to the
stability of the drop.

The thread breakup morphology occurs as an intermediary between the bulb and sheet
breakup and appears in a wider Weber number range the higher the viscosity ratio (at the
expense of the sheet breakup regime). Thread breakup does not occur if the viscosity ratio is
too low (see Figure 2), indicating that thread formation can be attributed to drop viscosity.

The bulb breakup regime, finally, exists in a wide interval of intermediary Weber
numbers. The span of Weber numbers giving rise to bulb breakup varies with viscosity
ratio and is minimal at an intermediary viscosity ratio (µD/µC ~5–10).

Here it should be remembered that the investigations in this study are based on one
flow realization. Turbulence intermittence implies that each drop entering the turbulence
(i.e., the effective region of breakup in the emulsification device) will experience a different
stress history and stress distribution. Extensive comparisons between flow realizations
at constant Weber number and viscosity ratio also show some variation in terms of when
transitions occur [12,43]. However, these effects are relatively small when comparing over
spans of Weber number and viscosity ratios in Figure 13.

It could also be mentioned that the effect of Weber number was studied by varying
interfacial tension (see Section 2.2). As discussed above, the large amount of experimental
data captured by the viscosity-corrected Kolmogorov–Hinze theory suggests that the
parameters contained in the Weber number do not influence the outcome individually (but
only in their combined effect on We); see Equations (2)–(4). However, this has not been
explicitly tested in the current study.

Lastly, the results in the present study are based on numerical experiments. In com-
parison to in vitro experiments (e.g., in the form of high-speed photographic breakup
visualizations) would be an interesting continuation of the present study, not at least since
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there is a general lack of such comparisons in the field of numerical breakup visualiza-
tions [21–27].

3.6. Practical Implications for Emulsification Processes

Emulsification processes such as high-pressure homogenizers and rotor-stator mixers
are common unit operations. However, they give rise to a relatively high energy cost. To
ensure that the resulting emulsion has the desired properties (i.e., the drop-size distribution
giving rise to the desired texture, appearance and physical stability) at minimal energy
cost, process optimization is essential. Population balance modeling is one commonly
suggested approach for predicting how the resulting drop-size distribution depends on
operating conditions [3,29,30]. However, this approach requires accurate specification of
drop breakup rates and fragment size distributions.

The Kolmogorov–Hinze theory, with its modifications for drop viscosity [6,8,11] and
intermittency [44] suggests two breakup regimes [3,8,58]: turbulent inertial breakup and
turbulent viscous breakup depending on the drop diameter to Kolmogorov length scale ra-
tio. This distinction has often been used in attempts to model emulsification processes, e.g.,
specifying one breakup frequency and fragment size distribution for each regime [29,30,59].

The initial drop diameter to Kolmogorov length scale is well above unity (D/η = 22) for
all We and viscosity ratios investigated in the present study. Thus, the studied cases are all
in the turbulent inertial regime. However, the numerical single drop breakup experiments
show three distinctive breakup morphologies. Note that there are considerable differences
between these morphologies, especially in terms of the amount and size of fragments that
are formed. As an example, an almost uniform fragment size assumption [60,61] is expected
to fit the breakup in the sheet regime (since the extensively deformed sheet breaks chaoti-
cally into multiple small fragments), whereas a distribution skewed to larger sizes [62–65]
is more likely to fit a breakup occurring in the bulb regime (where a breakup generates two
larger fragments and an array of satellites). This suggests that predictive emulsification
modeling needs to describe the transition between these breakup morphologies occurring
inside the turbulent inertial breakup regime.

Although three distinct breakup morphologies can be identified, the bulb morphology
is of special interest. Considering an industrial setting using an emulsification device
such as a high-pressure homogenizer or a rotor-stator mixer, a broad range of drop sizes
enter the turbulent breakup zone. Drops of different sizes have different Weber numbers
and, consequently, experience different breakup morphologies. The physical stability of
the resulting emulsion is determined by the largest drops surviving passage, and these
are, in turn, determined by the largest drops surviving passage through the turbulent
zone. Figure 13 suggests that this limiting breakup event will take place through the bulb
morphology, regardless of the viscosity ratio.

Moreover, Section 3.4 also shows the importance of correctly including turbulence
modulation in the modeling emulsification processes. Whereas turbulence suppression
from having a high-volume fraction of disperse phase is well-known and has been included
in breakup frequency models since the 1970s [63], the Weber-number dependence on
turbulence remains to be included in these modeling frameworks.

4. Conclusions

Three breakup morphologies (or ‘sub-regimes’) can be identified when comparing
across different Weber numbers and viscosity ratios: sheet, thread and bulb breakup. All
three morphologies are found under conditions where the initial drop diameter is larger
than the Kolmogorov length scale (corresponding to the turbulent inertial regime).

Sheet breakup occurs when the disruptive stress is large in relation to the Laplace
pressure and the viscous stabilization; the drop is heavily deformed into a thin sheet which,
in a rapid succession of breakup events, fragments into multiple small drops.

Thread breakup only occurs at viscosity ratios above unity and becomes more pro-
nounced with increasing drop viscosity. It consists of external stresses pulling out a
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small drop volume, extending it into a narrow thread from which a small fragment is
eventually detached.

Bulb breakup (drop first elongating, then forming a narrowing neck between two
bulbs) occurs in intermediary Weber numbers. The limiting drop in a Kolmogorov–Hinze
interpretation (i.e., the drop that is just large enough to become critically deformed) breaks
in the bulb regime, regardless of the viscosity ratio. This suggests that bulb breakup
is the morphology of interest for attempts to better understand what limits turbulent
drop breakup.

Beyond a critical Weber number, no breakup takes place. This critical Weber number in-
creases somewhat with viscosity ratio (in agreement with previously suggested correlations
based on emulsification experiments).

Moreover, the simulations show cases of non-monotonic trends, where more stabilized
drops (higher We) break faster than less stabilized drops and where more stabilized drops
break under conditions where less stabilized drops do not. This can be explained by
the difference in how drops of different Weber numbers modulate the turbulence in the
region around the drop. However, it also suggests that a morphology map (Figure 13) can
include ‘exclaves’ (i.e., narrow parameter ranges leading to no breakup inside of the bulb
breakup regime).
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Appendix A

The code for running the numerical drop breakup experiments is based on dimen-
sionless parameters. The detailed parameter values (in the dimensionless form used in the
code) representing the cases in Table 1, can be found in Tables A1 and A2.

Table A1. Parameter settings (densities and viscosities) corresponding to the simulated cases (see
Table 1) in the dimensionless units used in the code. The dissipation rate of TKE (averaged over space
and time) is 3.07 (-), and the initial drop diameter is 2 (-). The length of the simulation domain is 2π.

µD/µC ρC (-) ρC (-) µC (-) µD (-)

1.0 1.0 1.0 0.06 0.06
5.0 1.0 1.0 0.06 0.30
10 1.0 1.0 0.06 0.60
22 1.0 1.0 0.06 1.32
40 1.0 1.0 0.06 2.40
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Table A2. Parameter settings (interfacial tension) corresponding to the simulated cases (see Table 1)
in the dimensionless units used in the code. The dissipation rate of TKE (averaged over space and
time) is 3.07 (-), and the initial drop diameter is 2 (-). The length of the simulation domain is 2π.

We 100 60 30 20 13 11 9.0 7.0 4.85 2.85 2.60 2.55 2.40 2.20 2.00 1.80 1.60 1.40 1.20 0.96

γ (-) 0.13 0.23 0.469 0.67 1.00 1.22 1.49 1.92 2.80 4.70 5.16 5.26 5.54 6.09 6.70 7.45 8.38 9.58 11.18 14.0
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