Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determining the Sorption Parameters of Phosphorus and Beryllium under Static Conditions
2.2. Sorption Kinetics of Stable Isotopes of Phosphorus and Beryllium
2.3. Sorption Isotherm of Stable Isotopes of Phosphorus and Beryllium
3. Results and Discussion
3.1. Optimization of Conditions for Obtaining Sorbents PAN-Fe(OH)3
3.2. Sorption Kinetics of Stable Isotopes of Phosphorus and Beryllium
- -
- Intraparticle diffusion model [22]:
- -
- -
- -
- -
- For phosphorus recovery:
- -
- For phosphorus recovery:
3.3. Sorption Isotherm of the Stable Isotopes of Phosphorus and Beryllium
- -
- -
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silker, W.B.; Robertson, D.E.; Rieck, H.G., Jr.; Perkins, R.W.; Prospero, J.M. Beryllium-7 in Ocean Water. Science 1968, 161, 879–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremenchutskii, D.A.; Dymova, O.A.; Batrakov, G.F.; Konovalov, S.K. Numerical simulation of the intra-annual evolution of beryllium-7 (7Be) in the surface layer of the Black Sea. Environ. Sci. Pollut. Res. 2018, 25, 11120–11127. [Google Scholar] [CrossRef] [PubMed]
- Kremenchutskii, D.A.; Batrakov, G.F.; Dovhyi, I.I.; Sapozhnikov, Y.A. Role of suspended matter in controlling beryllium-7 (7Be) in the Black Sea surface layer. J. Mar. Syst. 2021, 217, 103513. [Google Scholar] [CrossRef]
- Nakanishi, T.; Kusakabe, M.; Aono, T.; Yamada, M. Simultaneous measurements of cosmogenic radionuclides 32P, 33P and 7Be in dissolved and particulate forms in the upper ocean. J. Radioanal. Nucl. Chem. 2009, 279, 769–776. [Google Scholar] [CrossRef]
- Haskell, W.Z.; Kadko, D.; Hammond, D.E.; Knapp, A.N.; Prokopenko, M.G.; Berelson, W.M.; Capone, D.G. Upwelling velocity and eddy diffusivity from 7Be measurements used to compare vertical nutrient flux to export POC flux in the Eastern Tropical South Pacific. Mar. Chem. 2015, 168, 140–150. [Google Scholar] [CrossRef]
- Kadko, D. Upwelling and primary production during the U.S. GEOTRACES East Pacific Zonal Transect. Glob. Biogeochem. Cycles 2017, 31, 218–232. [Google Scholar] [CrossRef]
- Ruttenberg, K.C. 10.13—The Global Phosphorus Cycle. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 10, pp. 499–558. [Google Scholar] [CrossRef]
- Lal, D. An overview of five decades of studies of cosmic ray produced nuclides in oceans. Sci. Total Environ. 1999, 237–238, 3–13. [Google Scholar] [CrossRef]
- Van Mooy, B.A.S.; Krupke, A.; Dyhrman, S.T.; Fredricks, H.F.; Frischkorn, K.R.; Ossolinski, J.E.; Repeta, D.J.; Rouco, M.; Seewald, J.D.; Sylva, S.P. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 2015, 348, 783–785. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, Y.I. Radioisotopic Methods in Hydrobiology; Springer: Berlin/Heidelberg, Germany, 1999; 321p. [Google Scholar] [CrossRef]
- Lai, D.; Chung, Y.; Platt, T.; Lee, T. Twin cosmogenic radiotracer studies of phosphorus recycling and chemical fluxes in the upper ocean. Limnol. Oceanogr. 1988, 33, 1559–1567. [Google Scholar] [CrossRef]
- Lee, T.; Lal, D. Techniques for extraction of dissolved inorganic and organic phosphorus from large volumes of sea water. Anal. Chim. Acta 1992, 260, 113–121. [Google Scholar] [CrossRef]
- Goel, P.S.; Narasappaya, N.; Prabhakara, C.; Thor, R.; Zutshi, P.K. Study of Cosmic Ray Produced Short-Lived P32, P33, Be7, and S35 in Tropical Latitudes. Tellus 1959, 11, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Benitez-Nelson, C.R.; Buesseler, K.O. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature 1999, 398, 502–505. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R.; Buesseler, K.O. Measurement of Cosmogenic 32P and 33P Activities in Rainwater and Seawater. Anal. Chem. 1998, 70, 64–72. [Google Scholar] [CrossRef]
- Dovhyi, I.I.; Kremenchutskii, D.A.; Kozlovskaya, O.N.; Bezhin, N.A.; Khlystov, V.A.; Proskurin, V.Y. Cosmogenic isotopes 32, 33P in the spring biodynamics of phosphorus studies in the aquatoria of the Heracleic peninsula. Uchenye Zap. Krymskogo Fed. Univ. Im. V.I.Vernadskogo. Biol. Khimiya (Sci. Notes Vernadsky Crime. Fed. University. Biol. Chem.) 2020, 6, 274–284. (In Russian) [Google Scholar]
- Remez, V.P.; Zelenin, V.I.; Smirnov, A.L.; Raspopin, S.P.; Matern, A.I.; Morzherin, Y.Y. Cellulose-inorganic sorbents in radiochemical analysis I. Promising sorbents for radiochemical analysis. Sorpt. Chromatogr. Process 2009, 9, 627–632. (In Russian) [Google Scholar]
- Bezhin, N.A.; Frolova, M.A.; Dovhyi, I.I.; Kozlovskaia, O.N.; Slizchenko, E.V.; Shibetskaia, I.G.; Khlystov, V.A.; Tokar’, E.A.; Tananaev, I.G. The Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III): Production Methods, Properties, Application in Oceanographic Research. Water 2022, 14, 2303. [Google Scholar] [CrossRef]
- Extraction of 7Be from Seawater Using Fe-Fibers. Available online: https://cmer.whoi.edu/recipe/extraction-of-7be-from-seawater-using-fe-fibers/ (accessed on 5 September 2022).
- Krishnaswami, S.; Lal, D.; Somayajulu, B.L.K.; Dixon, F.S.; Stonecipher, S.A.; Craig, H. Silicon, radium, thorium, and lead in seawater: In-situ extraction by synthetic fibre. Earth Planet. Sci. Lett. 1972, 16, 84–90. [Google Scholar] [CrossRef]
- Waser, N.A.; Fleer, A.P.; Hammar, T.R.; Buesseler, K.O.; Bacon, M.P. Determination of natural 32P and 33P in rainwater, marine particles and plankton by low-level beta counting. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1994, 338, 560–567. [Google Scholar] [CrossRef]
- Dong, L.; Wu, C.; Han, Y.; Pan, S.; Wang, Z.; Zhang, G.; Hou, L.; Gu, P. Research on the application potential of spent biological activated carbon from BAC process to remove radionuclides Sr2+ from water. J. Radioanal. Nucl. Chem. 2021, 327, 1179–1190. [Google Scholar] [CrossRef]
- Attallah, M.F.; Borai, E.H.; Allan, K.F. Kinetic and thermodynamic studies for cesium removal from low-level liquid radioactive waste using impregnated polymeric material. Radiochemistry 2009, 51, 622–627. [Google Scholar] [CrossRef]
- Dakroury, G.A.; Abo-Zahra, S.F.; Hassan, H.S. Utilization of olive pomace in nano MgO modification for sorption of Ni(II) and Cu(II) metal ions from aqueous solutions. Arab. J. Chem. 2020, 13, 6510–6522. [Google Scholar] [CrossRef]
- El-Shazly, E.A.A.; Dakroury, G.A.; Someda, H.H. Kinetic and isotherm studies for the sorption of 134Cs and 60Co radionuclides onto supported titanium oxide. J. Radioanal. Nucl. Chem. 2021, 330, 127–139. [Google Scholar] [CrossRef]
- Ho, Y.S.; Mckay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Javadian, H. Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution. J. Ind. Eng. Chem. 2014, 20, 4233–4241. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Dovhyi, I.I.; Tokar, E.A.; Tananaev, I.G. Physical and chemical regularities of cesium and strontium recovery from the seawater by sorbents of various types. J. Radioanal. Nucl. Chem. 2021, 330, 1101–1111. [Google Scholar] [CrossRef]
- Maslova, M.; Mudruk, N.; Ivanets, A.; Shashkova, I.; Kitikova, N. A novel sorbent based on Ti-Ca-Mg phosphates: Synthesis, characterization, and sorption properties. Environ. Sci. Pollut. Res. 2020, 27, 3933–3949. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. J. Mol. Liq. 2019, 277, 646–648. [Google Scholar] [CrossRef]
- Chabani, M.; Amrane, A.; Bensmaili, A. Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chem. Eng. J. 2006, 125, 111–117. [Google Scholar] [CrossRef]
- Lakhdhar, I.; Belosinschi, D.; Mangin, P.; Chabot, B. Development of a bio-based sorbent media for the removal of nickel ions from aqueous solutions. J. Environ. Chem. Eng. 2016, 4, 3159–3169. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Samodurov, A.S.; Chukharev, A.M.; Kazakov, D.A. Basic Regularities of Vertical Turbulent Exchange in the Mixed and Stratified Layers of the Black Sea. Phys. Oceanogr. 2021, 28, 405–422. [Google Scholar] [CrossRef]
- Orekhova, N.A. Nutrients Dynamics in the Surface Waters of the Black Sea. Phys. Oceanogr. 2021, 28, 660–676. [Google Scholar] [CrossRef]
CNaOH, % | Parameter | Fe-EGSF | Fe-SF | ||
---|---|---|---|---|---|
P | Be | P | Be | ||
10 | Kd, mL/g | 454 | 161 | 4100 | 1140 |
R, % | 81.9 | 61.7 | 97.6 | 91.9 | |
q, mg/g | 0.0074 | 0.0160 | 0.0088 | 0.0238 | |
20 | Kd, mL/g | 587 | 210 | 1450 | 402 |
R, % | 85.4 | 67.7 | 93.5 | 80.1 | |
q, mg/g | 0.0077 | 0.0175 | 0.0085 | 0.0207 | |
30 | Kd, mL/g | 915 | 359 | 726 | 251 |
R, % | 90.1 | 78.2 | 87.9 | 71.5 | |
q, mg/g | 0.0082 | 0.0203 | 0.0080 | 0.0185 | |
40 | Kd, mL/g | 1700 | 653 | 521 | 289 |
R, % | 94.4 | 86.7 | 83.9 | 74.3 | |
q, mg/g | 0.0085 | 0.0225 | 0.0076 | 0.0192 |
CNaOH, % | P | Be | ||||
---|---|---|---|---|---|---|
Kd, mL/g | R, % | q, mg/g | Kd, mL/g | R, % | q, mg/g | |
10 | 5730 | 98.3 | 0.0094 | 648 | 86.6 | 0.0224 |
20 | 61,500 | 99.8 | 0.0095 | 735 | 88.0 | 0.0228 |
30 | 7080 | 98.6 | 0.0094 | 521 | 83.9 | 0.0217 |
40 | 3610 | 97.3 | 0.0093 | 360 | 78.3 | 0.0203 |
Element | Sorbent | Intraparticle Diffusion | Pseudo First Order | Pseudo Second Order | Elovich Model | qe, exp, mg/g | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KI, mg/g∙h0.5 | c, mg/g | r2 | K1, h−1 | ge, mg/g | r2 | K2, g/mg∙h | ge, mg/g | r2 | α, g/mg∙h | β, g/mg | r2 | |||
P | Fe-NH | 0.0004 | 0.0088 | 0.975 | 0.096 | 0.0032 | 0.906 | 89.8 | 0.0115 | 0.999 | 1410 | 1670 | 0.981 | 0.0114 |
Fe-EGSF | 0.0006 | 0.0084 | 0.892 | 0.215 | 0.0095 | 0.775 | 88.2 | 0.0120 | 0.999 | 10.2 | 1110 | 0.982 | 0.0117 | |
Fe-SF | 0.0006 | 0.0084 | 0.892 | 0.108 | 0.0030 | 0.998 | 106 | 0.0119 | 0.999 | 61.5 | 1250 | 0.982 | 0.0118 | |
Fe-H | 0.0007 | 0.0088 | 0.797 | 0.122 | 0.0034 | 0.965 | 104 | 0.0129 | 1.00 | 3.28 | 909 | 0.940 | 0.0126 | |
Al2O3 | 0.0005 | 0.0076 | 0.848 | 0.203 | 0.0073 | 0.788 | 107 | 0.0107 | 0.999 | 9.43 | 1250 | 0.980 | 0.0105 | |
Be | Fe-NH | 0.0011 | 0.0137 | 0.994 | 0.078 | 0.0082 | 0.927 | 23.2 | 0.0224 | 0.998 | 4.06 | 556 | 0.954 | 0.0212 |
Fe-EGSF | 0.0014 | 0.0127 | 0.968 | 0.092 | 0.0102 | 0.960 | 25.9 | 0.0216 | 0.998 | 0.627 | 435 | 0.983 | 0.0217 | |
Fe-SF | 0.0011 | 0.0167 | 0.942 | 0.095 | 0.0048 | 0.957 | 35.3 | 0.0242 | 0.999 | 12.5 | 526 | 0.984 | 0.0238 | |
Fe-H | 0.0403 | 0.0079 | 0.840 | 43.6 | 0.0453 | 0.996 | 3040 | 0.0241 | 0.999 | 16.7 | 313 | 0.698 | 0.0233 | |
Al2O3 | 0.0007 | 0.0181 | 0.941 | 0.105 | 0.0084 | 0.971 | 62.9 | 0.0225 | 0.999 | 15,400 | 909 | 0.998 | 0.0223 |
Element | Sorbent | Langmuir Isotherm | Freundlich Isotherm | Dubinin–Radushkevich Isotherm | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
gm, mg/g | KL, L/mg | r2 | KF, mg/g | n | r2 | gm, mg/g | β, mol2/kJ2 | E, kJ/mol | r2 | ||
P | Fe-NH | 0.035 | 39.3 | 0.995 | 0.040 | 3.10 | 0.888 | 0.050 | 0.0043 | 10.8 | 0.946 |
Fe-EGSF | 0.111 | 38.8 | 0.999 | 0.195 | 2.14 | 0.896 | 0.218 | 0.0055 | 9.53 | 0.957 | |
Fe-SF | 0.126 | 34.7 | 0.999 | 0.260 | 1.95 | 0.908 | 0.273 | 0.0059 | 9.21 | 0.961 | |
Fe-H | 0.425 | 6.02 | 0.997 | 1.40 | 1.28 | 0.884 | 1.96 | 0.0100 | 7.07 | 0.951 | |
Al2O3 | 0.030 | 20.6 | 0.999 | 0.034 | 2.76 | 0.904 | 0.046 | 0.0052 | 9.81 | 0.958 | |
Be | Fe-NH | 0.096 | 7.48 | 0.999 | 0.073 | 3.47 | 0.886 | 0.105 | 0.0080 | 7.91 | 0.979 |
Fe-EGSF | 0.304 | 2.28 | 0.999 | 0.192 | 1.78 | 0.956 | 0.349 | 0.0146 | 5.85 | 0.998 | |
Fe-SF | 0.392 | 3.04 | 0.999 | 0.290 | 1.75 | 0.948 | 0.471 | 0.0133 | 6.13 | 0.997 | |
Fe-H | 0.712 | 2.24 | 0.999 | 0.506 | 1.50 | 0.962 | 0.871 | 0.0148 | 5.81 | 0.995 | |
Al2O3 | 0.081 | 14.3 | 0.998 | 0.067 | 4.56 | 0.842 | 0.088 | 0.0059 | 9.21 | 0.955 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezhin, N.A.; Frolova, M.A.; Kozlovskaia, O.N.; Slizchenko, E.V.; Shibetskaia, I.G.; Tananaev, I.G. Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III). Processes 2022, 10, 2010. https://doi.org/10.3390/pr10102010
Bezhin NA, Frolova MA, Kozlovskaia ON, Slizchenko EV, Shibetskaia IG, Tananaev IG. Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III). Processes. 2022; 10(10):2010. https://doi.org/10.3390/pr10102010
Chicago/Turabian StyleBezhin, Nikolay A., Mariya A. Frolova, Ol’ga N. Kozlovskaia, Evgeniy V. Slizchenko, Iuliia G. Shibetskaia, and Ivan G. Tananaev. 2022. "Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III)" Processes 10, no. 10: 2010. https://doi.org/10.3390/pr10102010
APA StyleBezhin, N. A., Frolova, M. A., Kozlovskaia, O. N., Slizchenko, E. V., Shibetskaia, I. G., & Tananaev, I. G. (2022). Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III). Processes, 10(10), 2010. https://doi.org/10.3390/pr10102010