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Abstract: The search for novel highly effective materials with target properties for different elec-
trochemical purposes is active for now. Ceramic materials with high levels of ionic conductivity
can be applied as electrolytic materials in solid oxide fuel cells and in electrolyzers. Layered per-
ovskites are a novel class of ionic conductors demonstrating almost-pure proton transportation at
mid-temperatures. Gadolinium-doped ceramic materials based on layered perovskite BaLa2In2O7

were obtained and investigated for the first time in this study. The effect of the dopant concentrations
on the hydration processes and on ionic conductivity was revealed. It was shown that compositions
0 ≤ x ≤ 0.15 of BaLa2–xGdxIn2O7 exhibited proton conductivity when under wet air and at mid-
temperatures (lower than ~450 ◦C). Gadolinium doping led to an increase in the conductivity values
up to an order of magnitude of ~0.5. The protonic conductivity of the most conductive composition
BaLa1.85Gd0.15In2O7 was 2.7·10−6 S/cm at 400 ◦C under wet air. The rare earth doping of layered
perovskites is a prospective approach for the design of ceramics for electrochemical devices for
energy applications.

Keywords: BaLa2In2O7; layered perovskite; Ruddlesden-Popper structure; proton conductivity

1. Introduction

The search of novel highly effective materials with target properties for different
electrochemical purposes is active for now. One of the main goals of modern humanity
is the creation of highly effective, low-cost, eco-friendly and safe energy sources [1–3].
Hydrogen energy perfectly satisfies these characteristics, and its development is now a
very high priority [4–7]. For full function in hydrogen energy systems, the creation of
devices for the production, storage and transportation of hydrogen is required [8–10].
Devices such as protonic ceramic electrolysis cells and protonic ceramic fuel cells use
electrochemical technologies to obtain hydrogen and for clean energy production [11–16].
Ceramic materials with a high level of ionic conductivity can be applied as electrolytic
materials in solid oxide fuel cells and in electrolyzers [17–23]. The proton-conducting
materials used for these purposes must have a high chemical resistance to carbon dioxide
and water vapor and must exhibit high values of proton conductivity at the same time.
Achieving a combination of all these characteristics in one material is a difficult task, so the
material search continues.

Hexagonal perovskites [24,25] and layered perovskites [26,27] have been studied as
proton-conducting materials in recent years. Layered perovskites may be represented by
the formula AA’nBnO3n+1, where A is a bivalent metal (alkali-earth metal), A’ is a trivalent
metal (rare-earth metal) and B is a trivalent metal (indium, scandium) with a smaller
ionic radius compared with the radius of the A’ cation. The protonic conductivities of
these materials, such as BaNdInO4 [28–32], SrLaInO4 [33–37], BaNdScO4 [38], BaLaInO4, is
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realized due to the possibility of dissociative water intercalation into the interlayer space of
the layered structure. The monolayer barium-lanthanum indate BaLaInO4 was described as
a nearly pure proton conductor below 400 ◦C, and an increase in the conductivity values up
to 1.5 orders of magnitude caused by heterovalent [39–42] and isovalent [43–46] doping was
revealed. The two-layer composition BaLa2In2O7 of this homologous series AA’nBnO3n+1
was also described as a protonic conductor [47]. The possibility of water uptake was proved,
and the use of the acceptor-doping strategy made it possible to significantly increase the
proton conductivity [48–50]. However, the isovalent-doping strategy for the modification of
the structure and transportation properties has not been applied to the two-layer perovskite
BaLa2In2O7 yet. In this work, gadolinium-doped ceramic materials based on the layered
perovskite BaLa2In2O7 were obtained and investigated for the first time. The effect of the
dopant concentrations on the hydration processes and on ionic conductivity was revealed.

2. Materials and Methods

The samples of BaLa2–xGdxIn2O7 were synthesized using solid state method. The
starting reagents BaCO3, La2O3, In2O3 and Gd2O3 were used. The final temperature of
calcination was 1300 ◦C.

The XRD investigations were performed using a Bruker D8 Advance Cu Kα diffrac-
tometer (step of 0.01◦, scanning rate of 0.5◦/min). The thermogravimetry (TG) was per-
formed using STA 409 PC NETZSCH analyzer. The heating of initially hydrated samples
was performed in the temperature range of 40–1100 ◦C at the rate of 10 ◦C/min under a
flow of dry Ar. The hydrated samples were obtained during slow cooling (1 ◦C/min) from
1100 to 150 ◦C under a flow of wet Ar.

The electrical conductivity was measured using impedance spectrometer Z-1000P,
Elins, RF. The investigations were performed from 1000 to 200 ◦C with 1◦/min cooling rate
under dry air or dry Ar conditions. The dry gas (air or Ar) was produced by circulating the
gas through P2O5 (pH2O = 3.5·10−5 atm). The wet gas (air or Ar) was obtained by bubbling
the gas at room temperature first through distilled water and then through saturated
solution of KBr (pH2O = 2·10−2 atm).

3. Results

The phase attestation of the solid solution of BaLa2–xGdxIn2O7 was performed us-
ing the XRD method. It was shown that the compositions at the dopant concentrations
0 ≤ x ≤ 0.15 were in a single phase and were isostructural to the matrix composition
BaLa2In2O7 (Figure 1a). The samples from the solid solution’s homogeneity region had a
tetragonal symmetry and belonged to the space group P42/mnm. The XRD-patterns of the
obtained compositions are presented in Figure 1b–d. Table 1 contains the lattice parameters
and unit cell volumes of the compositions.

As can be seen, the introduction of an ion with a slightly smaller ionic radius
(rLa3+ = 1.216 Å; rGd3+ = 1.107 Å [51]) led to a decrease in lattice parameter a but also to
an increase in lattice parameter c (Figure 1e). Therefore, the unit cell volume almost did
not change. It was obvious that the reason for these changes was the interatomic distance
during doping, which is not only the difference in the ionic radii of the ions but also the
difference in their electronegativity. The electronegativities of lanthanum and gadolinium
were different (χLa = 1.10; χGd = 1.20 [52]), which caused the occurrence of additional
repulsion effects between these cations when in the same crystallographic positions of the
crystal lattice. This could be probable because of the increase in the c lattice parameter
during doping. It should be noted that the same increase in the lattice parameters during
gadolinium doping occurred for the monolayer composition BaLaInO4 [45].
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Table 1. The lattice parameters and unit cell volumes of investigated compositions of
BaLa2–xGdxIn2O7.

Composition a, Å c, Å V, Å3

BaLa2In2O7 5.914(9) 20.846(5) 729.33(6)
BaLa1.95Gd0.05In2O7 5.914(3) 20.858(6) 729.61(1)
BaLa1.9Gd0.1In2O7 5.913(5) 20.862(4) 729.54(7)

BaLa1.85Gd0.15In2O7 5.911(7) 20.863(1) 729.00(0)

Processes 2022, 10, x FOR PEER REVIEW 3 of 9 
 

 

It was obvious that the reason for these changes was the interatomic distance during dop-

ing, which is not only the difference in the ionic radii of the ions but also the difference in 

their electronegativity. The electronegativities of lanthanum and gadolinium were differ-

ent (χLa = 1.10; χGd = 1.20 [52]), which caused the occurrence of additional repulsion ef-

fects between these cations when in the same crystallographic positions of the crystal lat-

tice. This could be probable because of the increase in the c lattice parameter during dop-

ing. It should be noted that the same increase in the lattice parameters during gadolinium 

doping occurred for the monolayer composition BaLaInO4 [45]. 

 

Figure 1. (a) Crystal structure of BaLa2In2O7 and (f) the concentration dependencies of the lattice 

parameters. XRD-patterns of (b) BaLa2In2O7, (c) BaLa1.95Gd0.05In2O7, (d) BaLa1.9Gd0.1In2O7 and (e) 

BaLa1.85Gd0.15In2O7 compositions. 

The possibility of water uptake from the gas phase was investigated using the ther-

mogravimetry (TG) method. The TG-curves for all of the investigated samples had the 

same shape, and the results for the composition BaLa1.9Gd0.1In2O7 are presented in Figure 

2 as an example. Water loss occurred in several steps and ended at 600–700 °C. The mass 

spectroscopy (MS) results (the green line in Figure 2) confirmed the TG-data. The values 

of the water uptake of the doped compositions were in the range 0.10–0.13 mol per for-

mula unit, which was comparable to the water uptake of the undoped composition (0.17 

mol [47]). 

We could suppose that very small changes in the unit cell volume that occurred dur-

ing doping caused these small changes in the water uptake. Despite the relatively small 

water uptake, the possibility for the dissociative incorporation of water into the crystal 

lattice of the gadolinium-doped compositions indicated the possibility of protonic 

transport. The interaction of the investigated compositions with water molecules can be 

described as: 

BaLa2–𝑥Gd𝑥In2O7 + 
𝑦

2
H2O → BaLa2–𝑥Gd𝑥In2O

7−
𝑦
2

(OH)𝑦 (1) 

Figure 1. (a) Crystal structure of BaLa2In2O7 and (f) the concentration dependencies of the lattice
parameters. XRD-patterns of (b) BaLa2In2O7, (c) BaLa1.95Gd0.05In2O7, (d) BaLa1.9Gd0.1In2O7 and
(e) BaLa1.85Gd0.15In2O7 compositions.

The possibility of water uptake from the gas phase was investigated using the thermo-
gravimetry (TG) method. The TG-curves for all of the investigated samples had the same
shape, and the results for the composition BaLa1.9Gd0.1In2O7 are presented in Figure 2
as an example. Water loss occurred in several steps and ended at 600–700 ◦C. The mass
spectroscopy (MS) results (the green line in Figure 2) confirmed the TG-data. The values of
the water uptake of the doped compositions were in the range 0.10–0.13 mol per formula
unit, which was comparable to the water uptake of the undoped composition (0.17 mol [47]).
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Figure 2. Thermogravimetry (TG) and mass spectrometry (MS) results for the composition
BaLa1.9Gd0.1In2O7.
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We could suppose that very small changes in the unit cell volume that occurred during
doping caused these small changes in the water uptake. Despite the relatively small water
uptake, the possibility for the dissociative incorporation of water into the crystal lattice of
the gadolinium-doped compositions indicated the possibility of protonic transport. The
interaction of the investigated compositions with water molecules can be described as:

BaLa2–xGdxIn2O7 +
y
2

H2O→ BaLa2–xGdxIn2O7− y
2
(OH)y (1)

The electrical conductivity values were obtained using the impedance spectroscopy
method in the atmospheres with controlled humidity (pH2O) and an oxygen partial pres-
sure (pO2). Figure 3 represents the temperature dependencies of the conductivities obtained
under dry air (Figure 3a), dry Ar (Figure 3b), wet air (Figure 3c) and wet Ar (Figure 3d).
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Figure 3. The temperature dependencies of conductivities for the compositions of BaLa2–xGdxIn2O7

at x = 0 (1), x = 0.05 (2), x = 0.10 (3) and x = 0.15 (4) obtained under (a) dry air, (b) dry Ar, (c) wet air
and (d) wet Ar.

As can be seen, an increase in the gadolinium concentration led to an increase in
the electrical conductivity regardless of the values of pH2O and pO2. The concentration
dependencies (Figure 4a) were well illustrated with this regularity. The effect of the changes
in the pH2O and pO2 on the conductivity values at the same dopant concentrations is
presented in Figure 4b. The values obtained under dry Ar (pO2 ~ 10−5 atm) were lower
than those obtained under dry air (pO2 = 0.21 atm), which indicated the mixed oxygen-hole
nature of the conductivity. The effect of the humidity changes was more visible in the Ar
atmosphere, where the conductivity values under wet conditions (pH2O = 2·10−2 atm) were
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significantly increased compared with those under dry conditions (pH2O = 3.5·10−5 atm).
This indicated the appearance of a proton contribution to the conductivity.
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Figure 4. (a) The concentration dependencies and (b) temperature dependencies of conductivities
for the compositions of BaLa2–xGdxIn2O7 obtained under different conditions. (c) The temperature
dependencies and (d) concentration dependency of protonic conductivities of the compositions of
BaLa2−xGdxIn2O7 with x = 0 (1), x = 0.05 (2), x = 0.10 (3) and x = 0.15 (4) and for the composition
BaLa1.7Ba0.3In2O6.85 (5).

The protonic conductivity can be calculated as the differences between the ionic
conductivities under wet and dry conditions, i.e., between conductivities obtained under
wet and dry Ar. The temperature dependencies of the protonic conductivities of the
BaLa2–xGdxIn2O7 compositions are presented in Figure 4c. Doping led to an increase in
the conductivity values (Figure 4d) up to an order of magnitude of ~ 0.5 for the mostly
conductive composition BaLa1.85Gd0.15In2O7. In general, this increase in the electrical
conductivity values was due to the increase in the concentration of the current carriers and
their mobility. In the case of oxygen-ionic conductivity, the concentration of the oxygen
point defects did not change during the gadolinium doping of the lanthanum sublattice
(isovalent doping). However, the oxygen-ionic conductivity values (the conductivities
obtained under dry Ar) increased with the increase of the dopant concentrations. The
most reasonable cause was the increase in the oxygen mobility with the increase of the
gadolinium content. The lattice parameter c increased, which indicated the increase in the
interlayer space in the crystal structure, so the free migration volume increased, which
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could facilitate ion transportation, i.e., the increase in the oxygen mobility. In the case of
the protonic conductivity, the water uptake (i.e., the proton concentration) was almost the
same for all the compositions of BaLa2–xGdxIn2O7; thus, the main reason for the protonic
conductivity increase during doping was the increase in the proton mobility. Due to the
fact that proton transportation is carried out by the jumping of protons onto oxygen atoms,
an increase in the oxygen mobility should have led to the increase in the protonic mobility.

The comparison of the protonic conductivities of the investigated composition ob-
tained by isovalent doping and of the acceptor-doped composition BaLa1.7Ba0.3In2O6.85
is presented in Figure 4c. The composition BaLa1.7Ba0.3In2O6.85 was chosen as the most
proton-conductive compound obtained by the heterovalent doping of the matrix compo-
sition BaLa2In2O7 [48]. As can be seen, the protonic conductivity values for the acceptor-
doped composition were higher than those for the isovalent-doped compositions by about
one order of magnitude. Because the values of the water uptake for the acceptor-doped
(~0.2 mol) and isovalent-doped (~0.13 mol) compositions were comparable to each other,
we could suggest that the different proton mobilities were the most reasonable explanation
for the significant difference in the protonic conductivity values. The lattice parameter
c (20.954(9) Å) and the unit cell volume (743.50(2) Å3) of the acceptor-doped composi-
tion BaLa1.7Ba0.3In2O6.85 were much larger than those of the isovalent-doped composition
BaLa1.85Gd0.15In2O7 (20.863(1) Å and 729.00(0) Å3). Obviously, this increase provided the
facilitation of proton transportation, which led to the increase in the protonic mobility
and the conductivity. We suggested that choosing the isovalent dopant with a larger ionic
radius than lanthanum would increase the conductivity more significantly.

Summarizing all the obtained results, we could say that the isovalent-doping strategy
of the layered perovskite BaLa2In2O7 was a successful way to improve the proton con-
ductivity. Gadolinium doping led to an increase in the lattice parameter c, which led to
an increase in the ionic transportation in the layered structure. The protonic conductiv-
ity increased with the increasing dopant content. The protonic conductivity of the most
conductive composition BaLa1.85Gd0.15In2O7 was 2.7·10−6 S/cm at 400 ◦C under wet air.

4. Conclusions

The isovalent-doping strategy for the modification of the structure and transportation
properties of the two-layer perovskite BaLa2In2O7 was applied for the first time. The
gadolinium-doped ceramic materials BaLa2–xGdxIn2O7 were obtained and investigated.
The effect of the dopant concentrations on the hydration processes and the ionic conductiv-
ity was revealed. It was shown that all of the compositions exhibited proton conductivity
under wet air and at mid-temperatures (lower than ~450 ◦C). Gadolinium doping led to
an increase in the conductivity values up to an order of magnitude of ~0.5. The protonic
conductivity of the most conductive composition BaLa1.85Gd0.15In2O7 was 2.7·10−6 S/cm
at 400 ◦C under wet air. The rare earth doping of layered perovskites is a prospective
approach for the design of ceramics for electrochemical devices for energy applications.
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