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Abstract: Despite intensive research over the last three decades, it has not yet been possible to
bring an effective vaccine against human immunodeficiency virus (HIV) and the resulting acquired
immunodeficiency syndrome (AIDS) to market. Virus-like particles (VLP) are a promising approach
for efficient and effective vaccination and could play an important role in the fight against HIV. For
example, HEK293 (human embryo kidney) cells can be used to produce virus-like particles. In this
context, given the quality-by-design (QbD) concept for manufacturing, a digital twin is of great
importance for the production of HIV-Gag-formed VLPs. In this work, a dynamic metabolic model
for the production of HIV-Gag VLPs was developed and validated. The model can represent the
VLP production as well as the consumption or formation of all important substrates and metabolites.
Thus, in combination with already described process analytical technology (PAT) methods, the final
step towards the implementation of a digital twin for process development and design, as well as
process automation, was completed.

Keywords: digital twin (DT); advanced process control (APC); quality-by-design (QbD); process
analytical technology (PAT); real-time-release testing (RTRT); human embryonic kidney 293 cells
(HEK293); human immunodeficiency virus (HIV); virus-like particles (VLPs)

1. Introduction
1.1. HIV

The human immunodeficiency virus (HIV) is responsible for the acquired immunod-
eficiency syndrome (AIDS) and causes about two million deaths per year, which is why
intensive research has been conducted within the last three decades to develop a vaccine.
However, clinical trials revealed disappointing efficacies, and yet no vaccine against HIV
has been approved by regulatory authorities [1].

In particular, a major challenge is the genetic and phenotypic variability of HIV type 1
(HIV-1), as it facilitates evasion from both antibody and T-cell responses [2]. Reasons for
this are the diversity of ornamental HIV-1 strains, the frequent occurrence of mutations,
and the rapid spread of intracellular DNA reservoirs. The latter remains undetectable to
the immune system for a long time [3].

In general, several vaccine classes, which can be divided into live and inactivated
vaccines, are available for vaccine development. Despite some advances in the tools to
induce antibody and T-cell responses, live attenuated vaccines and attenuated natural
infections have been the only partially successful approaches against HIV-1 to date [4,5]. A
prerequisite for a preventive vaccine against HIV is that it elicits the immune response in
the form of the generation of T cells, which prevent the spread of the virus with almost no
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time delay after infection. A vaccine that induces both a broadly neutralizing antibody and
a T-cell response could be a possible approach [6].

Virus-like particles (VLPs) have many of the same desirable properties as live attenu-
ated vaccines while being significantly less risk-associated and have shown promise as an
approach to antigen presentation [7–9]. The reason for the high safety profile is the absence
of any viral genome or components of it, making VLPs replication-incompetent—thus,
avoiding the risk of infecting the vaccinees—and also rendering viral inactivation obso-
lete [10]. The efficient uptake of VLPs, caused by their repetitive and particulate structure,
by antigen-representing cells (APCs) stimulates both antibody and T-cell responses [11,12].
This is already being exploited for VLP-utilizing vaccination against human papillomavirus
(HPV), which is considered, amongst others, a major trigger of cervical carcinoma in
women [13]. Another relatively new but promising vaccine class is so-called virus-like
vaccines (VLV), which are a combination of virus-like particles and replication-deficient
viral vectors [14].

1.2. QbD-Based Process Development

The development of efficient manufacturing processes for biopharmaceuticals is in-
creasingly supported by in silico methods [15–17]. By applying mechanistic, physico-
chemical-based process models, wet-lab experiments can be reduced, and more efficient
process development can be achieved [18,19]. In this context, the quality-by-design (QbD)
concept should be the focus of the entire process development and optimization [20]
(Figure 1). Consistent implementation of the principles captured in ICH Q8 to Q12 guide-
lines [21–26] reveals knowledge-based causality between critical process parameters and
product quality and ensures consistent product quality in manufacturing by adhering to
a predefined design space [27,28]. In order to span the design space, the quality target
product profile (QTTP) is first defined, from which the critical quality attributes (CQAs)
emerge [29,30]. In process development, classical process parameters such as productivity
are defined as CQAs in addition to toxicity, bioavailability, etc. [31]. A risk analysis can then
be performed, which can be qualitative in the form of an Ishikawa analysis or quantitative
by means of an impact ranking [29,30,32]. The latter also allows a decision to be made as to
whether a parameter should be investigated univariately or multivariately [29,30]. This
investigation of the parameters to arrive at the design space is performed via a statistical
Design of Experiments (DoE). In addition to experimental process development, a DoE
can also be used for model validation, firstly to determine the influence of the investigated
factors on the CQAs and secondly to determine a design space [33].

Operation within the design space must be ensured by robust process control. For this
purpose, classical control approaches such as PID controllers can be used. However, newer
approaches, such as Advanced Process Control (APC) in the form of model-based control,
are more efficient and offer the advantage that predictive process control can be ensured
(Schmidt et al., 2022). The latter is made possible by the fact that in real time, through the
use of process analysis technologies (PAT), information about the critical process parameters
can be obtained continuously. This enables real-time release testing (RTRT), eliminating
bottlenecks in the production of critical biologics [34]. Furthermore, PAT, in combination
with the gained and documented process understanding, enables continuous improvement
of the process based on new process data [35,36].
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Based on the risk assessment, a design space can be spanned either by means of a DoE or by mod-

eling approaches. The design space leads to a control strategy, which is assisted by PAT. Further-

more, the implementation of a control strategy allows continuous process optimization [37]. 
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between simple digital models and full digital twins is based on the process depth as well 
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ent levels of a digital model, from the time-independent steady-state model to the predic-

tive digital twin that receives data from the process in real time and can control it based 

on the model [38]. 
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Figure 1. Workflow of model validation based on QbD-based process development. After defining
the QTTP and CQAs, a risk assessment of the influence of the defined CQAs should be performed.
Based on the risk assessment, a design space can be spanned either by means of a DoE or by modeling
approaches. The design space leads to a control strategy, which is assisted by PAT. Furthermore, the
implementation of a control strategy allows continuous process optimization [37].

In order to be able to realize the points mentioned above, such as continuous monitoring,
control, and optimization of the process, a digital twin is required. The distinction between
simple digital models and full digital twins is based on the process depth as well as the extent
of information transfer with the physical process. Figure 2 shows the different levels of a
digital model, from the time-independent steady-state model to the predictive digital twin
that receives data from the process in real time and can control it based on the model [38].
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Figure 2. Levels of a digital twin depending on model depth and the amount of information
exchanged with the physical process. From a simple steady-state model to a fully developed digital
twin for model-based control [39].

1.3. Model Validation

The prerequisite for the use of the model as a digital twin in the QbD-based process
is the quantitative and distinctive model validation (Figure 3) [40]. First, the task and
application of the dynamic metabolic model must be defined. A verification follows in
which it is shown that the model can correctly reproduce processes such as substrate
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consumption, cell growth, and VLP formation. Due to the high proportion of Monod-
based formation and consumption, special effort must be made to correctly implement
stoichiometry. If the results are plausible, the sensitivity is investigated. For this purpose,
a DoE can be performed. By means of statistical evaluation, rough design spaces can be
generated. For the developed process model to be used as a digital twin for closed-loop
process control, it must represent the process sufficiently accurately and precisely. Therefore,
the model failures must correspond sufficiently to the real target variables measured in the
process (accuracy). Furthermore, robust control requires that the predictions are precise.
The final step of model validation is to show that the model in the experimental set under
study is at least as accurate and precise as the observation in the physical process [16,41].
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Figure 3. Decision tree for a process model validation according to Sixt et al. Applying this workflow
allows a quantitative evaluation of the model quality based on mechanistic and statistical decision
criteria. A rigorous execution of the procedure leads to a distinctively and quantitatively validated
rigorous process model [39,40].
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The aim of this study was to develop a predictive metabolic model for the production of
HI-VLPs in HEK293 cells for the process developed and optimized by Helgers et al. [19] that
meets the qualitative and quantitative requirements of QbD-compliant model validation
and is consequently suitable as both a predictive process model and a basis for a digital
twin. For this purpose, the model was first verified to show that it can sufficiently accurately
predict the experimental courses. Then, the main influencing factors were identified using
sensitivity analysis, and finally, the accuracy of the experimental data and the precision of
the model were verified.

2. Materials and Methods

The process model was adapted and validated on data from previously published
cultivations [19]. HIV-Gag VLPs were produced on a laboratory scale in 2 L glass bioreactors
(Sartorius, Göttingen, Germany). For this purpose, 1 L of SMD medium (CellcaCHO
Expression Platform, Sartorius) was inoculated with approximately 0.5 × 106 cells/mL.
The temperature was 37 ◦C, and the pH was controlled to 7.1 by adding 1 M carbonate
solution or by gassing with CO2 as acid. The dissolved oxygen concentration was kept
constant at 60% air saturation by gassing with 150 mL/min of air and adding pure oxygen
if needed. A segmented three-blade impeller with a blade pitch of 30◦ was used as the
stirrer, which was operated constantly at 433 rpm. An in situ turbidity probe (Transmission,
880 nm, HiTec Zang GmbH, Herzogenrath, Germany) was used for real-time quantification
of total cell concentration during bioreactor cultures. After an initial batch phase of typically
three days, different feeding strategies were tested. The results shown here depict feeding
with reduced glucose concentration. For this purpose, HEK FS (XCell, Bielefeld, Germany)
was added from the third day onwards so that a glucose concentration of 3–3.5 g/L was
achieved after feeding, whereby the glucose concentration in the feed was 40 g/L. Initial
cultivations have shown that reduced glucose concentration is positive for productivity
and maximum achievable live cell number concentration [19]. Cultivation was continued
for approximately 12 days, feeding once daily as described above.

Samples were taken once daily, each time before feeding, and live and total cell num-
ber concentrations were determined by Trypan blue method, using a Cedex XS (Roche,
Basel, Switzerland). Subsequently, the sample was centrifuged at 500× g for 5 min to
achieve separation of cells while minimizing product loss. Samples for subsequent analysis
of substrates or metabolites were then filtered through a 0.2 µm filter, whereas samples
for product analysis were not treated further. Glucose and lactate concentrations were
determined in duplicate using LaboTRACE Compact (TRACE Analytics GmbH, Braun-
schweig, Germany). The amino acid concentration was measured by RP chromatography
(InfinityLab Poroshell HPH-C18; 3.0 × 100 mm; 2.7 µm; Agilent Technologies, Santa Clara,
CA, USA) and precolumn derivatization of amino acids with orthophthalic aldehyde (OPA)
reagent in basic medium. If necessary, samples were diluted beforehand to ensure complete
derivatization. The column was tempered to 40 ◦C for better separation. The product
concentration was determined by SEC.

3. Modelling
3.1. Process Model

All simulations were performed using Aspen Custom Modeler V12 (AspenTechnology
Inc., Bedford, MA, USA). A general mass balance model for stirred tank reactors served
as the basis for process modeling. This describes the temporal (t) change in mass (mi) of
component i by taking into account the inflowing (index in) and outflowing (index out)
concentrations (ci) as well as the reaction rates (ri).

dmi

dt
=

.
Vin · ciin −

.
Vout · ci ± ri · V (1)

The reaction rates were described by the equations given in the following section. For the
modeling of fed-batch cultivations performed here, the volumetric changes due to sampling
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and the addition of feed solution were taken into account, resulting in the volume (V) balance,
which is composed of the inlet (index in) and outlet (index out) volume flows (

.
V).

dV
dt

=
.

Vin −
.

Vout (2)

3.2. Modeling of the Intracellular Metabolism of HEK Cells

In general, therefore, for the reaction rate ri in Equation (1), the expression shown in
Equation (3), where v depends on whether the reaction is one without or with activation or
inhibition, the incoming v is described by one of the Equations (4)–(6). Here, stoichiometry
is taken into account by the stoichiometric coefficient αi.

For modeling the intracellular metabolism of HEK293F suspension cells, the model
for CHO DG44 cells published by Helgers et al. [42] was used as a starting point. The
model consists of multiplicative Michaelis–Menten equations, or variants derived from
them, representing the inhibition (Equation (5)) or activation (Equation (6)) of a reaction as
a consequence of an accumulation of activator ([A]) or inhibitor ([I]), respectively.

ri =
n

∑
i=1

αi · vi (3)

v =
vmax · [S]
KS + [S]

(4)

v =
vmax · [S]

KS ·
(

1 + [I]
KI

)
+ S

(5)

v =
vmax · [S] ·

(
1 + β·[A]

α·[KA ]

)
KS ·

(
1 + [A]

KA

)
+ [S] ·

(
1 + [A]

α·KA

) (6)

Ks, KA, and KI are the Michaelis–Menten constants for the substrate ([S]), activator
([A]), and inhibitor ([I]), respectively.

The specific growth rate µ was also formulated in terms of a multiplicative Monod
equation, taking into account the concentrations of glucose, glucose-6-phosphate, and
ribulose-5-phosphate as precursors of nucleotides, citrate as a precursor of lipids, and the
concentrations of all 20 proteinogenic amino acids. For each substrate ([Si]), a specific value
for the growth-related Monod constant (KSi ) was determined.

µ = µmax ·
n

∏
i=1

[Si]

KSi + [Si]
(7)

The maximum growth rate of HEK293F cells used here was determined from experi-
mental data and is 0.0282 ± 0.0033 h−1.

The model describes central metabolism and includes glycolysis as well as its activation
and inhibition, the formation and consumption of various substrates in the context of
abundance metabolism in connection with high glucose consumption rates, the citrate
cycle, and anaplerotic reactions of various amino acids. Glutamine and glutamic acid are
particularly noteworthy in this regard, as they play an important role as a carbon supplier
for the citrate cycle and as a nitrogen source in the metabolism of many animal cell lines.

Data for metabolite consumption and cellular composition were taken from the literature
and adjusted [43]. An average molecular mass of 107.5 g mol−1 was assumed for the proteins
composing the cells. The sequence was used to determine amino acid consumption for Gag
synthesis. It was also assumed that all lipids are derived from citrate in the citric acid cycle
and that nucleic acid synthesis proceeds as a lumped reaction from ribulose 5-phosphate
and glucose 6-phosphate. The requirement of ATP for biomass and product synthesis and a
conversion factor of 3.15 × 10−4 gDW 10−6 cells were also taken from the literature [44,45].
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The model was adapted to the new cell type according to the observed metabolic
phenotype as well as the altered product formation mechanism. Multiplicative Michaelis–
Menten kinetics was assumed for product formation, taking into account all amino acids
weighted by their proportion in the Gag protein, as well as citrate as a precursor of lipids.
Furthermore, the formation of virus-like particles by multimerization of Gag protein in
the host cell membrane was considered by an appropriate kinetic equation. Therefore, the
following changes were made to the initial model:

• SDHH was assumed to be reversible;
• Adjustment of the product formation mechanism;
• Stronger weighting of ammonium as an inhibitor of growth and inducer of cell death

since the cells used tolerate high lactate concentrations relatively well;
• Adjustment of several parameter values as detailed in Table 1.

Table 1. Modified parameters and new parameter values.

Parameter. Value Unit

KgrowthdNH4 3.38 × 105 mM

KAAMP/ATP 1.20 × 102 mM 10−6 cells

KmADP/ATP 3.40 × 10−3 mM 10−6 cells

KmATP 8.35 × 10−5 mM 10−6 cells

αAMP/ATP 2.43 × 10−4 -

βAMP/ATP 2.20 -

vAA to SUCmax 4.61 × 10−4 mM 10−6 cells h−1

vAK f ,max 1.43 × 10−7 mM 10−6 cells h−1

vAlaTA f ,max 2.17 × 10−4 mM 10−6 cells h−1

vAlaTAr,max 2.4 × 10−5 mM 10−6 cells h−1

vASTAmax 5.03 × 10−5 mM 10−6 cells h−1

vGlnTf ,max 5.15 × 10−4 mM 10−6 cells h−1

vGlnTr,max 7.92 × 10−6 mM 10−6 cells h−1

vHKmax 2.63 × 10−4 mM 10−6 cells h−1

vLDHmax 8.50 × 10−7 mM 10−6 cells h−1

vLDH f ,max 1.28 × 10−2 mM 10−6 cells h−1

vLDHr,max 6.78 × 10−4 mM 10−6 cells h−1

vleakmax 1.40 × 10−5 mM 10−6 cells h−1

vPGI f ,max 8.89 × 101 mM 10−6 cells h−1

vPGKmax 1.5 × 10−3 mM 10−6 cells h−1

vPKmax 4.00 × 10−4 mM 10−6 cells h−1

vrespmax 3.42 × 10−3 mM 10−6 cells h−1

vSDHH f ,max 8.50 × 10−6 mM 10−6 cells h−1

vSDHHr,max 3.10 × 10−6 mM 10−6 cells h−1
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Furthermore, the assumptions made for the initial model still apply [42]:

• Assumption of ideal mixing in the stirred tank reactor, i.e., homogeneous pH, temper-
ature, and concentration profile of chemical species in the liquid phase. Moreover, the
pH, pO2, and temperature were assumed as constant;

• The model is an unsegregated, structured model. This means that an “average cell”
was assumed to represent the entire cell population, and the phases of the cell cycle
were not considered;

• Limited the number of metabolites, where possible, and reasonable reaction path-
ways were lumped by only considering the main reaction of interest in the pathway,
representing a branch in a metabolic pathway, or that are taken up directly from the
medium into the cell. This helps to reduce model complexity without sacrificing the
predictive power of the metabolic model;

• Constant enzyme amounts: the maximum reaction rate of an enzyme-catalyzed reac-
tion depends on the enzyme amount. The enzyme amount depends on the transcrip-
tion and translation rates of the respective genes, which may be induced or inhibited
by the substrate and product concentrations and other influencing variables. To fully
elucidate such relationships, “omics” data are required, which were not available in
the context of this work. Thus, constant enzyme amounts were assumed in this model;

• New cells and virus-like particles were assumed to be directly formed from precur-
sors present in the cell (amino acids, citrate (representing lipids), and R5P (repre-
senting nucleotides);

• Components such as vitamins, trace elements, phospholipid precursors, growth fac-
tors, etc., were assumed to be present in sufficient amounts;

• The cell volume was assumed to be constant during the cultivation, i.e., the change in
concentration of intracellular substrates due to changes in cell volume were not considered;

• The composition of the cells was assumed to be constant.

For a digital twin, process parameters such as fluid dynamics and energy balance
are necessary for addition to the accurate description of all concentration profiles. These
form the basis for scale-up by accurately predicting non-ideality. In the work described
here, standardized laboratory equipment on a 1-L scale was used, in which dynamic fluid
imbalances do not play a significant role with respect to mixing and residence time behavior,
so non-ideal effects could be neglected here. Approaches to account for residence time and
energy balance non-idealities in stirred tank reactors of different scales are described in
detail in the literature, e.g., in [46].

The energy balance of the balance space investigated in this study includes the accu-
mulation as the difference between outgoing and incoming thermal energy (Equation (8),
with the density ρS and the volume Vs of the medium and its specific heat capacity cp) as

well as the power consumption by the stirrer (
.

QSt, Equation (9)). The ratio of flow resistance
to inertial force is represented by the Newton number (Ne). The power consumption of
the stirrer also depends on the rpm (n) and the diameter (dR) of the stirrer, as well as the
density of the medium. In order to be able to operate the bioreactor constantly at the ideal
temperature T of 37 ◦C, a temperature control via the bioreactor’s double jacket is necessary.
The heat supplied or dissipated here (

.
QCool) depends on both the heat transfer coefficient

kW and the exchange surface A (cf. Equation (10)).

ρS · cp · VS ·
dT
dt

=
.

QSt −
.

QCool (8)

.
QSt= Ne · n3 · dR · ρS (9)

.
QCool= kW · AM · ∆T (10)

A graphical illustration of the model can be seen in Figure 4.
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4. Model Parameter Determination

The parameter values determined for the model adapted to CHO DG44 were not able
to describe the cultivation processes for the HEK293 cells sufficiently well. Accordingly, the
values of various parameters had to be adjusted. Table 1 gives an overview of this.

Of the total 24 parameters that had to be adjusted, 18 parameters were maximum
reaction rates, 4 were Michaelis–Menten constants, and 2 were dimensionless parameters
that play a role in the regulation of glycolysis. This observation was consistent with
experience from the previous publication as well as the literature [45], where in each case, it
was found that the greatest sensitivities in the model emanate primarily from the maximum
reaction rates as well as the regulation of glycolysis.
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5. Model Validation
5.1. Model Verification

The first step in the model validation process was the verification of the model by
checking whether the predictions of the model were plausible (see Figure 3). The correct
implementation of the stoichiometry and syntax was checked, and the cell growth, product
formation, and substrate consumption were examined for errors (see Section 5.1.1). If
the plausibility of the model was given, the sensitivity of the influencing parameters on
the system was then examined and discussed in Section 5.1.2. This represents the second
decision criterion in the workflow. Monte Carlo simulations can be used to determine the
accuracy and precision of the model in Section 5.2.

5.1.1. Plausibility

The aim of the plausibility analysis is to qualitatively compare the simulation results
with experimental data. If the effect strengths and directions from the sensitivity analysis
are correct, qualitatively similar courses should appear in the simulation results and
the experimental data. Figure 5 shows the results of fed-batch cultivation as well as the
simulation results. Spikes in the simulation correspond to the concentration changes caused
by the daily addition of feed, starting from day three. Samples were taken before feed
addition, i.e., experimentally determined concentrations should intersect the simulation
results at their low points.
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(solid line) over the processing time in hours. Live cell count (VCD) in 1 × 106 cells/mL, the
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The model is able to predict well the concentration curves of live cell count (VCD),
VLP (product), glucose, lactate, asparagine, and glutamine concentration, as well as the
concentration curves of most amino acids. Moreover, the model is able to correctly predict
the switch in the metabolism towards lactate consumption because of limiting glucose
concentration after approximately 200 h of process time. The decrease in growth rate and
increased cell death after 250 and 300 h of process time, respectively, are correctly predicted
by the model. The decreased uptake rate of glucose and glutamine from this point is also
correctly predicted. The largest deviations between simulation and experiment are seen for
alanine, aspartic acid, and glutamic acid, but with the trend of increasing and decreasing
concentrations being correctly predicted. Only the decrease in the concentration of methionine
is not correctly predicted in its direction. With this exception, the model can be considered
plausible as methionine is not sensitive based on the OFAT plausibility studies.

5.1.2. Sensitivity

After the implementation and verification of the conceptual model, a sensitivity
study follows according to the model validation concept described above. The goal of the
sensitivity study was to quantify the effect sizes predicted by the model and the directions
in which the effects operate. One-factor-at-a-time (OFAT) and multiple-factors-at-a-time
studies were used as tools for sensitivity determination. The goal of OFAT studies is to
detect gross errors in the model in the form of unexpected effect sizes or directions. OFAT
studies are performed for parameters for which a low-risk value was identified in the
previous risk assessment. MFAT studies are conducted for those parameters that received a
high-risk value in the risk assessment. In order to detect and quantify interactions between
these parameters and to make the number of simulations be performed as efficiently as
possible, MFAT studies are performed within a statistical design of experiments (DoE).
As a decision criterion, the determined sensitivities are compared with already known,
comparable sensitivities for corresponding parameters, and empirical values of experienced
engineers are taken into account. For the MFAT studies, statistical quantities from the
evaluation of the DoE can also be included.

In this study, sensitivities were determined using a full factorial experimental design
with a total of 216 simulations. For this purpose, the concentrations of the medium used
were varied by ±50%. As an example, the statistical evaluation of the experimental design
with respect to the normalized product concentration is shown below. As can be seen in
Figure 6, the normalized HIV-Gag VLP concentration can be predicted with an R2 of >0.998
with a p-value of <0.0001 by the applied regression model for the DoE.
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Figure 7 shows the effect summaries determined in the evaluation of the DoE for the
15 parameters with the highest significance. It can be seen that the glucose concentration
has the greatest influence, followed by the concentrations of isoleucine, glutamic acid, and
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several other amino acids and their interaction. The effects all work in the positive direction,
i.e., a higher concentration should lead to a higher VLP concentration according to the
model prediction. Figure 8 graphically shows the influence of the two parameters with the
highest significance.

Processes 2022, 10, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 7. Effect summaries of DoE simulations of the normalized HIV-Gag VLP concentration. 

 

Figure 8. Contour plots for simulations of the normalized HIV-Gag VLP concentration depending 

on the Isoleucine and Glucose concentration (both depicted as normalized values). 

It is important to emphasize that these effects are not generally valid but apply to the 

specific conditions and the specific medium in the context of the process. Other process 

conditions, however, may lead to other significant effects. It should also be noted that the 

goal of DoE is not primarily to optimize the medium but rather to identify particularly 

sensitive components within the model. Once the model is validated, it can be used for 

the prediction of optimized cultivation conditions. 

In order to reach the last milestone in the model validation process, the model must 

be able to predict the cultivation process adequately, accurately, and precisely. 

5.2. Accuracy and Precision 

In addition to the main effects, optimized media concentrations can be determined 

from the DoE. These are used in the following to investigate the model accuracy using 30 

Monte Carlo simulations (cf. Figure 9). The robustness of the model prediction was 

examined by combining the random, normally distributed deviation of 5% of the media 

concentrations. This yields a confidence interval (t-test) of >95% with >99% certainty. The 

results of the model predictions deviate less than 15% from each other and can be assumed 

to be sufficiently accurate, thus fulfilling the criterion of model accuracy. 

Figure 7. Effect summaries of DoE simulations of the normalized HIV-Gag VLP concentration.

Processes 2022, 10, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 7. Effect summaries of DoE simulations of the normalized HIV-Gag VLP concentration. 

 

Figure 8. Contour plots for simulations of the normalized HIV-Gag VLP concentration depending 

on the Isoleucine and Glucose concentration (both depicted as normalized values). 

It is important to emphasize that these effects are not generally valid but apply to the 

specific conditions and the specific medium in the context of the process. Other process 

conditions, however, may lead to other significant effects. It should also be noted that the 

goal of DoE is not primarily to optimize the medium but rather to identify particularly 

sensitive components within the model. Once the model is validated, it can be used for 

the prediction of optimized cultivation conditions. 

In order to reach the last milestone in the model validation process, the model must 

be able to predict the cultivation process adequately, accurately, and precisely. 

5.2. Accuracy and Precision 

In addition to the main effects, optimized media concentrations can be determined 

from the DoE. These are used in the following to investigate the model accuracy using 30 

Monte Carlo simulations (cf. Figure 9). The robustness of the model prediction was 

examined by combining the random, normally distributed deviation of 5% of the media 

concentrations. This yields a confidence interval (t-test) of >95% with >99% certainty. The 

results of the model predictions deviate less than 15% from each other and can be assumed 

to be sufficiently accurate, thus fulfilling the criterion of model accuracy. 

Figure 8. Contour plots for simulations of the normalized HIV-Gag VLP concentration depending on
the Isoleucine and Glucose concentration (both depicted as normalized values).

It is important to emphasize that these effects are not generally valid but apply to the
specific conditions and the specific medium in the context of the process. Other process
conditions, however, may lead to other significant effects. It should also be noted that the
goal of DoE is not primarily to optimize the medium but rather to identify particularly
sensitive components within the model. Once the model is validated, it can be used for the
prediction of optimized cultivation conditions.

In order to reach the last milestone in the model validation process, the model must
be able to predict the cultivation process adequately, accurately, and precisely.

5.2. Accuracy and Precision

In addition to the main effects, optimized media concentrations can be determined
from the DoE. These are used in the following to investigate the model accuracy using
30 Monte Carlo simulations (cf. Figure 9). The robustness of the model prediction was
examined by combining the random, normally distributed deviation of 5% of the media
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concentrations. This yields a confidence interval (t-test) of >95% with >99% certainty. The
results of the model predictions deviate less than 15% from each other and can be assumed
to be sufficiently accurate, thus fulfilling the criterion of model accuracy.
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Figure 9. Monte Carlo Simulations using the Optimal Operating Point (derived from DoE) for initial
substrate concentrations with a standard deviation of ±5%. (a) Viable cell concentration during initial
batch phase, (b) normalized HIV-Gag VLP concentration.

6. Discussion

The present study demonstrated the distinct and quantitative validation of a dynamic
metabolic model used to simulate fed-batch cultivation of an HIV Gag-VLP-producing
HEK293 cell line. The model is based on previous work on CHO DG44 cells [19,42,47]
and was adapted to the specificities of the cells used here [19,37,48]. By applying distinct
and quantitative statistical methods [40], the model was shown to predict the cultivation
progression of HEK293 cells accurately and precisely with regard to experimental data.
Thus, the model is suitable as a digital twin for process development and design as well as
for model predictive control in the context of an advanced process control strategy. The use
of modern PAT detectors such as Raman, FTIR, and MALS/DLS [35,49–54] in combination
with developed PLS models [55] allow conclusions to be drawn about critical process
parameters of the cultivation-like product (VLP), glucose, lactate, and other by-product
concentrations. This real-time generated information can be used by the digital twin for
model-based control. In this case, this includes feeding and other process parameters such
as gassing and pH adjustment through the addition of base. By predicting the product
concentration, it can also generate important information for subsequent process steps.
These depend on the optimal harvesting time, the total cell count, the product concentration,
the purity, and the expected size distribution of the VLPs.

Furthermore, the model could be used for the development of processes to partially
replace costly screening experiments for media optimization with in silico experiments. As
a distinct advantage over conventionally used Monod models for describing concentration
profiles during cultivation, the model presented here can clearly and comprehensibly
contextualize the relationships due to the mechanistic connection of all formation and
consumption rates. For example, the model can predict the shift in lactate metabolism with
high accuracy in terms of time and concentration, depending on the pyruvate concentration
present. Upcoming work will address the further development and implementation of
the model as an integrated digital twin to enable model predictive process control in
manufacturing. For this, an implementation of hard and software communication is crucial
to transfer data measured in real-time by PAT into the model and to be able to make the
necessary adjustments for process control.
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