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Abstract: In manufacturing processes using computerized numerical control (CNC) machines, ma-
chine tools are operated repeatedly for a long period for machining hard and difficult-to-machine
materials, such as stainless steel. These operating conditions frequently result in tool breakage. The
failure of machine tools significantly degrades the product quality and efficiency of the target process.
To solve these problems, various studies have been conducted for detecting faults in machine tools.
However, the most related studies used only the univariate signal obtained from CNC machines.
The fault-detection methods using univariate signals have a limitation in that multivariate models
cannot be applied. This can restrict in performance improvement of the fault detection. To address
this problem, we employed empirical mode decomposition to construct a multivariate dataset from
the univariate signal. Subsequently, auto-associative kernel regression was used to detect faults in
the machine tool. To verify the proposed method, we obtained a univariate current signal measured
from the machining center in an actual industrial plant. The experimental results demonstrate that
the proposed method successfully detects faults in the actual machine tools.

Keywords: machine tool; fault detection; empirical mode decomposition; auto-associative kernel
regression

1. Introduction

Computerized numerical control (CNC) refers to a method of automating the control
of machine tools by inputting programmed milling information into a microcomputer
without a manual operator. The programmed milling specification is stored in the memory
of the computer to process large amounts of work efficiently. Furthermore, by flexibly
controlling various milling conditions (rotating speed, cutting force, etc.), high-quality
material products can be produced at low costs. However, when the milling process is
running, machine tools frequently suffer from faults, because these are operated in extreme
environments to cut materials [1].

A fault is defined as an unpermitted deviation of at least one characteristic property
of a variable from an acceptable behavior [2,3]. Although CNC machines have been well
developed, they lack a function that diagnoses the condition of the tools and replaces faulty
tools with new ones. The failure of machine tools requires maintenance time (also known
as downtime) to replace the machine tool by stopping the machine. This may reduce the
quality of the products and efficiency of the target process and increases the maintenance
cost. In addition, if the damaged tool is used continuously to process the material, it may
cause severe physical damage owing to the failure of the CNC machine. In fact, 79.6% of
the maintenance time for CNC machines in modern industry is observed to be caused by
damage to machine tools [4]. To solve these problems in the industrial field, when the life
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of the tool reaches approximately 60–70%, the operator replaces the tool with a new one.
However, this traditional maintenance method cannot respond to unexpected faults, and
maintenance costs may increase because of frequent tool replacement. The fault detection
techniques can provide the precise process operating conditions to operators, and can help
them take properly remedial actions.

Brief Review of Fault-Detection Approaches

The characteristic of the tool condition is sensitively reflected in the measured data
because the machine tool rotates at a high speed with a strong force during the cutting
process. To consider these properties, many studies have been conducted to detect the
faults of machine tool using signal processing techniques [5,6], ensemble methods [7,8],
and convolutional neural networks (CNNs) [9–12]. In signal processing techniques, the
characteristics of the measured signals were analyzed using time-frequency analysis. The
ensemble method combined a signal processing method and machine learning. In the case
of using CNN, the samples measured from the target system were converted into a large
number of images. Subsequently, CNN-based tool-condition monitoring was performed
by training the configured image dataset. This approach has been used to detect faults in
various industrial process systems such as motors [13], bearings [14], and drills [15].

Although the related methods mentioned above can successfully detect faults in the
machine tool, they have several limitations. First, the characteristics of the data can change
frequently during an actual milling process because CNC machines operate in various
machining modes. Next, the deep learning algorithms require high-quality and massive
image data for effective learning to ensure a competent performance. However, obtaining
large amounts of normal and abnormal image data is practically difficult. This can lead
to a data imbalance problem. Finally, converting the measured signals, obtained from a
precisely operated machine into an image may result in the loss of information (feature)
carried by the signal, or the CNN model may not be able to train the feature properly.
Hence, fault-detection technology for machine tools is required to solve these problems. To
address these challenges, we monitored the status of machine tools using empirical mode
decomposition (EMD) and auto-associative kernel regression (AAKR). EMD can extract the
intrinsic mode functions (IMFs) inherent in the original signal and is a suitable method for
nonlinear and non-stationary signals, such as industrial process data. The current signal
measured from the machine operating in the actual industrial field was converted into a
multivariate dataset through EMD, because AAKR is an effective algorithm for multivariate
datasets for detecting faults.

Generally, fault-detection methods for industrial processes can be divided into model-
based and data-driven approaches. The model-based approach is a method of detecting
faults using a mathematical model built based on physical information about the target
process, which primarily uses approaches to parity equations, parameter estimation, state
observers, and signal models [2]. For example, dynamic property and parameter uncer-
tainty in vehicle dynamic system were considered using mathematical model [16,17]. Shi
and Zang diagnosed steering actuator faults in automated vehicles using model-based
support vector machine (SVM) [18]. Mathematical models represent the dependencies of
various signals that can be measured by a target system. If the physical information is
insufficient or inaccurate, the performance of the designed model can be reduced. Further-
more, designing a complex or large-scale process using mathematical models is difficult.
Therefore, data-driven methods have been extensively studied recently. The data-driven
approach is an efficient alternative method, in which the important process information
can be extracted from measured a sizable process data. These methods can be applied to
various industrial processes because they do not require any prior physical knowledge
of the target process. The multivariate statistical methods are widely used for process
monitoring in various industrial applications [19–21].

Statistical process monitoring (SPM), which detects fault using multivariate statistics
and machine-learning models, is the most popular data-driven fault-detection method [22].
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Multivariate statistics for detecting abnormal scenarios have been studied intensively in
the research on multivariate quality control [23]. Principal component analysis (PCA),
independent component analysis (ICA), and AAKR have commonly been used for multi-
variate statistics. PCA and ICA can efficiently manage multivariate process data through
a dimensionality reduction. However, these algorithms have a limitation in terms of the
distribution of the latent variables. For example, PCA assumes that the hidden variables
follow a Gaussian distribution. These statistical assumptions can degrade model perfor-
mance because of the difficulty in satisfying actual industrial process data. In contrast,
AAKR can effectively detect failures in various industrial processes due to no restriction on
the abovementioned assumptions.

AAKR is a nonparametric multivariate regression method (also known as lazy, memory-
based, and instance-based learning) that compares the similarity between the training data
stored in memory and query vector. Subsequently, high weights are assigned to the training
vectors with high similarity to compute the estimated vector. AAKR is updated online us-
ing a local model; therefore, extensive studies were conducted in [24–29] online monitoring
of multivariate processes because of the advantage that it can be applied to time-varying
processes operating in different process modes.

Huang proposed EMD in 1998 for decomposing the unique features contained in a
univariate signal into amplitude modulation (AM)/frequency modulation (FM) compo-
nents [30]. This method is not based on any assumption regarding linearity or stationary
signals. Thus, many studies have been conducted to analyze nonlinear and non-stationary
signals, such as biomedical signal [31,32] and industrial process data [33,34]. EMD is
compared with the short-time Fourier transform (STFT) and wavelet transform (WT), a
classical time–frequency analysis method. STFT provides a constant resolution for the
entire signal through a fixed window. However, the resolution has limitations (also known
as the uncertainty principle) owing to the trade-off between frequency and time. Therefore,
this method is suitable for quasi-stationary signals. WT can extract the time–frequency
characteristics of a signal through expansion and transformation. When using WT, multi-
scale signal analysis is possible, and it is more suitable for non-stationary signals than
STFT. Nevertheless, WT has a critical disadvantage in that its analysis results depend on
the selection of the wavelet basis function. In other words, only the signal characteristics
correlated with the shape of the selected wavelet function generate high-value coefficients,
and other characteristics may be masked or completely ignored. In contrast to WT, EMD is
a self-adaptive signal processing method [35]. It can decompose the original signal into
IMFs that reflect the vibrational mode features of the original signal without requiring a
predefined basis function for signal analysis. Therefore, EMD is more suitable for analyzing
industrial process data, which are nonlinear and non-stationary signals, than STFT and WT.

2. Preliminary

Most of the milling processes using a CNC machine have a smaller scale than chemical
processes and power plants, and obtaining multivariate process data by installing a large
number of sensors is difficult. EMD can extract some IMFs that can obtain multivariate data
from univariate signals in the same time domain. This can address the inapplicability of
multivariate fault detection models in the environment where only one signal is measured
from the target system. In other words, multivariate statistical methods can be applied
to univariate signals using EMD. In practice, PCA [36,37] and ICA [38,39] have been
employed with EMD for process monitoring. In this study, EMD was used to extract
IMFs from univariate signals measured using an actual CNC machine. Subsequently, we
conducted an AAKR-based fault detection by constructing a multivariate dataset.

To demonstrate the efficiency of the proposed method, we used the current signal
obtained from the long-term operation of an actual machine tool. Several tools of the same
type were repeatedly utilized for straight and spiral cutting processes to obtain normal
and fault data. The straight-cutting process provided tool breakage datasets. Artificial
fault data were generated by applying disturbances (bias and drift) because the tools used
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in the spiral cutting process did not break. The proposed method was applied to the
following two types of process datasets mentioned above: straight cutting process (actual
tool breakage data) and spiral cutting process (artificial fault data through bias and drift).
The experimental results demonstrated that the proposed method can effectively detect
faults in a machine tool for two types of cutting processes. The contributions of this study
are summarized as follows:

1. Existing signal processing and deep learning methods used for detecting faults in
machine tools require the characteristics of the machining process and massive data,
respectively. Furthermore, when deep learning is used, the features of the original
signal can be lost during the process of converting a signal into an image. In con-
trast, the proposed method can efficiently perform tool-state diagnosis by avoiding
these problems.

2. By using EMD, the proposed method has the advantage of applying a multivariate
fault-detection model whose performance has been verified through prior related
studies, even in a limited environment where only univariate signals can be acquired.

3. AAKR was employed to detect the fault in a machine tool for the first time. In
addition, it has never been used in combination with EMD to detect faults in various
industrial processes.

4. To obtain the actual machine tool data, we repeatedly conducted some experiments
through straight parallel and spiral circular cutting, and then the proposed method
was validated using massive data obtained from an actual operating CNC machine.

The remainder of this paper is organized as follows. Section 2 describes the proposed
method for fault detection of a machine tool. The target systems and datasets used in this
study are described in Section 3. The experimental results and discussion are presented in
Section 4. Finally, Section 5 presents our conclusions.

3. Fault Detection of Machine Tools Using EMD and AAKR

Figure 1 shows the overall procedure for the fault detection of machine tools using
EMD and AAKR. First, IMFs are extracted from the univariate current signal measured in a
CNC machine using EMD. In this study, the number of IMFs was determined by repeatedly
conducting experiments (trial and error) with the best AAKR performance. Subsequently,
AAKR is trained using a dataset consisting of two extracted IMFs and original current
signal. The first step in AAKR is to calculate the similarity between training and query
vectors. Among the various distance functions for computing similarity, the most used
Euclidean distance function was selected in this study. Next, a Gaussian weight function
is used to assign weights to the training data vector. In this step, the appropriate value
of the bandwidth parameter h in the Gaussian weighting function is determined using
k-fold cross-validation. Subsequently, we calculate the estimated and residual vectors, and
then, to obtain the detection indices, SPE, the multivariate statistic, is computed as the
square of the residual vector. The confidence limit (also called the threshold and control
limit) for declaring the fault was determined using kernel density estimation (KDE) in this
study. More details of the AAKR algorithm for fault detection are presented in Figure 2
and Section 3.2.
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Figure 1. Framework of fault-detection method for machine tool based on EMD and AAKR.

Figure 2. Schematic block diagram of fault-detection method based on AAKR.

3.1. Empirical Mode Decomposition

The EMD technique was proposed by Huang [30] in 1998 and can decompose a signal
into an IMF. As a nonlinear, multiresolution, self-adaptive decomposition technique, EMD
has been an effective signal processing tool for signals emanating from nonlinear and
nonstationary systems [39]. The IMFs represent the natural oscillatory mode embedded
in the signal and function as the basis functions, which are determined by the signal
itself, rather than the pre-determined kernels [35]. IMFs must satisfy the following two
conditions [30]: (i) in the entire dataset, the number of extrema and number of zero crossings
must either be equal or differ at most by one, and (ii) at any point, the mean value of the
envelope defined by the local maxima and envelope defined by the local minima is zero.
EMD is based on the assumption that any signal contains different simple IMF components.
With this definition, a signal x(t) can be decomposed as follows [30]:

• Step 1. Identify all local extrema of x(t).
• Step 2. Extract the ith IMF candidate ci.

(a) Interpolate all local maxima and minima using cubic spline line. The connected
lines are called the upper envelope emax(t) and lower envelope emin(t).
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(b) Design the mean of the upper and lower envelope values as m1 = (emax(t) +
emin(t))/2.

(c) Calculate the difference between the signals x(t), and m1 is the first component,
h1 can be obtained as follows:

h1 = x(t) − m1. (1)

• Step 3. Verify that a1 is correct for the IMF conditions. Ideally, if h1 is an IMF, h1 is the
first component of x(t).

• Step 4. If h1 is not an IMF, h1 is considered the input signal, and repeat Steps 1–3, then

h11 = h1 − m11. (2)

After repeated this shifting procedure k times, until h1k is an IMF, that is

h1k = h1(k−1) − m1k, (3)

then h1k is designated as
h1k = c1, (4)

the first IMF component from the original signal.

• Step 5. Separate c1 from the remainder of the data by

r1 = x(t) − c1, (5)

where r1 is considered new data; the above processes are resumed, and the second IMF
component c2 can be obtained. We can repeat the above steps to achieve n-IMFs of signal
x(t), as follows:

r2 = r1 − c2,
r3 = r2 − c3.

(6)

The shifting process can be stopped by any of the following predefined stopping
criteria: (i) the component, cn, or residue, rn, becomes so small that it is less than the
predetermined value, and (ii) the residue rn becomes a monotonic function when no more
IMF can be extracted. By summing Equations (5) and (6), we obtain

x(t) =
n

∑
i=1

ci + rn. (7)

Finally, EMD is completed, and we can decompose the original signal into n empirical
modes. A residue, rn, can be either a mean trend or a constant of signal x(t). A more
detailed explanation of the EMD is available in [30,35].

3.2. Fault-Detection Method Based on AAKR

Figure 2 shows the AAKR procedure used in this study. The fault-detection procedure
using AAKR can be roughly divided into offline and online processes for training and
testing the algorithm, respectively. In the offline process, we applied z-score normalization
to the multivariate training dataset constructed by EMD to set the average and variance of
each variable to 0 and 1, respectively. The bandwidth parameter of the weighting function
was selected using k-fold cross-validation, where we used the Gaussian weighting function
as the kernel function. The residual vector for the training data was then calculated using
the leave-one-out method. The confidence limit (also known as the threshold value) for
identifying faults was determined in advance. In this study, the threshold value for the
fault declaration was obtained using the KDE. In the online process, similarity and weight
vectors were computed for the query vector (testing data), and the estimated and residual
vectors were computed based on them. Fault detection was then conducted by calculating
multivariate statistics and comparing them with a pre-defined threshold in an offline
process. A detailed description of fault detection is as following subsections.
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3.2.1. AAKR Algorithm

AAKR is a multivariate regression method that stores training data in memory and
assigns high weights to vectors having high similarity with the test vector to compute the
score [40]. When multivariate data are collected from the target system, data matrix X is
constructed as follows:

X = [x1, . . . , xj]
T =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xj1 xj2 · · · xjp

 ∈ <j×p, (8)

where j and p are the number of samples and process variables, respectively. In AAKR, if
the training data matrix X is large, the algorithm requires longer training time. However,
after the completion of the training phase, the appropriate weights were assigned to
training vectors and AAKR can distinguish between normal and abnormal for query
vectors. Generally, each variable of the multivariate data measured in the industrial process
has a different mean and standard deviation. Therefore, if this dataset is trained on the
model without data normalization, it can result in biased training results. For example,
any variable with a large range of values is not important but can be considered more
important than the other variables. To avoid this problem, data normalization is essential
for setting equal mean and variance of all variables. In this study, we employed the
z-score normalization technique to set the mean and variance of each variable to 0 and 1,
respectively. The z-score normalization is defined as follows:

X′l,m =
Xl,m − µm

σm
, for l = 1, . . . , j, m = 1, . . . , p, (9)

where µm and σm are the average and variance corresponding to the mth variable of the
training dataset, respectively. In the AAKR algorithm, the similarity between the training
and query vectors is calculated using the distance function to compute the estimated
vector for the query vector. Several distance functions (such as the Euclidean distance and
the Mahalanobis distance) are available for measuring the distance. To select the proper
distance function, we compared the performance of the AAKR by applying Euclidean
distance and Mahalanobis distance. Mahalanobis distance function required longer than
Euclidean distance function. In addition, application of Euclidean distance improved
performance compared with Mahalanobis distance. In this study, therefore, we employed
the Euclidean distance defined in (10).

dl(xl , x(t)) =
√
(xl − x(t))T(xl − x(t)), for l = 1, . . . , j, (10)

where x(t) is the query vector for time t, and xl is the training vector. If the training and
query vector are highly similar, the value of the distance function reduces. The magnitude
of the weight for each data vector is determined according to the degree of similarity
measured using the distance function. In this study, we employed a Gaussian weighting
function to assign weights as follows:

Kh(dl) =
1√
2πh

exp

[
− (dl)

2

2h2

]
, l = 1, . . . , j, (11)

As the value of similarity increases, Kh assigns less weight to training data xi. In (11),
h is a bandwidth parameter of the weighting function. In AAKR, multivariate regression
performance depends on the bandwidth parameter value [41]. If the value of parameter
h is too small, then we obtain crude estimation results because a small amount of data
is used to estimate the query vector. However, if the value of parameter h is too large,
we obtain smooth estimation results. The parameter value is typically set by following
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a trial-and-error procedure for validation data [42]. For example, the objective function
was used to select h with minimal error by varying the values h [43,44]. In this study, the
optimal bandwidth parameter was determined using k-fold cross-validation, which is a
method of repeatedly performing training and validation to prevent bias in the training
data. This method is widely used to tune the hyperparameters of the models with inherent
uncertainties. A more detailed explanation of parameter determination is available in [40].
In this study, the mean squared prediction error (MSPE) was calculated to determine the
optimal parameter value as follows:

MSPE(q, s) =
1

Xs

Xs

∑
l=1

(xl − x̂)T(xl − x̂), (12)

where q is the number of repetitions up to 1 + (hmax − hmin)/∆h, and Xs is a subset of
k training data randomly divided by k without duplication. hmax, hmin, and ∆h are the
maximum, minimum, and incremental values of h, respectively. Thus, we determine the
value of bandwidth parameter h with the minimum MSPE as the optimal parameter value.
When the proper parameter value is determined, the estimated vector x̂(t), and the residual
vector, e(t), are calculated as follows:

x̂(t) =
∑

j
l=1 Kh(dl)xl

∑
j
l=1 Kh(dl)

, (13)

e(t) = x(t)− x̂(t), (14)

where Kh(dj) is the weight computed by the weighting function, and x(t) is the query vector
at time t. The estimated vector, x̂(t), is obtained using the weighted average. The residual
vector, e(t), can be obtained by calculating the difference between the query vector, x(t),
and estimated vector, x̂(t). In this study, as presented in Algorithm 1, the residual vector
for training data was calculated using the leave-one-out method [45]. More details of the
leave-one-out method are presented in [40,45].

Algorithm 1: Leave-one-out method for calculating the residual vector

Input: Training data X = [x1, . . . , xj]
h← bandwidth parameter determined by k-fold cross validation
for l from 1 to j
X′ ← X/{xl}
Calculate the distance function values dl (xl, xi), l = {1, . . . , j}\{l}
between data vectors in X′ and xi
Generate weights Kh(dl), l = {1, . . . , j}\{l} of each data vector
Obtain lth estimated vector x̂l

Calculate residual vectors el = xl − x̂l = [e1
l , . . . , ep

l ]
T

end
return {e1, . . . , ej}

3.2.2. Detection Indices and Confidence Limit

Hotelling’s T2 statistic and SPE are typically used as multivariate statistics for fault
detection. In this study, SPE was employ as a multivariate statistic and is calculated using
the residual vector e(t) as follows:

SPE(t) = e(t)Te(t). (15)

If the target system is normal, the magnitude of SPE(t) is small. In contrast, the
values of SPE(t) begin to increase rapidly when a fault occurs in the system. Thus, SPE(t)
represents the condition of the target system for multivariate monitoring. In fault-detection
steps using multivariate statistics, the threshold should be defined in advance. In this study,
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we employed KDE because it is widely used to define the threshold value for declaring the
fault [29,46,47]. In KDE, a univariate kernel estimator with kernel function K is defined as

f̂h(x) =
1
jh

j

∑
l=1

K
(

x− xl
h

)
, (16)

F̂h(x) =
1
j

j

∑
l=1

W
(

x− xl
h

)
, (17)

where K(·) is the kernel function; j is the number of samples; h is the smoothing parameter;
and W(t) =

∫ t
−∞ K(u)du. The kernel estimator, f̂h(·), is the sum of the bumps located in

each sample. The shape of the bumps is determined using the kernel function K(·) [29].
Various kernel functions are available, such as Epanechnikov, uniform, and Gaussian.
Among these kernel functions, we employed the most commonly used Gaussian kernel
function. In practice, the confidence limit determined in KDE is influenced by the value of
the smoothing parameter, h. To estimate cumulative kernel function, we used the ‘ksdensity’
MATLAB function built into the Statistic and Machine Learning Toolbox. More details of
KDE and its smoothing parameter are available in [48,49].

3.2.3. Performance Indices

In this study, the false alarm rate (FDR) and miss detection rate (MDR) (also known as
type I and type II errors, respectively) were used as performance indices to quantify the
fault detection performance of the proposed method, as summarized in Table 1. They are
based on statistical hypothesis tests and are widely used to quantify the performance of
fault detection. In Table 1, H0 is the null hypothesis, which means that the target system is
normal, and H1 is an alternative hypothesis that means that the target system is abnormal.
That is, FAR indicates the rates of false alarms, in which the model has detected a fault,
but the fault has not occurred in the actual target system. MDR refers to the rates of miss
detection, in which a fault has occurred in the actual target system but the model has not
detected the fault. If the MDR value is high, the model does not detect faults occurring in
the real target system. Therefore, MDR is considered to be much more important than FAR
in this research field.

Table 1. The performance indices based on statistical hypothesis test.

Decision

Reject H0
(Accept H1)

Accept H0
(Reject H1)

Truth

H0 is true
(H1 is false)

FAR
(Type I error) Correct decision

H0 is false
(H1 is true) Correct decision MDR

(Type II error)

4. Data Acquisition

In this section, we introduce the target system and milling process used to measure
the current data. Current data are collected from the Internet of Things (IoT) sensor in
an actual CNC machining center. The sampling frequency of the current data was 6 Hz.
The models of the CNC machining center and cutting tool were Fanuc Oi, Mynx 5400,
and YG-1 SUS-CUT, respectively. We used a CNC machining center operated in an actual
manufacturing plant and stainless steel to obtain milling process data. Figure 3 shows the
CNC machining center used to obtain the milling process data.
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Figure 3. CNC machining center used in this study for data acquisition.

To obtain two types of milling process data, we conducted spiral circular and straight
parallel cuttings, as illustrated in Figure 4. These cutting processes are primarily used
to machine rigid materials during machining. In the spiral circular cutting process, we
did not obtain tool breakage data despite repeatedly performing spiral circular cutting
processes. Therefore, in this study, we generated artificial fault data by applying two types
of disturbances (bias and drift) to normal data measured through a spiral cutting process.
For the straight parallel cutting process, machine tools were broken during long-term
operation. Thus, we first validated the proposed method by using two types of artificial
fault data, and then conducted a real-world application by applying the proposed method
to actual tool breakage data. The details of each machining method and the acquired
dataset are described below.

Figure 4. Blueprints of process shape for spiral circular cutting and straight parallel cutting: (a) for
spiral circular cutting process; (b) for straight parallel cutting process.

4.1. Case 1. Spiral Circular Cutting Process

Spiral cutting was performed clockwise until the length of the center of the processed
stainless steels materials was 16 mm. We used three tools with a diameter of 10 phi, and
73 stainless materials were processed during spiral circular cutting. Notwithstanding the
long-term operation of an actual machine tool, we could not obtain actual fault data. Hence,
to obtain the fault data in this study, three types of artificial faults for each bias and drift
disturbance (i.e., a total of six cases) were applied to the normal data measured by spiral
circular cutting, respectively. After sampling approximately 23,500 normal data points
among the datasets obtained through the spiral cutting process, 16,500 samples were used
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for learning, and the remaining 7000 samples were used for testing. The normal dataset
was sampled by considering the period immediately after replacing the tool with the new
tool as the normal condition. To generate the artificial fault data, the bias and drift faults
were applied to the test samples from the 4001st sample to the end.

• Bias fault: a step change of the current variable by N was introduced from the 4001st
sample to the end (N = 0.02, 0.025, and 0.03, respectively).

• Drift fault: the original current variable was linearly increased from the 4001st sample
by adding M(k − 4000) to the current variable of each sample in this range, where k is
the sample number (M = 0.0005, 0.00075, and 0.001, respectively).

The bias fault data have the form of a step function. These fault data describe a
scenario in which fluctuations in the measured data are significant because of a fatal fault
in the actual industrial process. In contrast, the drift fault data are in the form of a ramp
function. This describes a phenomenon in which the size of a fault rapidly increases owing
to the small faults in the facility. The generated artificial fault data in this manner were
used as the test data to verify the proposed method.

4.2. Case 2. Straight Parallel Cutting Process

Figure 5 shows the status of straight cutting of stainless-steel materials before and after
milling. As shown in Figure 5a, after the straight parallel cutting of processed stainless
steel material 86 times, straight cutting was performed under the same conditions on the
opposite side of the processed material. In this way, we used five tools with a diameter of
10 phi, and 68 stainless materials were machined during the straight cutting process.

Figure 5. Condition of straight parallel cutting and images of materials before and after the straight
cutting process: (a) condition of straight cutting process; (b) before the straight milling process;
(c) after the milling process.

Four of the five tools used in the straight cutting process broke during the process.
Among the tool breakage cases, we used three fault datasets of tool breakage to verify the
proposed method. Similar to the spiral circular process, the training dataset was sampled
by considering the period immediately after replacing the used tool with a new tool as a
normal state.

A summary of the datasets measured using the five tools is presented in Table 2.
During the use of the first tool, several values were missing owing to communication errors
between the machining center and IoT sensor. In addition, the first tool used in the straight
cutting process did not break despite processing 18 materials being processed. The second
tool cut a total of 16 materials, and broke when cutting the 34th material. The third tool
suddenly broke when processing the first material. Because cause of breakage cannot be
clearly explained, and it differed from the general failure of the running tool, this dataset
was not used as test data. In these experiments, 14 and 15 materials were processed using
the fourth and fifth tools, respectively, and each tool broke when the last material was
processed. In this manner, we constituted the dataset used in this study for detecting faults
in machine tools.
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Table 2. Summary of the datasets measured using five tools in straight cutting process.

First Tool Second Tool Third Tool Fourth Tool Fifth Tool

Tool failure type - Breakage Breakage Breakage Breakage
Material index #01~#18 #19~#34 #35~#39 #40~#53 #54~#68
Material index

at the time of failure - #34 #35 #53 #68

Important issue Communication
issue - Unexpected

early failure - -

5. Experimental Results and Discussion

In this section, we explain the results of the fault detection of the proposed method for
the actual tool data introduced in Section 3. To perform comparative studies, we employed
the local outlier factor (LOF), PCA, and ICA as comparison methods. LOF is a distance-
based method frequently used to detect faults in multivariate processes, and can calculate
local outlier factors for multivariate data by k-nearest neighbors (k-NN) using a predefined
distance function. In this study, we set the value of k to 10 and employed the Euclidean
distance to compute the distance between the nearest neighbors. PCA and ICA are the most
well-known multivariate statistical techniques used primarily in large-scale processes that
require the analysis of many process variables. They are suitable models for multivariate
process data, owing to dimensionality reduction for the selection of useful process variables.
In this study, Hotelling’s T2 and SPE statistics were used as detection indices for PCA-
based process monitoring. The T2 statistic is calculated based on the principal components
(PCs) selected for dimensionality reduction. In the case of ICA, we employed the SPE and
I2
d statistic that have commonly been used. The I2

d statistic is computed to consider the
dominant part of independent components (ICs). For more details regarding the I2

d statistic,
readers are invited to read the paper [46,47]. In ICA, we used the FastICA algorithm, which
is a very simple and highly efficient fixed-point algorithm proposed in [50]. As mentioned
above, the comparison methods are effective for a multivariate dataset. To consider the
property, we combined EMD with comparative methods (i.e., EMD-LOF, EMD-PCA, and
EMD-ICA) to verify the proposed method. The experimental results are discussed below.

5.1. Artificial Fault Cases (Spiral Circular Cutting Process)

In this subsection, we introduce the experimental results, in which artificial fault
datasets generated by two types of disturbances were used to verify the performance of
the proposed method. Artificial fault data were generated by applying drift and bias to
normal data that were not used for training. Figure 6 shows the behavior of the faulty data
generated by three types of artificial faults for each bias and drift disturbance. In these
figures, the blue line describes the normal behaviors of the faulty variable, and the red line
represents the abnormal behaviors of the faulty variable owing to disturbances. As shown
in Figure 6a,c,e, the magnitude of current value has risen steeply at the 4001th sample by
0.02, 0.025, and 0.03, respectively. In Figure 6b,d,f, the current value gradually increases
from time t = 4001 drift faults. From now on, only the results of the best cases for each
disturbance will be explained to save space. The best cases for each bias and drift fault are
N = 0.03 and M = 0.001, respectively.
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Figure 6. Faulty variables generated by disturbances: (a) bias (N = 0.02); (b) bias (N = 0.025); (c) bias
(N = 0.03); (d) drift fault (M = 0.0005); (e) drift fault (M = 0.00075); and (f) drift fault (M = 0.001).

Figure 7 depicts the IMF signals extracted from the normal and artificial fault data
(bias and drift) using EMD. Each first-row signal in Figure 7 is the input signal of EMD,
and the other row signals are the outputs of EMD. Some signals included in the red box in
Figure 7 are the training (Figure 7a) and test datasets (Figure 7b,c) of AAKR. An appropriate
number of IMFs was selected while increasing the number of IMFs from one to five in
increments of one. When IMF1 and IMF2 were added to the dataset, AAKR exhibited the
best fault-detection performance. That is, the final constituted dataset X = [bias faulty
variable, IMF1, IMF2]. Thus, we constructed a multivariate dataset by extracting the IMFs
from the univariate current signal.
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Figure 7. (Spiral cutting data) Results of EMD for constructing the training and test datasets: (a) for
normal training data, (b) for bias fault data, (c) for drift fault data.

Figure 8 shows the results of the bandwidth parameter selection using k-fold cross-
validation. In this study, we set the value of k to 10, and the values of hmax, hmin, and
∆h were set at 0.01, 1.3, and 0.01, respectively. As shown in the figure, the MSPE values
decreased when h = 0.01, and then increased rapidly for the smallest value of h. From the
k-fold cross-validation, the appropriate bandwidth parameter value was determined to be
h = 0.06.

Figure 8. (Spiral cutting data) Result of bandwidth parameter selection using k-fold cross validation.
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Figure 9 shows the empirical and estimated cumulative distribution functions (CDFs)
for the detection indices. The blue and dashed green lines indicate the empirical and
estimated CDFs, respectively. The inset of Figure 8 shows that the estimated CDF is
adequately estimated for the empirical CDF. Therefore, we determined the confidence
limits with a significance level of α = 0.01 from the estimated CDFs.

Figure 9. (Spiral cutting data) Empirical and estimated CDFs of SPE for training samples.

Figures 10 and 11 show monitoring charts that are the results of fault detection using
the comparison and proposed method for bias and drift data, respectively. The black line
denotes the detection indices, and the dotted purple line indicates the confidence limits
determined using KDE. In Figures 10f and 11, each monitoring chart at time t = 1 to 5000
is enlarged because the detection indices for the normal region are very low compared
with that for the abnormal area. First, as shown in Figure 10, the LOF values exceeded the
confidence limit before the bias fault were occurred. Furthermore, many LOF values after
failure were often lower than the threshold. In the case of PCA and ICA, T2 (PCA) and SPE
(ICA) statistics did not entirely detect faults in the machine tool. SPE (PCA) and Id (ICA)
statistics can be distinguished between normal and abnormal areas, but each threshold is
set to be high. This can lead to a high value of MDR. In contrast, the proposed method
(EMD-AAKR) completely detected the faults in all areas except when a small degree of false
alarm was declared at approximately time t = 2000. Next, in Figure 11, although the faults
occurred from time 4001, the LOF values continuously exceeded the threshold from roughly
t = 4500. In the case of PCA and ICA, T2 (PCA) and SPE (ICA) statistics consecutively
exceeded the threshold at approximately t = 4500. This increased the MDR value. SPE
(PCA) and Id (ICA) were expected to exhibit a lower MDR than other statistics (T2 and
SPE statistics). As shown in Figure 11f, detection indices for proposed method quickly
exceeded the threshold at t = 4000 compared to other comparative methods, but some false
alarms were declared in normal area. The false alarms were negligible considering the
improvement of MDR for the proposed method.
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Figure 11. (Drift fault, M = 0.001) Monitoring chart for the comparison and proposed methods:
(a) EMD-LOF (LOF), (b) EMD-PCA (T2), (c) EMD-PCA (SPE), (d) EMD-ICA (Id), (e) EMD-ICA (SPE),
(f) EMD-AAKR (SPE).

The performances of the proposed and comparison methods for the two types of
artificial fault data are summarized in Table 3. The lowest values in each performance index
are expressed in bold. As shown in Table 3, if the magnitude of each bias and drift is larger,
then the performance of the proposed method and comparison methods are better; in case
of bias 3 (N = 0.03), SPE (PCA) and Id (ICA) have significantly improved performance
compared to the other bias cases. LOF has a higher FAR than the other methods for both
the bias and drift fault datasets. PCA and ICA have significantly lower FAR values for
all datasets; however, the MDRs for T2 (PCA) and SPE (ICA) were relatively high. In
particular, the MDRs for all bias fault dataset were higher than 90%. This implies that the
detection indices did not detect faults in the target system. In the case of drift fault dataset,
SPE (PCA) and Id (ICA) achieved lower FARs and MDRs than other comparative methods,
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but the MDRs for bias fault data were still high. The proposed method outperformed
the comparison methods; the FAR for proposed method were slightly higher than that
of the other comparative methods except LOF, and the MDRs were the lowest than other
methods. In particular, the MDR of the proposed method for the bias 3 (N = 0.03) was
calculated as 0%. As the results of process monitoring, Table 3 shows that the proposed
method successfully detects the artificial faults.

Table 3. (Spiral cutting data.) Performance indices of comparison and proposed methods.

Disturbances Indices
EMD-LOF EMD-PCA EMD-ICA EMD-AAKR

LOF T2 SPE Id SPE SPE

Bias 1
(N = 0.02);

FAR 2.7 0.025 0 0 0.05 0.25
MDR 83.23 98.67 77.43 89.93 98.6 20.23

Bias 2
(N = 0.025);

FAR 2.73 0.025 0 0 0.05 0.28
MDR 77.93 97.7 48.43 62.01 98.23 0.5

Bias 3
(N = 0.03);

FAR 2.7 0.03 0 0 0.05 0.3
MDR 71.33 96.67 17 31.47 97.63 0

Drift 1
(M = 0.0005);

FAR 2.45 0.03 0 0 0.05 0.7
MDR 27.4 48.97 15.93 17.53 76.06 10.8

Drift 2
(M = 0.00075);

FAR 2.45 0.03 0 0 0.05 0.7
MDR 16.87 32.47 9.7 10.97 52.37 6.7

Drift 3
(M = 0.001);

FAR 2.6 0.03 0 0 0.05 0.25
MDR 9.35 23.8 7.8 8.07 39.32 3.21

5.2. Actual Tool Fault Cases (Straight Parallel Cutting)

In this subsection, we introduce the fault-detection results of the proposed method
for the tool breakage dataset. As mentioned in Section 4.2., straight parallel cutting was
performed with five machine tools, and four of them broke. Among the broken tools, the
dataset for fourth tool was excluded from the test dataset because of a sudden failure, which
was different from other tool failures and difficult to explain. Thus, we used three types of
tool breakage data measured using the second, fourth, and fifth tools to demonstrate the
performance of the proposed method.

Figure 12 shows the original and IMFs signals extracted from the normal and tool
breakage data (second, fourth, and fifth tool) using EMD. In Figure 12, each first-row
signal is the original signal, and the others are the IMF extracted using EMD from the
original current signal. By comparing with each first-row signal, we can confirm that
the fault signal gradually increased owing to tool breakage compared with the normal
signal. In Figure 12, the signals contained in the red box are composed of a set of training
and test data of the AAKR for fault detection., In this case, the number of IMFs was
determined using the method introduced in Section 5.1. Finally, we constructed the dataset
X = [actual faulty variable, IMF1, IMF2] to verify the proposed method.

Figure 13 shows the results of the bandwidth parameter selection for straight parallel
cutting data using k-fold cross-validation. We selected the value of k as 10 for k-fold cross
validation. hmax, hmin, and ∆h were set to 0.01, 1.3, and 0.01, respectively. As shown
in this figure, when the value of h increased from the predefined initial value hmin, the
corresponding MSPE decreased exponentially. Subsequently, MSPE attained minimal at
h = 0.081. Therefore, we determined the value of the bandwidth parameter h to be 0.081.
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Figure 13. (Straight cutting data) Result of bandwidth parameter selection using k-fold cross validation.

Figure 14 depicts the empirical and estimated CDFs for detection indices. The blue and
dashed green lines indicate the empirical and estimated CDFs, respectively. In Figure 8, the
enlarged figure shows that the estimated CDF was reasonably estimated for the empirical
CDF. Therefore, we determined the confidence limits with significance level of α = 0.01
from the estimated CDFs.
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Figure 14. (Straight cutting data) Empirical and estimated CDFs of SPE for training samples.

Next, we provide the results of fault detection for three tool-breakage datasets gathered
from an actual CNC machine. As mentioned in Section 4.2., the datasets using second,
fourth, and fifth tools were used to verify the proposed method. Figures 15–17 show the
monitoring charts applying the comparison and proposed methods to the three types
of tool breakage datasets, as mentioned above. The black line denotes the detection
indices, and the dotted purple line represents the thresholds determined using KDE. In
Figures 16f and 17c,d,f, the monitoring charts at t = 1 to 5000 are enlarged because the
detection indices for the normal region were very small compared with those for the
abnormal area. First, for the results of second tool data, the values of SPE (PCA), Id (ICA),
and proposed method statistics began to increase at t = 400. From this, we can determine
the occurrence of the first fault. However, the others did not identify the time points; the
majority of LOF, T2 (PCA), and SPE (ICA) statistics were below each threshold. Compared
with the proposed method, since the confidence limits of SPE (PCA) and Id (ICA) statistics
were set too low, FAR was expected to be high. In the case of the fourth tool dataset, we
identified the start time (t = 280) of consecutive faults through the monitoring chart of SPE
(PCA), Id (ICA), and SPE (AAKR) statistics. In addition, the proposed method was expected
to have smaller false alarms. In contrast, LOF, T2 (PCA), and SPE (ICA) statistics still
did not detect the faults. As shown in Figure 17, the comparison methods outperformed
each result for the second and fourth tool. Nevertheless, because LOF, T2 (PCA), and SPE
(ICA) could not detect the start time of continuous faults, the MDRs of these methods
were expected to be high. On the other hand, SPE (PCA), Id (ICA), and proposed method
identified the outset (t = 420) of the faults. In particular, the proposed method achieves a
satisfactory performance for every tool dataset.

The performance indices of the proposed and comparison methods for the actual tool
breakage datasets are summarized in Table 4. The lowest values for each performance
index are written in bold. For the results of every tool dataset, the FARs and MDRs of the
LOF, T2 (PCA), and SPE (ICA) were calculated as very low and high, respectively; in the
case of second and fourth tool, the MDR of these methods were approximately 100%. As
can be seen from Figures 15 and 16, these methods could not detect the faults. SPE (PCA)
and Id (ICA) achieved better performance than the other comparison methods; for the fifth
tool dataset, these methods outperformed the proposed method, but FARs were the highest
in the case of second and fourth tools. The proposed method for every tool dataset achieved
satisfactory performance in comparison to SPE (PCA) and Id (ICA); although FAR for the
second tool was high, except this case, both FAR and MDR were relatively low.
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Figure 15. (Second tool.) Monitoring chart for the comparison and proposed methods: (a) EMD-LOF
(LOF), (b) EMD-PCA (T2), (c) EMD-PCA (SPE), (d) EMD-ICA (Id), (e) EMD-ICA (SPE), (f) EMD-
AAKR (SPE).
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Figure 16. (Fourth tool.) Monitoring chart for the comparison and proposed methods: (a) EMD-LOF
(LOF), (b) EMD-PCA (T2), (c) EMD-PCA (SPE), (d) EMD-ICA (Id), (e) EMD-ICA (SPE), (f) EMD-
AAKR (SPE).
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Figure 17. (Fifth tool.) The monitoring chart for the comparison and proposed methods: (a) EMD-LOF
(LOF), (b) EMD-PCA (T2), (c) EMD-PCA (SPE), (d) EMD-ICA (Id), (e) EMD-ICA (SPE), (f) EMD-
AAKR (SPE).

Table 4. (Straight cutting data) Performance indices of comparison and proposed methods.

Cases Indices
EMD-LOF EMD-PCA EMD-ICA EMD-AAKR

LOF T2 SPE Id SPE SPE

Second tool
FAR 0.73 0 37.96 35.74 0 16.5
MDR 95.61 99.83 0 0 99.4 0.09

Fourth tool
FAR 0.71 0 10 5.86 0 2.5
MDR 84.49 98.01 0.16 0.27 97.14 1.35

Fifth tool
FAR 0.77 0.77 0.26 0.51 0.1 1.02
MDR 36.79 59.9 0.25 0.47 77.68 2.04
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5.3. Discussion

In this subsection, we summarize the advantages of our study. The main strength of
our research is that we can select various multivariate models by using EMD in scenarios
where only univariate process data must be used. EMD has been rarely used for detecting
faults in machine tools, and this study is the first to combine EMD with AAKR and detect
faults in industrial processes. Moreover, we conducted experiments to obtain actual tool
fault data: spiral circular and straight parallel cutting processes. These cutting processes are
primarily used to machine rigid materials during machining. During the machining process,
we acquired real tool breakage datasets and validated the performance of proposed method
using various cases of actual tool breakage data. As explained in Sections 5.1 and 5.2, the
proposed method achieved better performance than the comparison methods.

6. Conclusions

Machine tools play an important role in manufacturing processes using CNC machin-
ing center. They operate repeatedly for a long period for machining hard and difficult-to-
machine materials, such as stainless steel. These operating conditions can easily result in
tool breakage. The failure of operating tools requires a downtime to install a new tool by
stopping the machine. Moreover, machine tool failure significantly reduces the product
quality and efficiency of the target process. Therefore, fault-detection techniques for ma-
chine tools are required to reduce the downtime and improve the stability of the process.
In this study, EMD and AAKR algorithms were applied to various scenarios of actual tool
breakage datasets obtained from a CNC machining center in an actual industrial plant.
To obtain the fault data, we conducted several experiments: spiral circular and straight
parallel cutting process. EMD was employed to construct a multivariate dataset from the
univariate current signal measured using the CNC machining center. After constituting the
multivariate datasets, AAKR was used to monitor the machine tool and detect the fault.
The experimental results demonstrated that the proposed method successfully detects
faults in the machine tools.

In future research, we will consider the following topics: The first is the consideration
of multiple cutting modes. Many cutting modes are used in actual manufacturing processes
using a CNC machining center. However, in this study, only two cutting modes, spiral
circular and straight parallel cutting, were considered to monitor the machine tool. Thus,
we will conduct further research to consider multiple cutting processes. The second topic is
the consideration of dynamic properties. CNC machines are operated by a time-varying
process. In addition, most industrial processes are time-varying. Therefore, dynamic
properties should be considered when monitoring industrial processes.
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