Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Coupled CFD-DEM Simulation of Seed Flow in Horizontal-Vertical Tube Transition
Processes 2023, 11(3), 909; https://doi.org/10.3390/pr11030909 - 16 Mar 2023
Cited by 1 | Viewed by 1091
Abstract
A series of computational fluid dynamics–discrete element method (CFD-DEM) simulations were applied to seed flow in horizontal-vertical 90-degree elbows. The performance of one-way and two-way CFD-DEM coupling methods was compared. Additionally, simulated seed velocities were compared to the current pneumatic conveying theory for [...] Read more.
A series of computational fluid dynamics–discrete element method (CFD-DEM) simulations were applied to seed flow in horizontal-vertical 90-degree elbows. The performance of one-way and two-way CFD-DEM coupling methods was compared. Additionally, simulated seed velocities were compared to the current pneumatic conveying theory for each coupling method. Simulated field peas (Pisum sativum) were pneumatically conveyed to study the effect of air velocity (20, 25, and 30 m/s), seed rate (0.07, 0.21, and 0.42 kg/s), elbow diameter, D, (48.3, 60.3, and 72.4 mm), and elbow bend radius (1.5D, 2.5D, 3.5D, and 4.5D) on seed attributes (trajectory, velocity, and force). Results showed that seed velocity was significantly different between one-way and two-way coupling. Both methods resulted in nearly identical seed trajectory and force. Overall, simulated seed velocities had a strong correlation to values calculated through the current pneumatic conveyance theory. Dimensional analysis revealed that seed contact force was proportional to the elbow diameter to the power of 0.26 and inversely proportional to the elbow bend radius to the power of 0.5. Simulation results indicated that one-way coupling could be suitable to describe seed flow when two-way coupling may not be possible or practical. Full article
Show Figures

Figure 1

Article
Removable Pressure-Sensitive Adhesives Based on Acrylic Telomer Syrups
Processes 2023, 11(3), 885; https://doi.org/10.3390/pr11030885 - 15 Mar 2023
Viewed by 840
Abstract
Removable pressure-sensitive adhesives (PSAs) are used in the production of self-adhesive materials such as protective films, masking tapes or biomedical electrodes. This work presents a new and environmentally friendly method of obtaining this type of adhesive materials, i.e., photochemically induced free radical telomerization. [...] Read more.
Removable pressure-sensitive adhesives (PSAs) are used in the production of self-adhesive materials such as protective films, masking tapes or biomedical electrodes. This work presents a new and environmentally friendly method of obtaining this type of adhesive materials, i.e., photochemically induced free radical telomerization. Adhesive binders to removable PSAs, i.e., the photoreactive acrylic telomer syrups (ATS) were prepared from n-butyl acrylate, acrylic acid, and 4-acrylooxybenzophenone. Tetrabromomethane (CBr4) or bromotrichloromethane (CBrCl3) were used as the telogens. ATS was modified with unsaturated polybutadiene resin and a radical photoinitiator. Adhesive compositions were coated onto a carrier and UV cross-linked. The effects of the chemical nature of telomers (i.e., terminal Br or Cl atoms) and their molecular weight (K-value), as well as the cross-linking degree on adhesive properties of PSAs, were studied. It was found that with the increase in telogen content in the system, the dynamic viscosity of ATS and K-value of acrylic telomers decrease, and the conversion of monomers increases. CBr4 turned out to be a more effective chain transfer agent than CBrCl3. Moreover, telomers with terminal Br-atoms (7.5 mmol of CBr4), due to slightly lower molecular weights and viscosity, showed a higher photocrosslinking ability (which was confirmed by high cohesion results at 20 and 70 °C, i.e., >72 h). Generally, higher values of the temperature at which adhesive failure occurred were noted for PSAs based on ATS with lower telogen content (7.5 mmol), both CBr4 and CBrCl3. The excellent result for removable PSA was obtained in the case of telomer syrup Br-7.5 crosslinked with a 5 J/cm2 dose of UV-radiation (adhesion ca.1.3 N/25 mm, and cohesion > 72 h). Full article
(This article belongs to the Special Issue Design of Adhesive Bonded Joints)
Show Figures

Graphical abstract

Review
The Perspective of Using the System Ethanol-Ethyl Acetate in a Liquid Organic Hydrogen Carrier (LOHC) Cycle
Processes 2023, 11(3), 785; https://doi.org/10.3390/pr11030785 - 07 Mar 2023
Cited by 1 | Viewed by 1367
Abstract
Starting from bioethanol it is possible, by using an appropriate catalyst, to produce ethyl acetate in a single reaction step and pure hydrogen as a by-product. Two molecules of hydrogen can be obtained for each molecule of ethyl acetate produced. The mentioned reaction [...] Read more.
Starting from bioethanol it is possible, by using an appropriate catalyst, to produce ethyl acetate in a single reaction step and pure hydrogen as a by-product. Two molecules of hydrogen can be obtained for each molecule of ethyl acetate produced. The mentioned reaction is reversible, therefore, it is possible to hydrogenate ethyl acetate to reobtain ethanol, so closing the chemical cycle of a Liquid Organic Hydrogen Carrier (LOHC) process. In other words, bioethanol can be conveniently used as a hydrogen carrier. Many papers have been published in the literature dealing with both the ethanol dehydrogenation and the ethyl acetate hydrogenation to ethanol so demonstrating the feasibility of this process. In this review all the aspects of the entire LOHC cycle are considered and discussed. We examined in particular: the most convenient catalysts for the two main reactions, the best operative conditions, the kinetics of all the reactions involved in the process, the scaling up of both ethanol dehydrogenation and ethyl acetate hydrogenation from the laboratory to industrial plant, the techno-economic aspects of the process and the perspective for improvements. In particular, the use of bioethanol in a LOHC process has three main advantages: (1) the hydrogen carrier is a renewable resource; (2) ethanol and ethyl acetate are both green products benign for both the environment and human safety; (3) the processes of hydrogenation and dehydrogenation occur in relatively mild operative conditions of temperature and pressure and with high energetic efficiency. The main disadvantage with respect to other more conventional LOHC systems is the relatively low hydrogen storage density. Full article
Show Figures

Figure 1

Article
The Influence of Sample Size on Long-Term Performance of a 6σ Process
Processes 2023, 11(3), 779; https://doi.org/10.3390/pr11030779 - 06 Mar 2023
Viewed by 663
Abstract
There are many criticisms for the association between the Six Sigma concept and the two statistical metrics associated to 6σ processes: 1.5σ shift for maximum deviation and 3.4 PPM non-conformities for the long-term performance. As a result, the paper aims to carry out [...] Read more.
There are many criticisms for the association between the Six Sigma concept and the two statistical metrics associated to 6σ processes: 1.5σ shift for maximum deviation and 3.4 PPM non-conformities for the long-term performance. As a result, the paper aims to carry out an analysis of this problem, and the first result obtained is that a stable process can reach a maximum drift, but its value depends on the volume of the sample. It is also highlighted that, using only the criterion “values outside the control limits” for monitoring stability through the Xbar chart, a minimum value can be calculated for the long-term performance of a process depending on the sample size. The main conclusion resulting from the calculations is that, in the case of a 6σ process, the long-term performance is much better than the established value of 3400 PPB: For small volume samples of two pieces it is below 700 PPB, for three pieces it is below 200 PPB, and for samples with a volume greater than or equal to four pieces the performance already reaches values below 100 PPB! So, the long-term performance of 6σ processes is certainly even better than the known value of 3.4 PPM. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Article
Adiabatic Cooling System Working Process Investigation
Processes 2023, 11(3), 767; https://doi.org/10.3390/pr11030767 - 05 Mar 2023
Cited by 1 | Viewed by 1058
Abstract
Avoiding heat stress in cows is an important condition for animal productivity and the maintaining of animal health. For this, it is necessary to provide an optimal microclimate in cowsheds using systems of air cooling. The paper analyzes one of these systems—an air [...] Read more.
Avoiding heat stress in cows is an important condition for animal productivity and the maintaining of animal health. For this, it is necessary to provide an optimal microclimate in cowsheds using systems of air cooling. The paper analyzes one of these systems—an air humidification–cooling system. The research was carried out in a semi-insulated box-type cowshed containing 244 places. The changes in temperature, relative humidity, and temperature humidity index (THI) were studied for the air coming from outside and for the air inside the cowshed. Considering the fact that the cows were in the cowshed most of the time (51.5%) under heat stress, the use of a cooling system is appropriate. It was established that a cooling system is capable of compensating for heat released by animals. It was determined that with an increase in air temperature the relative efficiency of a cooling system increases. An intensive constant air exchange provided using fan operation avoids an excessive growth of relative humidity in a cowshed. To reduce the consumption of electricity and water, the paper suggests regulation of both the power of the fans of the system and the water supply to the nozzles not using temperature but using THI. Theoretically, when THI is used to regulate the operation of the cooling system, the consumption of electrical energy is reduced by 17.8%, and the consumption of water is reduced by 43.2% when compared to the option when the temperature is used to regulate the operation of a cooling system. Full article
Show Figures

Figure 1

Article
Effect of Addition of Zero-Valent Iron (Fe) and Magnetite (Fe3O4) on Methane Yield and Microbial Consortium in Anaerobic Digestion of Food Wastewater
Processes 2023, 11(3), 759; https://doi.org/10.3390/pr11030759 - 04 Mar 2023
Viewed by 696
Abstract
Direct interspecies electron transfer (DIET), which does not involve mediation by electron carriers, is realized by the addition of conductive materials to an anaerobic digester, which then activates syntrophism between acetogenic and methanogenic microorganisms. This study aimed to investigate the effect of the [...] Read more.
Direct interspecies electron transfer (DIET), which does not involve mediation by electron carriers, is realized by the addition of conductive materials to an anaerobic digester, which then activates syntrophism between acetogenic and methanogenic microorganisms. This study aimed to investigate the effect of the addition of two conductive materials, zero-valent iron (ZVI) and magnetite, on the methane production and microbial consortium via DIET in the anaerobic digestion of food wastewater. The operation of a batch reactor for food wastewater without the addition of the conductive materials yielded a biochemical methane potential (Bu), maximum methane production rate (Rm), and lag phase time (λ) of 0.380 Nm3 kg−1-VSadded, 15.73 mL day−1, and 0.541 days, respectively. Upon the addition of 1.5% ZVI, Bu and Rm increased significantly to 0.434 Nm3 kg−1-VSadded and 19.63 mL day−1, respectively, and λ was shortened to 0.065 days. Simultaneously, Methanomicrobiales increased from 26.60% to 46.90% and Methanosarcinales decreased from 14.20% to 1.50% as the ZVI input increased from 0% to 1.50%. Magnetite, at an input concentration of 1.00%, significantly increased the Bu and Rm to 0.431 Nm3 kg−1-VSadded and 18.44 mL day−1, respectively. However, although magnetite improves the efficiency of methanogenesis via DIET, the effect thereof on the methanogen community remains unclear. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

Article
Parametric Analysis of a Double Shaft, Batch-Type Paddle Mixer Using the Discrete Element Method (DEM)
Processes 2023, 11(3), 738; https://doi.org/10.3390/pr11030738 - 02 Mar 2023
Cited by 1 | Viewed by 1232
Abstract
To improve the understanding of the mixing performance of double shaft, batch-type paddle mixers, the discrete element method (DEM) in combination with a Plackett–Burman design of experiments simulation plan is used to identify factor significance on the system’s mixing performance. Effects of several [...] Read more.
To improve the understanding of the mixing performance of double shaft, batch-type paddle mixers, the discrete element method (DEM) in combination with a Plackett–Burman design of experiments simulation plan is used to identify factor significance on the system’s mixing performance. Effects of several factors, including three material properties (particle size, particle density and composition), three operational conditions (initial filling pattern, fill level and impeller rotational speed) and three geometric parameters (paddle size, paddle angle and paddle number), were quantitatively investigated using the relative standard deviation (RSD). Four key performance indicators (KPIs), namely the mixing quality, mixing time, average mixing power and energy required to reach a steady state, were defined to evaluate the performance of the double paddle mixer. The results show that the material property effects are not as significant as those of the operational conditions and geometric parameters. In particular, the geometric parameters were observed to significantly influence the energy consumption, while not affecting the mixing quality and mixing time, showing their potential towards designing more sustainable mixers. Furthermore, the analysis of granular temperature revealed that the centre area between the two paddles has a high diffusivity, which can be correlated to the mixing time. Full article
Show Figures

Figure 1

Article
Effect of the Mixer Design Parameters on the Performance of a Twin Paddle Blender: A DEM Study
Processes 2023, 11(3), 733; https://doi.org/10.3390/pr11030733 - 01 Mar 2023
Cited by 1 | Viewed by 1790
Abstract
The design parameters of a mixing system have a major impact on the quality of the final product. Therefore, identifying the optimum parameters of mixing systems is highly relevant to various industrial processes dealing with particulate flows. However, the studies on the influences [...] Read more.
The design parameters of a mixing system have a major impact on the quality of the final product. Therefore, identifying the optimum parameters of mixing systems is highly relevant to various industrial processes dealing with particulate flows. However, the studies on the influences of the mixer’s design features are still insufficient. In this study, the Discrete Element Method (DEM) is used to examine the impact of paddle angle, width, and gap on the mixing performance of a twin paddle blender. The mixing performance and particle flow are assessed using the relative standard deviation (RSD) mixing index, velocity field, diffusivity coefficient, granular temperature, the force acting on particles, and the mixer’s power consumption. The mixing performance is highest for a paddle angle of 0° at the cost of the highest forces acting on particles. The paddle width is indicated as a critical factor for achieving better mixing quality. In contrast, the powder mixing efficiency and the mixer’s power consumption are not significantly affected by the paddle gap. The results regarding the power consumption denote that the mixer using the paddle angle of 60° has the minimum power consumption. Moreover, increasing the paddle width results in the enhancement of the mixer’s power consumption. Full article
Show Figures

Figure 1

Article
A Study on the Corrosion Behaviour of Laser Textured Pure Aluminium in Saltwater
Processes 2023, 11(3), 721; https://doi.org/10.3390/pr11030721 - 28 Feb 2023
Viewed by 718
Abstract
Commercially pure aluminium is employed in several industrial applications. On some applications, the surface of this material needs to be functionalised. Laser surface texturing is a powerful tool to functionalise aluminium and aluminium alloy surfaces. However, the corrosion resistance of the laser textured [...] Read more.
Commercially pure aluminium is employed in several industrial applications. On some applications, the surface of this material needs to be functionalised. Laser surface texturing is a powerful tool to functionalise aluminium and aluminium alloy surfaces. However, the corrosion resistance of the laser textured aluminium alloy can be modified, and this has rarely been investigated in the literature. Consequently, the corrosion resistance of the laser textured commercially pure aluminium in saltwater was evaluated using several electrochemical techniques: asymmetric electrochemical noise, potentiodynamic polarisation curve and electrochemical impedance spectroscopy. Although the non-laser surface textured samples possessed higher kinetic corrosion resistance in the first hours of immersion, the corrosion mechanism (process group of the corrosion) was found to be more unstable than the laser textured specimens. The oxidised layer of the textured samples was also nobler than the native passive film. Full article
(This article belongs to the Special Issue New Frontiers in Electrochemistry)
Show Figures

Figure 1

Review
Current, Projected Performance and Costs of Thermal Energy Storage
Processes 2023, 11(3), 729; https://doi.org/10.3390/pr11030729 - 28 Feb 2023
Cited by 4 | Viewed by 1138
Abstract
The technology for storing thermal energy as sensible heat, latent heat, or thermochemical energy has greatly evolved in recent years, and it is expected to grow up to about 10.1 billion US dollars by 2027. A thermal energy storage (TES) system can significantly [...] Read more.
The technology for storing thermal energy as sensible heat, latent heat, or thermochemical energy has greatly evolved in recent years, and it is expected to grow up to about 10.1 billion US dollars by 2027. A thermal energy storage (TES) system can significantly improve industrial energy efficiency and eliminate the need for additional energy supply in commercial and residential applications. This study is a first-of-its-kind specific review of the current projected performance and costs of thermal energy storage. This paper presents an overview of the main typologies of sensible heat (SH-TES), latent heat (LH-TES), and thermochemical energy (TCS) as well as their application in European countries. With regard to future challenges, the installation of TES systems in buildings is being implemented at a rate of 5%; cogeneration application with TES is attested to 10.2%; TES installation in the industry sector accounts for 5% of the final energy consumption. From the market perspective, the share of TES is expected to be dominated by SH-TES technologies due to their residential and industrial applications. With regard to the cost, the SH-TES system is typically more affordable than the LH-TES system or the TCS system because it consists of a simple tank containing the medium and the charging/discharging equipment. Full article
(This article belongs to the Special Issue State-of-the-Art Thermal Energy Storage Systems)
Show Figures

Figure 1

Article
Candidatus Scalindua, a Biological Solution to Treat Saline Recirculating Aquaculture System Wastewater
Processes 2023, 11(3), 690; https://doi.org/10.3390/pr11030690 - 24 Feb 2023
Cited by 1 | Viewed by 1107
Abstract
Recirculating aquaculture systems (RAS) are promising candidates for the sustainable development of the aquaculture industry. A current limitation of RAS is the production and potential accumulation of nitrogenous wastes, ammonium (NH4+), nitrite (NO2) and nitrate (NO3 [...] Read more.
Recirculating aquaculture systems (RAS) are promising candidates for the sustainable development of the aquaculture industry. A current limitation of RAS is the production and potential accumulation of nitrogenous wastes, ammonium (NH4+), nitrite (NO2) and nitrate (NO3), which could affect fish health and welfare. In a previous experiment, we have demonstrated that the marine anammox bacteria Candidatus Scalindua was a promising candidate to treat the wastewater (WW) of marine, cold-water RAS. However, the activity of the bacteria was negatively impacted after a direct exposure to RAS WW. In the current study, we have further investigated the potential of Ca. Scalindua to treat marine RAS WW in a three-phase experiment. In the first phase (control, 83 days), Ca. Scalindua was fed a synthetic feed, enriched in NH4+, NO2 and trace element (TE) mix. Removal rates of 98.9% and 99.6% for NH4+ and NO2, respectively, were achieved. In the second phase (116 days), we gradually increased the exposure of Ca. Scalindua to nitrogen-enriched RAS WW over a period of about 80 days. In the last phase (79 days), we investigated the needs of TE supplementation for the Ca. Scalindua after they were fully acclimated to 100% RAS WW. Our results show that the gradual exposure of Ca. Scalindua resulted in a successful acclimation to 100% RAS WW, with maintained high removal rates of both NH4+ and NO2 throughout the experiment. Despite a slight decrease in relative abundance (from 21.4% to 16.7%), Ca. Scalindua remained the dominant species in the granules throughout the whole experiment. We conclude that Ca. Scalindua can be successfully used to treat marine RAS WW, without the addition of TE, once given enough time to acclimate to its new substrate. Future studies need to determine the specific needs for optimal RAS WW treatment by Ca. Scalindua at pilot scale. Full article
Show Figures

Graphical abstract

Article
Dynamic Parameter Simulations for a Novel Small-Scale Power-to-Ammonia Concept
Processes 2023, 11(3), 680; https://doi.org/10.3390/pr11030680 - 23 Feb 2023
Cited by 2 | Viewed by 932
Abstract
Ammonia is a promising carbon-free energy vector, hydrogen carrier, and efficient means for long-time hydrogen storage. Power-to-ammonia-to-power concepts, powered exclusively by electricity from renewable sources, will leave the carbon economy behind and enter a truly renewable era. However, the fluctuating nature of renewables [...] Read more.
Ammonia is a promising carbon-free energy vector, hydrogen carrier, and efficient means for long-time hydrogen storage. Power-to-ammonia-to-power concepts, powered exclusively by electricity from renewable sources, will leave the carbon economy behind and enter a truly renewable era. However, the fluctuating nature of renewables requires a good dynamic behavior of such concepts. Employing the software Aspen Plus Dynamics®, this paper investigates the dynamic behavior of a novel containerized power-to-ammonia solution to be tested at the University of Genova in 2023. Implementing a novel kinetic reaction model, the impacts of several deviations from the optimal values of the cycle parameters are investigated. The simulations provide practical guidance on how to best and safely operate the cycle. A total of ten scenarios were simulated, of which six are acceptable, two are desirable, and two should be avoided. However, all scenarios can be safely controlled by the control infrastructure. Full article
(This article belongs to the Special Issue Thermodynamic Analysis in Energy Storage and Conversion Processes)
Show Figures

Figure 1

Article
A Tool Condition Monitoring System Based on Low-Cost Sensors and an IoT Platform for Rapid Deployment
Processes 2023, 11(3), 668; https://doi.org/10.3390/pr11030668 - 22 Feb 2023
Cited by 1 | Viewed by 1017
Abstract
Tool condition monitoring (TCM) systems are key technologies for ensuring machining efficiency. Despite the large number of TCM solutions, these systems have not been implemented in industry, especially in small- and medium-sized enterprises (SMEs), mainly because of the need for invasive sensors, time-consuming [...] Read more.
Tool condition monitoring (TCM) systems are key technologies for ensuring machining efficiency. Despite the large number of TCM solutions, these systems have not been implemented in industry, especially in small- and medium-sized enterprises (SMEs), mainly because of the need for invasive sensors, time-consuming deployment solutions and a lack of straightforward, scalable solutions from the laboratory. The implementation of TCM solutions for the new era of the Industry 4.0 is encouraging practitioners to look for systems based on IoT (Internet of Things) platforms with plug and play capabilities, minimum interruption time during setup and minimal experimental tests. In this paper, we propose a TCM system based on low-cost and non-invasive sensors that are plug and play devices, an IoT platform for fast deployment and a mobile app for receiving operator feedback. The system is based on a sensing node by Arduino Uno Wi-Fi that acts as an edge-computing node to extract a similarity index for tool wear classification; a machine learning node based on a BeagleBone Black board that builds the machine learning model using a Python script; and an IoT platform to provide the communication infrastructure and register all data for future analytics. Experimental results on a CNC lathe show that a logistic regression model applied on the machine learning node can provide a low-cost and straightforward solution with an accuracy of 88% in tool wear classification. The complete solution has a cost of EUR 170 and only a few hours are required for deployment. Practitioners in SMEs can find the proposed approach interesting since fast results can be obtained and more complex analysis could be easily incorporated while production continues using the operator’s feedback from the mobile app. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Flexible Manufacturing Systems)
Show Figures

Figure 1

Article
Process-Specific Topology Optimization Method Based on Laser-Based Additive Manufacturing of AlSi10Mg Components: Material Characterization and Evaluation
Processes 2023, 11(3), 648; https://doi.org/10.3390/pr11030648 - 21 Feb 2023
Viewed by 940
Abstract
In the laser powder bed fusion process (PBF-LB), components are built up incrementally by locally melting metal powder with a laser beam. This process leads to inhomogeneous material properties of the manufactured components. By integrating these specific material properties into a topology optimization [...] Read more.
In the laser powder bed fusion process (PBF-LB), components are built up incrementally by locally melting metal powder with a laser beam. This process leads to inhomogeneous material properties of the manufactured components. By integrating these specific material properties into a topology optimization algorithm, product developers can be supported in the early phases of the product development process, such as design finding. For this purpose, a topology optimization method was developed, which takes the inhomogeneous material properties of components fabricated in the PBF-LB process into account. The complex pore architecture in PBF-LB components was studied with micro-computed tomography (µCT). Thereby, three characteristic regions of different porosity were identified and analyzed. The effective stiffness in each of these regions was determined by means of resonant ultrasonic spectroscopy (RUS) as well as finite element analysis. Afterward, the effective stiffness is iteratively considered in the developed topology optimization method. The resulting design proposals of two optimization cases were analyzed and compared to design proposals derived from a standard topology optimization. To evaluate the developed topology optimization method, the derived design proposals were additionally manufactured in the PBF-LB process, and the characteristic pore architecture was analyzed by means of µCT. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Review
Fenton Reaction–Unique but Still Mysterious
Processes 2023, 11(2), 432; https://doi.org/10.3390/pr11020432 - 01 Feb 2023
Cited by 3 | Viewed by 2934
Abstract
This study is devoted to the Fenton reaction, which, despite hundreds of reports in a number of scientific journals, provides opportunities for further investigation of its use as a method of advanced oxidation of organic macro- and micropollutants in its diverse variations and [...] Read more.
This study is devoted to the Fenton reaction, which, despite hundreds of reports in a number of scientific journals, provides opportunities for further investigation of its use as a method of advanced oxidation of organic macro- and micropollutants in its diverse variations and hybrid systems. It transpires that, for example, the choice of the concentrations and ratios of basic chemical substances, i.e., hydrogen peroxide and catalysts based on the Fe2+ ion or other transition metals in homogeneous and heterogeneous arrangements for reactions with various pollutants, is for now the result of the experimental determination of rather randomly selected quantities, requiring further optimizations. The research to date also shows the indispensability of the Fenton reaction related to environmental issues, as it represents the pillar of all advanced oxidation processes, regarding the idea of oxidative hydroxide radicals. This study tries to summarize not only the current knowledge of the Fenton process and identify its advantages, but also the problems that need to be solved. Based on these findings, we identified the necessary steps affecting its further development that need to be resolved and should be the focus of further research related to the Fenton process. Full article
(This article belongs to the Topic Advanced Oxidation Process: Applications and Prospects)
Show Figures

Figure 1

Article
Adhesive Thickness and Ageing Effects on the Mechanical Behaviour of Similar and Dissimilar Single Lap Joints Used in the Automotive Industry
Processes 2023, 11(2), 433; https://doi.org/10.3390/pr11020433 - 01 Feb 2023
Cited by 1 | Viewed by 994
Abstract
The effects of the adhesive thickness and overlap of a polyurethane adhesive have been studied by using different substrate configurations. Single lap joint (SLJ) specimens have been tested with homologous substrates, carbon fibre-reinforced plastics and painted metal substrates. Furthermore, a configuration with dissimilar [...] Read more.
The effects of the adhesive thickness and overlap of a polyurethane adhesive have been studied by using different substrate configurations. Single lap joint (SLJ) specimens have been tested with homologous substrates, carbon fibre-reinforced plastics and painted metal substrates. Furthermore, a configuration with dissimilar substrates has been included in the experimental campaign. Both types of these adhesive and substrates are used in the automotive industry. The bonding procedure has been carried out without a surface treatment in order to quantify the shear strength and stiffness when surface treatments are not used on the substrates, reproducing typical mass production conditions. Three different ageing cycles have been used to evaluate the effects on SLJ specimens. A finite element model that uses cohesive modelling has been built and optimised to assess the differences between the different adopted SLJ configurations. Full article
(This article belongs to the Special Issue Design of Adhesive Bonded Joints)
Show Figures

Figure 1

Article
Prediction of Molecular Weight of Petroleum Fluids by Empirical Correlations and Artificial Neuron Networks
Processes 2023, 11(2), 426; https://doi.org/10.3390/pr11020426 - 31 Jan 2023
Cited by 4 | Viewed by 1193
Abstract
The exactitude of petroleum fluid molecular weight correlations affects significantly the precision of petroleum engineering calculations and can make process design and trouble-shooting inaccurate. Some of the methods in the literature to predict petroleum fluid molecular weight are used in commercial software process [...] Read more.
The exactitude of petroleum fluid molecular weight correlations affects significantly the precision of petroleum engineering calculations and can make process design and trouble-shooting inaccurate. Some of the methods in the literature to predict petroleum fluid molecular weight are used in commercial software process simulators. According to statements made in the literature, the correlations of Lee–Kesler and Twu are the most used in petroleum engineering, and the other methods do not exhibit any significant advantages over the Lee–Kesler and Twu correlations. In order to verify which of the proposed in the literature correlations are the most appropriate for petroleum fluids with molecular weight variation between 70 and 1685 g/mol, 430 data points for boiling point, specific gravity, and molecular weight of petroleum fluids and individual hydrocarbons were extracted from 17 literature sources. Besides the existing correlations in the literature, two different techniques, nonlinear regression and artificial neural network (ANN), were employed to model the molecular weight of the 430 petroleum fluid samples. It was found that the ANN model demonstrated the best accuracy of prediction with a relative standard error (RSE) of 7.2%, followed by the newly developed nonlinear regression correlation with an RSE of 10.9%. The best available molecular weight correlations in the literature were those of API (RSE = 12.4%), Goosens (RSE = 13.9%); and Riazi and Daubert (RSE = 15.2%). The well known molecular weight correlations of Lee–Kesler, and Twu, for the data set of 430 data points, exhibited RSEs of 26.5, and 30.3% respectively. Full article
Show Figures

Figure 1

Article
Polycaprolactone with Glass Beads for 3D Printing Filaments
Processes 2023, 11(2), 395; https://doi.org/10.3390/pr11020395 - 28 Jan 2023
Cited by 2 | Viewed by 1439
Abstract
At present, 3D printing is experiencing a great boom. The demand for new materials for 3D printing is also related to its expansion. This paper deals with manufacturing innovative polymer composite filaments suitable for the Fused Filament Fabrication method in 3D printing. As [...] Read more.
At present, 3D printing is experiencing a great boom. The demand for new materials for 3D printing is also related to its expansion. This paper deals with manufacturing innovative polymer composite filaments suitable for the Fused Filament Fabrication method in 3D printing. As a filler, common and uncostly glass beads were used and mixed with biocompatible and biodegradable poly (ε-caprolactone), as a polymer matrix. This material was characterized via several physical-chemical methods. The Youngs modulus was increasing by about 30% with 20% loading of glass beads, and simultaneously, brittleness and elongations were decreased. The glass beads do not affect the shore hardness of filaments. The rheological measurement confirmed the material stability in a range of temperatures 75–120 °C. The presented work aimed to prepare lightweight biocompatible, cheap material with appropriate mechanical properties, lower printing temperature, and good printing processing. We can assess that the goal was fully met, and these filaments could be used for a wide range of applications. Full article
(This article belongs to the Special Issue Advances in Innovative Engineering Materials and Processes (II))
Show Figures

Figure 1

Article
Essential Oil of Greek Citrus sinensis cv New Hall - Citrus aurantium Pericarp: Effect upon Cellular Lipid Composition and Growth of Saccharomyces cerevisiae and Antimicrobial Activity against Bacteria, Fungi, and Human Pathogenic Microorganisms
Processes 2023, 11(2), 394; https://doi.org/10.3390/pr11020394 - 28 Jan 2023
Viewed by 960
Abstract
In this study, the essential oil (EO) from the peel of the Greek citrus hybrid Citrus sinensis cv New Hall - Citrus aurantium was studied in terms of its antimicrobial properties as well as its effect on Saccharomyces cerevisiae. According to the analysis [...] Read more.
In this study, the essential oil (EO) from the peel of the Greek citrus hybrid Citrus sinensis cv New Hall - Citrus aurantium was studied in terms of its antimicrobial properties as well as its effect on Saccharomyces cerevisiae. According to the analysis of the EO, 48 compounds are contained in it, with the main compounds being limonene, β-pinene, myrcene, α-pinene, valencene, and α-terpineol. As regards its antimicrobial properties, the EO was evaluated against nine human pathogenic microorganisms, six bacteria, and three fungi. Taking the results into account, it was apparent that Gram-negative bacteria were the most susceptible to the addition of the EO, followed by the Gram-positive bacteria, and finally the examined yeasts. The minimum inhibitory concentrations were found to be lower compared to other studies. Finally, the effect of the EO on the biochemical behavior of the yeast Saccharomyces cerevisiae LMBF Y-16 was investigated. As the concentration of the EO increased, the more the exponential phase of the microbial growth decreased; furthermore, the biomass yield on the glucose consumed significantly decreased with the addition of the oil on the medium. The addition of the EO in small concentrations (e.g., 0.3 mL/L) did not present a remarkable negative effect on both the final biomass concentration and maximum ethanol quantity produced. In contrast, utilization of the extract in higher concentrations (e.g., 1.2 mL/L) noticeably inhibited microbial growth as the highest biomass concentration achieved, maximum ethanol production, and yield of ethanol produced per glucose consumed drastically declined. Concerning the composition of cellular lipids, the addition of the EO induced an increment in the concentration of cellular palmitic, stearic, and linoleic acids, with a concomitant decrease in the cellular palmitoleic acid and oleic acids. Full article
(This article belongs to the Special Issue Microbial Cultures in Food Production)
Show Figures

Figure 1

Article
Brown Seaweed Sargassum-Based Sorbents for the Removal of Cr(III) Ions from Aqueous Solutions
Processes 2023, 11(2), 393; https://doi.org/10.3390/pr11020393 - 27 Jan 2023
Viewed by 845
Abstract
In this study, zinc oxide nanoparticles (ZnO NPs) were biosynthesized with the use of an extract derived from seaweed (Sargassum sp.) and used as a sorbent for the removal of Cr(III) ions from wastewater. The biosorption properties of the seaweed itself as [...] Read more.
In this study, zinc oxide nanoparticles (ZnO NPs) were biosynthesized with the use of an extract derived from seaweed (Sargassum sp.) and used as a sorbent for the removal of Cr(III) ions from wastewater. The biosorption properties of the seaweed itself as well as of the post-extraction residue were investigated for comparison. ZnO NPs were characterized with UV–vis, ICP-OES, FTIR, XRD, and SEM techniques. The sorption capacity of the (bio)sorbents was investigated as a function of contact time at different pH values and initial concentrations of metal ions. Sorption kinetics and isotherms were studied in order to comprehend the sorption nature and mechanism. The sorption kinetic data were well-fitted with the pseudo-second-order model, and the highest sorption capacity was calculated for ZnO NPs (137 mg/g), whereas those calculated for Sargassum sp. (82.0 mg/g) and the post-extraction residue (81.3 mg/g) were comparable (at pH 5 and 300 mg of Cr(III) ions/L). The adsorption isotherms for all sorbents were well described using the Langmuir model. According to these findings, ZnO NPs were superior to the sorption properties of the tested biosorbents and can be used as a potential sorbent for the removal of metal ions from wastewater. Renewable seaweed biomass can be used for the sustainable biosynthesis of nanoparticles used for environmental protection. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Article
Geometallurgical Detailing of Plant Operation within Open-Pit Strategic Mine Planning
Processes 2023, 11(2), 381; https://doi.org/10.3390/pr11020381 - 26 Jan 2023
Cited by 1 | Viewed by 823
Abstract
Mineral and metallurgical processing are crucial within the mineral value chain. These processes involve several stages wherein comminution is arguably the most important due to its high energy consumption, and its impact on subsequent extractive processes. Several geological properties of the orebody impact [...] Read more.
Mineral and metallurgical processing are crucial within the mineral value chain. These processes involve several stages wherein comminution is arguably the most important due to its high energy consumption, and its impact on subsequent extractive processes. Several geological properties of the orebody impact the efficiency of mineral processing and extractive metallurgy; scholars have therefore proposed to deal with the uncertain ore feed in terms of grades and rock types, incorporating operational modes that represent different plant configurations that provide coordinated system-wide responses. Even though these studies offer insights into how mine planning impacts the ore fed into the plant, the simultaneous optimization of mine plan and metallurgical plant design has been limited by the existing stochastic mine planning algorithms, which have only limited support for detailing operational modes. The present work offers to fill this gap for open-pit mines through a computationally efficient adaptation of a strategic mine planning algorithm. The adaptation incorporates a linear programming representation of the operational modes which forms a Dantzig-Wolfe decomposition, nested within a high-performing stochastic mine planning algorithm based on a variable neighborhood descent metaheuristic. Sample calculations are presented, loosely based on the Mount Isa deposit in Australia, in which a metallurgical plant upgrade is evaluated, showing that the upgraded design significantly decreases the requirement on the mining equipment, without significantly affecting the NPV. Full article
(This article belongs to the Special Issue Process Analysis and Simulation in Extractive Metallurgy)
Show Figures

Figure 1

Article
Enzymatic Hydrolysis of Complex Carbohydrates and the Mucus in a Mathematical Model of a Gut Reactor
Processes 2023, 11(2), 370; https://doi.org/10.3390/pr11020370 - 25 Jan 2023
Viewed by 672
Abstract
The human gut microbiota rely on complex carbohydrates for energy and growth, particularly dietary fiber and host-produced mucins. These complex carbohydrates must first be hydrolysed by certain microbial groups to enable cross-feeding by the gut microbial community. We consider a mathematical model of [...] Read more.
The human gut microbiota rely on complex carbohydrates for energy and growth, particularly dietary fiber and host-produced mucins. These complex carbohydrates must first be hydrolysed by certain microbial groups to enable cross-feeding by the gut microbial community. We consider a mathematical model of the enzymatic hydrolysis of complex carbohydrates into monomers by a microbial species. The resulting monomers are subsequently digested by the microbial species for growth. We first consider the microbial species in a single compartment continuous stirred-tank reactor where dietary fiber is the only available substrate. A two compartment configuration in which a side compartment connected by diffusion is also studied. The side compartment is taken to be the mucus layer of the human colon, providing refuge from washout and an additional source of complex carbohydrate in the form of mucins. The two models are studied using stability analysis, numerical exploration, and sensitivity analysis. The delay in substrate availability due to hydrolysis results in bistability and the unconditional asymptotic stability of the trivial equilibrium. The addition of the mucus compartment allows the microbial species to survive under conditions that would otherwise result in washout in a comparable single compartment reactor. This would suggest that depending on the features of the gut microbiota being studied, extracellular hydrolysis and a representation of the mucus layer should be included in mathematical and lab reactor models of the human gut microbiota. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

Article
Robustness Evaluation Process for Scheduling under Uncertainties
Processes 2023, 11(2), 371; https://doi.org/10.3390/pr11020371 - 25 Jan 2023
Cited by 1 | Viewed by 852
Abstract
Scheduling production is an important decision issue in the manufacturing domain. With the advent of the era of Industry 4.0, the basic generation of schedules becomes no longer sufficient to face the new constraints of flexibility and agility that characterize the new architecture [...] Read more.
Scheduling production is an important decision issue in the manufacturing domain. With the advent of the era of Industry 4.0, the basic generation of schedules becomes no longer sufficient to face the new constraints of flexibility and agility that characterize the new architecture of production systems. In this context, schedules must take into account an increasingly disrupted environment while maintaining a good performance level. This paper contributes to the identified field of smart manufacturing scheduling by proposing a complete process for assessing the robustness of schedule solutions: i.e., its ability to resist to uncertainties. This process focuses on helping the decision maker in choosing the best scheduling strategy to be implemented. It aims at considering the impact of uncertainties on the robustness performance of predictive schedules. Moreover, it is assumed that data upcoming from connected workshops are available, such that uncertainties can be identified and modelled by stochastic variables This process is supported by stochastic timed automata for modelling these uncertainties. The proposed approach is thus based on Stochastic Discrete Event Systems models and model checking techniques defining a highly reusable and modular process. The solution process is illustrated on an academic example and its performance (generecity and scalability) are deeply evaluated using statistical analysis. The proposed application of the evaluation process is based on the technological opportunities offered by the Industry 4.0. Full article
(This article belongs to the Special Issue Manufacturing Industry 4.0: Trends and Perspectives)
Show Figures

Figure 1

Article
Influence of Prefermentative Cold Maceration on the Chemical and Sensory Properties of Red Wines Produced in Warm Climates
Processes 2023, 11(2), 374; https://doi.org/10.3390/pr11020374 - 25 Jan 2023
Cited by 1 | Viewed by 939
Abstract
Red wines produced in warm climates generally possess a lower content of phenolic compounds and color structure than those produced in colder climates, which hinders bottle evolution. To improve these properties, cold maceration could be a useful procedure. To study the effect of [...] Read more.
Red wines produced in warm climates generally possess a lower content of phenolic compounds and color structure than those produced in colder climates, which hinders bottle evolution. To improve these properties, cold maceration could be a useful procedure. To study the effect of this technique, Tempranillo, Merlot and Syrah grape varieties cultivated in the Jerez area (Southwest Spain) were cold macerated at 4 °C for ten days before alcoholic fermentation. Their composition and characteristics compared to the directly fermented control grapes were analyzed for phenolic content, color, volatile compounds, and sensory properties. It has been verified that phenolic content increased by around 10% during the treatment, which was maintained after the alcohol fermentation, along with an increase in color intensity and aromatic profile. This modification on the composition provided better scores for appearance, aroma intensity, and aroma quality in sensory analysis. The evolution of all studied parameters during 12 months of aging in the bottle is also studied, confirming the advantages of this technique in preserving the compositional and sensory characteristics throughout the period studied. Full article
Show Figures

Figure 1

Article
Single-Step Fabrication of a Dual-Sensitive Chitosan Hydrogel by C-Mannich Reaction: Synthesis, Physicochemical Properties, and Screening of its Cu2+ Uptake
Processes 2023, 11(2), 354; https://doi.org/10.3390/pr11020354 - 22 Jan 2023
Cited by 2 | Viewed by 1442
Abstract
Uncovering the value of waste materials is one of the keys to sustainability. In this current work, valorization of chitosan was pursued to fabricate a novel modified chitosan functional hydrogel using a process-efficient protocol. The fabrication proceeds by a one-pot and single-step C-Mannich [...] Read more.
Uncovering the value of waste materials is one of the keys to sustainability. In this current work, valorization of chitosan was pursued to fabricate a novel modified chitosan functional hydrogel using a process-efficient protocol. The fabrication proceeds by a one-pot and single-step C-Mannich condensation of chitosan (3% w/v), glutaraldehyde (20 eq.), and 4-hydroxycoumarin (40 eq.) at 22 °C in 3% v/v acetic acid. The Mannich base modified chitosan hydrogel (CS-MB) exhibits a dual-responsive swelling behavior in response to pH and temperature that has not been observed in any other hydrogel systems. Combining the pre-defined optimal swelling pH (pH = 4) and temperature (T = 22 °C), the CS-MB was screened for its Cu2+ adsorption capacity at this condition. The CS-MB achieved an optimal adsorption capacity of 12.0 mg/g with 1.2 g/L adsorbent dosage after 36 h with agitation. The adsorption of Cu2+ on the surface of CS-MB was verified by EDS, and an overview of the adsorption sites was exhibited by FT-IR. The simply fabricated novel CS-MB hydrogel under investigation presents a unique response to external stimuli that exhibits a promise in heavy metal removal from aqueous media. Full article
(This article belongs to the Special Issue Advances in Value-Added Products from Waste)
Show Figures

Figure 1

Article
Micro-Stepping Motor for Instrument Panel Using PWM Drive Method
Processes 2023, 11(2), 329; https://doi.org/10.3390/pr11020329 - 19 Jan 2023
Viewed by 1335
Abstract
This study presents a pointer-driven controller for an instrument panel. The proposed pointer utilizes the permanent magnet (PM) stepping motor produced by the Japanese company NMB. This stepping motor is vibration-proof and tolerates noise jamming as well as wind and rain exposure. Moreover, [...] Read more.
This study presents a pointer-driven controller for an instrument panel. The proposed pointer utilizes the permanent magnet (PM) stepping motor produced by the Japanese company NMB. This stepping motor is vibration-proof and tolerates noise jamming as well as wind and rain exposure. Moreover, it has no mechanical structures and is low cost. Most importantly, it features accurate positioning; therefore, it can be used to measure vehicle speed, engine speed, fuel capacity, and temperature. However, the PM stepping motor of the NMB pointer requires 10 degrees for each step, and this low resolution results in roll hesitation as its steps. The aim of the current paper was to solve the problems of the large angle size and low resolution associated with this stepping motor. Based on two-phase excitation, we propose driving the motor using pulse width modulation (PWM). Specifically, we divided each 10-degree step into 100 equal parts. In other words, every step is 0.1 degrees. The resolution of pointer rotation can be increased by 100-fold by using the approach proposed in this paper. When applied to vehicle (or locomotive) instruments, the pointer can move very smoothly on the tachometer or oil gauge. Full article
Show Figures

Figure 1

Article
Microwave-Assisted Freeze-Drying with Frequency-Based Control Concepts via Solid-State Generators: A Simulative and Experimental Study
Processes 2023, 11(2), 327; https://doi.org/10.3390/pr11020327 - 19 Jan 2023
Cited by 1 | Viewed by 1416
Abstract
Freeze-drying is a common process to extend the shelf life of food and bioactive substances. Its main drawback is the long drying time and associated high production costs. Microwaves can be applied to significantly shorten the process. This study investigates the effects of [...] Read more.
Freeze-drying is a common process to extend the shelf life of food and bioactive substances. Its main drawback is the long drying time and associated high production costs. Microwaves can be applied to significantly shorten the process. This study investigates the effects of modulating the electromagnetic field in microwave-assisted freeze-drying (MFD). Control concepts based on microwave frequency are evaluated using electromagnetic simulations. The concepts are then applied to the first part of primary drying in a laboratory-scale system with solid-state generators. Targeted frequency modulation in the electromagnetic simulations enabled an increase in energy efficiency or heating homogeneity throughout MFD while having negligible effects on the power dissipation ratio between frozen and dried product areas. The simulations predicted the qualitative effects observed in the experimental proof of concept regarding energy efficiency and drying homogeneity. Additionally, shortened drying times were observed in the experiments with a targeted application of energy-efficient frequencies. However, differences occurred in the quantitative validation of the electromagnetic models for energy efficiency in dependence on frequency. Nevertheless, the models can be used for a time-efficient investigation of the qualitative effects of the control concepts. In summary, frequency-based control of MFD represents a promising approach for process control and intensification. Full article
Show Figures

Graphical abstract

Review
Review on Digestibility of Aerobic Granular Sludge
Processes 2023, 11(2), 326; https://doi.org/10.3390/pr11020326 - 19 Jan 2023
Viewed by 1181
Abstract
Full-scale wastewater treatment plants utilizing aerobic granular sludge technology are being built in many countries worldwide. As with all biological wastewater treatment plants, the produced waste biomass must be stabilized to protect the population, wildlife, and the environment. Digestion is usually used to [...] Read more.
Full-scale wastewater treatment plants utilizing aerobic granular sludge technology are being built in many countries worldwide. As with all biological wastewater treatment plants, the produced waste biomass must be stabilized to protect the population, wildlife, and the environment. Digestion is usually used to break down the complex organics in the waste sludge; however, the digestibility of aerobic granular sludge still needs to be fully understood compared to the conventional activated sludge. This paper reviews the studies published on the digestibility of waste aerobic granular sludge to date. Studies comparing aerobic granular sludge and activated sludge in terms of composition, properties, and digestibility are highlighted. The impact of biological composition and physical properties on the digestibility of sludge is reviewed in terms of biomethane production and biodegradability. The effect of pre-treatment is also covered. Areas for future research are presented. Full article
(This article belongs to the Special Issue Environmental Protection by Aerobic Granular Sludge Process)
Article
Fluidized Bed Spray Coating for Improved Mechanical Properties of Particles
Processes 2023, 11(2), 314; https://doi.org/10.3390/pr11020314 - 18 Jan 2023
Viewed by 1259
Abstract
When designing crash absorber particles for application as a filling material in the double-hull of ships, the main goal is to achieve an optimal mechanical performance, in combination with a low-density particle structure, while fulfilling several additional requirements regarding, for example, non-toxic and [...] Read more.
When designing crash absorber particles for application as a filling material in the double-hull of ships, the main goal is to achieve an optimal mechanical performance, in combination with a low-density particle structure, while fulfilling several additional requirements regarding, for example, non-toxic and hydrophobic behavior. In this study, a fluidized bed was used to coat Poraver® glass particles with Candelilla wax and silicone to attain these specifications. A uniform coating was achieved with wax, but the process turned out to be far more challenging when using silicone. To evaluate the suitability of coated particles as a granular filling material, and to compare their performances with that of untreated Poraver® particles, several mechanical tests, as well as structural investigations, were conducted. While no notable improvement in mechanical behavior was observed on the single-particle level, bulk tests showed promising results regarding compressibility and abrasion resistance of coated particles compared to untreated ones. Full article
(This article belongs to the Special Issue Computational and Experimental Study of Granulation in Fluidized Beds)
Show Figures

Graphical abstract

Article
NADES-Based Cork Extractives as Green Ingredients for Cosmetics and Textiles
Processes 2023, 11(2), 309; https://doi.org/10.3390/pr11020309 - 17 Jan 2023
Viewed by 1654
Abstract
The demand for products based on natural ingredients is increasing among cosmetic and textile consumers. Cork extracts contain components of interest with special properties, including antioxidant, anti-inflammatory, and antibacterial activities, that might improve the effectiveness of cosmetic formulations currently on the market and [...] Read more.
The demand for products based on natural ingredients is increasing among cosmetic and textile consumers. Cork extracts contain components of interest with special properties, including antioxidant, anti-inflammatory, and antibacterial activities, that might improve the effectiveness of cosmetic formulations currently on the market and may impart new characteristics to textiles. The main goal of this work was to investigate the effect of the incorporation of three cork extracts into two commercial cosmetic formulations (formulation A and B) and evaluate their role as textile dyeing agents. The extracts (E1, E2, and E3) were obtained from cork powder using natural deep eutectic solvents (NADES) (E1-NADES 1: lactic acid:glycerol, E2-NADES 2: lactic acid:glycine, and E3-NADES 3: lactic acid:sodium citrate) and applied in combination with the solvent. The impact of the extracts on the cosmetic formulations’ properties was evaluated in terms of pH, viscosity, antioxidant activity, transdermal permeation capacity, cytotoxicity, and organoleptic characteristics (odor, color, and appearance). The results demonstrated that the cork extracts improved the antioxidant performance of the formulations (90% reduction in DPPH (1,1-difenil-2-picril-hidrazil)). Moreover, low concentrations (5 mg/mL and 10 mg/mL) of extract did not present a cytotoxic effect on keratinocytes. Cotton fabrics were efficiently dyed with the NADES-based cork extracts which conferred to these substrates antioxidant (78% in DPPH reduction) and antibacterial abilities (inhibition halos: 12–15 mm). The application of cork extracts as ingredients in cosmetics or as dyeing/coloration agents for textile coloration is revealed to be a promising and green route to replace harmful ingredients normally used in industry. Full article
Show Figures

Figure 1

Article
Performance Monitoring of Wind Turbines Gearbox Utilising Artificial Neural Networks — Steps toward Successful Implementation of Predictive Maintenance Strategy
Processes 2023, 11(1), 269; https://doi.org/10.3390/pr11010269 - 13 Jan 2023
Viewed by 1230
Abstract
Manufacturing and energy sectors provide vast amounts of maintenance data and information which can be used proactively for performance monitoring and prognostic analysis which lead to improve maintenance planning and scheduling activities. This leads to reduced unplanned shutdowns, maintenance costs and any fatal [...] Read more.
Manufacturing and energy sectors provide vast amounts of maintenance data and information which can be used proactively for performance monitoring and prognostic analysis which lead to improve maintenance planning and scheduling activities. This leads to reduced unplanned shutdowns, maintenance costs and any fatal events that could affect the operations of the overall system. Performance and condition monitoring are among the most used strategies for prognostic and health management (PHM), in which different methods and techniques can be implemented to analyse maintenance and online data. Offshore wind turbines (WTs) are complex systems increasingly needing maintenance. This study proposes a performance monitoring system to monitor the performance of the WT power generation process by exploiting artificial neural networks (ANN) composed of different network designs and training algorithms, using simulated supervisory control and data acquisition (SCADA) data. The performance monitoring is based on different operating modes of the same type of wind turbine. The degradation models were developed based on the generated active power resulting from different degradation levels of the gearbox, which is a critical component of the WTs. The deviations of the wind power curves for all operating modes over time are monitored in terms of the resulting power residuals and are modelled using ANN with a unique network architecture. The monitoring process uses the recursive form of the cumulative summation (CUSUM) change detection algorithm to detect the state change point in which the gearbox efficiency is degraded by evaluating the power residuals predicted by the ANN model. To increase the monitoring effectiveness, a second ANN model was developed to predict the gearbox efficiency to monitor any failure that could happen once the efficiency degrades below a threshold. The results show a high degree of accuracy in power and efficiency prediction in addition to monitoring the abnormal state or deviations of the power generation process resulting from the degraded gearbox efficiency and their corresponding time slots. The developed monitoring method can be a valuable tool to provide maintenance experts with alarms and insights into the general state of the power generation process, which can be used for further maintenance decision-making. Full article
(This article belongs to the Special Issue Neural Computation and Applications for Sustainable Energy Systems)
Show Figures

Figure 1

Article
Influence of Water on the Production of Liquid Fuel Intermediates from Furfural via Aldol Condensation over MgAl Catalyst
Processes 2023, 11(1), 261; https://doi.org/10.3390/pr11010261 - 13 Jan 2023
Cited by 1 | Viewed by 1275
Abstract
The aldol condensation of furfural and acetone is considered a promising method for the production of liquid fuel intermediates. 4-(2-furyl)-3-buten-2-one (FAc) and 1,5-di-2-furanyl-1,4-pentadien-3-one (F2Ac) are the main products of the reaction, which can go through the hydrodeoxygenation process to convert to diesel and [...] Read more.
The aldol condensation of furfural and acetone is considered a promising method for the production of liquid fuel intermediates. 4-(2-furyl)-3-buten-2-one (FAc) and 1,5-di-2-furanyl-1,4-pentadien-3-one (F2Ac) are the main products of the reaction, which can go through the hydrodeoxygenation process to convert to diesel and jet fuel range fuels. Considering the present situation at the fuel-market related to crude oil shortage, the above-mentioned process seems to be a convenient path to obtain fuels in the diesel and kerosene range. This research focuses on the effect of water on the furfural conversion and product distribution during the aldol condensation. The catalyst chosen for this research was MgAl mixed oxide in molar ratio 3:1. The reaction was performed at 40 °C and 1 MPa in a continuous-flow reactor with and without water in the feedstock. The physicochemical properties of the catalyst were evaluated using different techniques. The catalyst lifetime decreased and the catalyst deactivation started faster by the addition of 5 wt.% water to the feedstock with the furfural to acetone ratio (F:Ac) of 1:2.5. Selectivity to FAc increased by 10% in the presence of water. The catalyst lifetime enhanced by increasing the F:Ac ratio from 1:2.5 to 1:5, in the presence of 5 wt.% water. The furfural conversion was 100% after 28 h of reaction, and then decreased gradually to 40% after 94 h of reaction. At higher F:Ac ratio, the selectivity to FAc was 10% higher, while the F2Ac was about 8% lower. Full article
(This article belongs to the Special Issue Catalysis for Production of Sustainable Fuels and Chemicals)
Show Figures

Figure 1

Article
The Relationship between Penetration, Tension, and Torsion for the Fracture of Surimi Gels: Application of Digital Image Correlation (DIC)
Processes 2023, 11(1), 265; https://doi.org/10.3390/pr11010265 - 13 Jan 2023
Cited by 1 | Viewed by 940
Abstract
A standardized method to evaluate the material properties of surimi gels has to be updated because of the lack of accuracy and the repeatability of data obtained from conventional ways. To investigate the relationships between the different texture measurement methods used in surimi [...] Read more.
A standardized method to evaluate the material properties of surimi gels has to be updated because of the lack of accuracy and the repeatability of data obtained from conventional ways. To investigate the relationships between the different texture measurement methods used in surimi gels, 250 batches of different surimi gels were used. The textural properties of surimi gels made with or without whey protein concentrate (SG-WP), potato starch (SG-PS), or dried egg white (SG-EW) were measured under torsion, tensile, and penetration tests. The correlation between the textural properties related to the deformation and hardness of surimi gels without any added ingredients (SG) was linear (R2 > 0.85). However, the R2 values of the shear strain and tensile strain of SG-WP and SG-EW were significantly lower than that of SG. The strain distributions of surimi gels with and without added ingredients were estimated by digital image correlation (DIC) analysis. The results showed that the local strain concentration in SG-WP and SG-EW was significantly higher than that of SG in the failure ring tensile test and the torsion test (p < 0.05). DIC analysis was an effective tool for evaluating the strain distribution characteristics of surimi gels upon fracture from torsion, penetration, and tension. Full article
Show Figures

Figure 1

Article
Performance of a Combined Bacteria/Zeolite Permeable Barrier on the Rehabilitation of Wastewater Containing Atrazine and Heavy Metals
Processes 2023, 11(1), 246; https://doi.org/10.3390/pr11010246 - 12 Jan 2023
Cited by 3 | Viewed by 1046
Abstract
Several chemicals, such as pesticides and heavy metals, are frequently encountered together in environment matrices, becoming a priority concerning the prevention of their emissions, as well as their removal from the environment. In this sense, this work aimed to evaluate the effectiveness of [...] Read more.
Several chemicals, such as pesticides and heavy metals, are frequently encountered together in environment matrices, becoming a priority concerning the prevention of their emissions, as well as their removal from the environment. In this sense, this work aimed to evaluate the effectiveness of a permeable biosorbent bio-barrier reactor (PBR) on the removal of atrazine and heavy metals (copper and zinc) from aqueous solutions. The permeable bio-barrier was built with a bacterial biofilm of R. viscosum supported on 13X zeolite. One of the aims of this work is the investigation of the toxic effects of atrazine, copper and zinc on the bacterial growth, as well as the assessment of their ability to adapt to repeated exposure to contaminants and to degrade atrazine. The growth of R. viscosum was not affected by concentrations of atrazine bellow 7 mg/L. However, copper and zinc in binary solutions were able to inhibit the growth of bacteria for all the concentrations tested (5 to 40 mg/L). The pre-acclimation of the bacteria to the contaminants allowed for an increase of 50% of the bacterial growth. Biodegradation tests showed that 35% of atrazine was removed/degraded, revealing that this herbicide is a recalcitrant compound that is hard to degrade by pure cultures. The development of a PBR with R. viscosum supported on zeolite was successfully performed and the removal rates were 85% for copper, 95% for zinc and 25% for atrazine, showing the potential of the sustainable and low-cost technology herein proposed. Full article
(This article belongs to the Special Issue Microbial Bioremediation of Environmental Pollution)
Show Figures

Figure 1

Article
150USRT Class R-513A Refrigerant Two-Stage Centrifugal Compressor Design Point and Separation Point Flow Field Simulation Analysis
Processes 2023, 11(1), 253; https://doi.org/10.3390/pr11010253 - 12 Jan 2023
Cited by 1 | Viewed by 879
Abstract
This study used computational fluid dynamics for low greenhouse effect refrigerant (R-513A) simulation analysis in the two-stage 150 USRT class oil-free centrifugal refrigerant compressor using integrated part load value (IPLV) and internal flow field. The compressor rotor speed and mass flow rate for [...] Read more.
This study used computational fluid dynamics for low greenhouse effect refrigerant (R-513A) simulation analysis in the two-stage 150 USRT class oil-free centrifugal refrigerant compressor using integrated part load value (IPLV) and internal flow field. The compressor rotor speed and mass flow rate for the IPLV working conditions with various loads were planned using Stage 1 and Stage 2 simulations, respectively. The performance and flow field numerical simulation analyses for the two-stage centrifugal compressor is discussed. This study used Ansys-CFX software for numerical simulation analysis and the conservation form of a 3D steady-state Navier–Stokes equation set with the finite volume discretization method for computation. The computing mode produced better computing efficiency and flexible mesh setting using the k-omega (k-ω) model, which has better computational performance in the near wall boundary layer and low Reynolds number flow field (used as the turbulence model) for simulation. The R-513A refrigerant property setting was calculated using the Soave–Redlich–Kwong gas equation. This study discusses the shaft work, pressure ratio, and isentropic efficiency and also describes the main research findings with the meridional pressure, isentropic efficiency contour maps, and flow field velocity vector diagrams. According to the numerical simulation results, in Stage 1 and Stage 2 simulations, the isentropic efficiency produced the highest numerical results in the 75% load case, which are 88.19% and 89.06%, respectively. The isentropic efficiency decreased to 75.93% and 82.26%, respectively, in the 25% load case. The flow field velocity vector diagram shows that in the 25% load case, there was back-flow field distribution near the impeller shroud. The compressor performance was also analyzed. Full article
Show Figures

Figure 1

Article
Determination of the Dominating Coalescence Pathways in Double Emulsion Formulations by Use of Microfluidic Emulsions
Processes 2023, 11(1), 234; https://doi.org/10.3390/pr11010234 - 11 Jan 2023
Viewed by 1348
Abstract
In water-in-oil-in-water (W1/O/W2) double emulsions several irreversible instability phenomena lead to changes. Besides diffusive processes, coalescence of droplets is the main cause of structural changes. In double emulsions, inner droplets can coalesce with each other (W1–W1 [...] Read more.
In water-in-oil-in-water (W1/O/W2) double emulsions several irreversible instability phenomena lead to changes. Besides diffusive processes, coalescence of droplets is the main cause of structural changes. In double emulsions, inner droplets can coalesce with each other (W1–W1 coalescence), inner droplets can be released via coalescence (W1–W2 coalescence) and oil droplets can coalesce with each other (O–O coalescence). Which of the coalescence pathways contributes most to the failure of the double emulsion structure cannot be determined by common measurement techniques. With monodisperse double emulsions produced with microfluidic techniques, each coalescence path can be observed and quantified simultaneously. By comparing the occurrence of all possible coalescence events, different hydrophilic surfactants in combination with PGPR are evaluated and discussed with regard to their applicability in double emulsion formulations. When variating the hydrophilic surfactant, the stability against all three coalescence mechanisms changes. This shows that measuring only one of the coalescence mechanisms is not sufficient to describe the stability of a double emulsion. While some surfactants are able to stabilize against all three possible coalescence mechanisms, some display mainly one of the coalescence mechanisms or in some cases all three mechanisms are observed simultaneously. Full article
Show Figures

Figure 1

Article
Identification of Cell Culture Factors Influencing Afucosylation Levels in Monoclonal Antibodies by Partial Least-Squares Regression and Variable Importance Metrics
Processes 2023, 11(1), 223; https://doi.org/10.3390/pr11010223 - 10 Jan 2023
Cited by 1 | Viewed by 1771
Abstract
Retrospective analysis of historic data for cell culture processes is a powerful tool to develop further process understanding. In particular, deploying retrospective analyses can identify important cell culture process parameters for controlling critical quality attributes, e.g., afucosylation, for the production of monoclonal antibodies [...] Read more.
Retrospective analysis of historic data for cell culture processes is a powerful tool to develop further process understanding. In particular, deploying retrospective analyses can identify important cell culture process parameters for controlling critical quality attributes, e.g., afucosylation, for the production of monoclonal antibodies (mAbs). However, a challenge of analyzing large cell culture data is the high correlation between regressors (particularly media composition), which makes traditional analyses, such as analysis of variance and multivariate linear regression, inappropriate. Instead, partial least-squares regression (PLSR) models, in combination with machine learning techniques such as variable importance metrics, are an orthogonal or alternative approach to identifying important regressors and overcoming the challenge of a highly covariant data structure. A specific workflow for the retrospective analysis of cell culture data is proposed that covers data curation, PLS regression, model analysis, and further steps. In this study, the proposed workflow was applied to data from four mAb products in an industrial cell culture process to identify significant process parameters that influence the afucosylation levels. The PLSR workflow successfully identified several significant parameters, such as temperature and media composition, to enhance process understanding of the relationship between cell culture processes and afucosylation levels. Full article
Show Figures

Graphical abstract

Article
Omega Phase Formation and Mechanical Properties of Ti–1.5 wt.% Mo and Ti–15 wt.% Mo Alloys after High-Pressure Torsion
Processes 2023, 11(1), 221; https://doi.org/10.3390/pr11010221 - 10 Jan 2023
Viewed by 867
Abstract
The paper analyzes the effect of severe plastic deformation by the high-pressure torsion (HPT) on phase transformations, in particular, on the formation of the ω-phase, and on mechanical properties, such as hardness and Young’s modulus, in Ti alloys with 1.5 and 15 wt.% [...] Read more.
The paper analyzes the effect of severe plastic deformation by the high-pressure torsion (HPT) on phase transformations, in particular, on the formation of the ω-phase, and on mechanical properties, such as hardness and Young’s modulus, in Ti alloys with 1.5 and 15 wt.% Mo. Both alloys were pre-annealed at 1000 °C for 24 h and quenched. The microstructure of the initial Ti–1.5 wt.% Mo alloy consisted of the α-phase and α’-martensite, and the initial Ti–15 wt.% Mo alloy contained polycrystalline β solid solution. The hardness tests of the samples were carried out under the load of 10 and 200 mN. The annealed alloys were subjected to HPT, and the micro- and nanohardness of both deformed samples increased up to ~1 GPa compared to their initial state. It turned out that the values of hardness (H) and Young’s modulus (E) depend on the applied load on the indenter: the higher the applied load, the lower H and higher E. It was also found that the HPT leads to the 30% increase in E for an alloy with 1.5 wt.% Mo and to the 9% decrease in E for the alloy with 15 wt.% Mo. Such a difference in the behavior of the Young’s modulus is associated with phase transformations caused by the HPT. Full article
(This article belongs to the Special Issue Recent Advances in Functional Materials Manufacturing and Processing)
Show Figures

Figure 1

Article
Perstraction: A Membrane-Assisted Liquid–Liquid Extraction of PFOA from Water
Processes 2023, 11(1), 217; https://doi.org/10.3390/pr11010217 - 10 Jan 2023
Viewed by 2994
Abstract
This study represents a first time that perstraction was assessed as a process to remove perfluorooctanoic acid (PFOA) from water. In the perstraction process, PFOA permeates through a membrane from water to a solvent. The membrane used in this study was polydimethylsiloxane (PDMS). [...] Read more.
This study represents a first time that perstraction was assessed as a process to remove perfluorooctanoic acid (PFOA) from water. In the perstraction process, PFOA permeates through a membrane from water to a solvent. The membrane used in this study was polydimethylsiloxane (PDMS). The experimental approach included the following: (1) measurement of partition coefficients for PFOA between water and selected solvents; (2) determination of solubility and diffusivity of the solvents in PDMS; (3) determination of the uptake of PFOA in PDMS; (4) determination of the effects of selected particles imbedded in the PDMS on PFOA uptake and solvent absorption; and (5) demonstration of the perstraction process to remove PFOA from water. PFOA preferentially partitioned to alcohols over water. In addition, ZnO and CuO particles in PDMS significantly enhanced the rate at which PFOA was absorbed in PDMS from deionized water due to ionic interactions. The perstraction of PFOA from deionized water into hexanol was demonstrated. However, perstraction was not successful at removing PFOA from tap water. While the application of perstraction to removing PFOA from water is limited, the idea was demonstrated and information contained within this manuscript is new. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

Article
A Method to Design Assembling Lines for Super Premium Efficiency Motors
Processes 2023, 11(1), 215; https://doi.org/10.3390/pr11010215 - 09 Jan 2023
Viewed by 716
Abstract
Producing highly efficient electric motors remains a challenge nowadays. Given that the legislation in the field requires the transition to the production of engines with increased efficiency, for manufacturing companies, switching from one generation of engines to another can be a difficult task. [...] Read more.
Producing highly efficient electric motors remains a challenge nowadays. Given that the legislation in the field requires the transition to the production of engines with increased efficiency, for manufacturing companies, switching from one generation of engines to another can be a difficult task. This paper analyzes ways to adapt the assembly of engines of the IE4 generation starting from the assembly lines of the engines of the previous generation, IE3. The analysis of the assembly process covers both the operator training part and the actual assembly part. Ten possible variants for the assembly line and specific decisional variables have been defined. The decision to choose the optimal assembly configuration was made using as management tools the matrix of consequences and utilities. The validation of the theoretical model of the assembly line was carried out through a case study built for two classes of electric motors, namely G90 and G180. For a total production of IE4 electric motors of 20,000 parts/month, the analyzed variants, respectively, the two sizes (G90 and G100) represent 35% (7000 parts/month) of the G90 size and 22% (4400 parts/month) the G100 size. The aim is to provide a new modular assembly concept, which depending on the orders, can use, as given in the conclusion of this article. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Article
Characterization of Flavoured Olive Oils of ‘Madural’ Variety
Processes 2023, 11(1), 205; https://doi.org/10.3390/pr11010205 - 09 Jan 2023
Viewed by 1159
Abstract
Flavoured oils arouse great interest among consumers in many countries due to their variety of flavours and versatility, especially in the culinary field. The aromatization of oils seeks to improve their sensory and nutritional properties, and extend their useful life due to the [...] Read more.
Flavoured oils arouse great interest among consumers in many countries due to their variety of flavours and versatility, especially in the culinary field. The aromatization of oils seeks to improve their sensory and nutritional properties, and extend their useful life due to the added substances can be beneficial as antioxidant and antimicrobial agent. In this research, olive oils of the ‘Madural’ variety from Trasos Montes region of Portugal have been obtained and flavoured with different aromatics herbs and condiments (flower of salt and bay leaf, garlic, rosemary and dehydrated lemon peel). The objective is to study the influence of the aromatic herbs and condiments on the physicochemical parameters of the oils: quality, purity, oxidative stability and microbiological analysis. It can be noted that the flavourings do not significantly alter the quality of the monovarietal oil, although, for some parameters, the excessive contact times can affect the category of the oil. On the other hand, the high content of antioxidants provided by flavouring agents can favour its stability and prolong its expiration. In this sense, the flavouring agent that contributes to stop the oxidation of the oil over time is salt + bay leaves, as higher oxidative stability values were detected than those obtained in monovarietal oil. However, oils flavoured with rosemary or lemon show a decrease over time for this parameter, which could indicate that this flavouring accelerates oxidation. In the case of oxidative stability referred to those flavoured with garlic, they present similar values to the monovarietal. The effect exerted by flavourings on the different parameters of the oils is complex, since it is influenced by the method followed and the operating variables established for flavouring. Full article
(This article belongs to the Special Issue Innovations and New Processes in the Olive Oil Industry)
Show Figures

Figure 1

Review
ABTS/TAC Methodology: Main Milestones and Recent Applications
Processes 2023, 11(1), 185; https://doi.org/10.3390/pr11010185 - 06 Jan 2023
Cited by 5 | Viewed by 4199
Abstract
ABTS (2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) is a widely used compound for determining the total antioxidant capacity (TAC) of plant extracts, food, clinical fluids, etc. This photometric assay is based on the reduction by the presence of antioxidant compounds of a well-known metastable radical ( [...] Read more.
ABTS (2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) is a widely used compound for determining the total antioxidant capacity (TAC) of plant extracts, food, clinical fluids, etc. This photometric assay is based on the reduction by the presence of antioxidant compounds of a well-known metastable radical (ABTS+) which can be formed via several different approaches and be used in many different determination methodologies such as automated photometric measures in microplates, clinical robots, valuable titrations, and previous liquid chromatographic separation. Another interesting aspect is that, in some cases, the ABTS/TAC method permits sequential hydrophilic and lipophilic antioxidant activity determinations, obtaining total antioxidant activity values through the summatory data of both types of antioxidants. In this work, we present a review of several aspects of the ABTS/TAC, highlighting the major achievements that have made this method so widely used, e.g., ABTS radical formation in hydrophilic or lipophilic reaction media, measurement strategies, automatization, and adaptation to high-throughput systems, as well as the pros and cons. Moreover, some recent examples of ABTS/TAC method applications in plant, human, and animal samples are discussed. Full article
(This article belongs to the Special Issue Total Antioxidant Capacity: Idea, Methods and Limitations)
Show Figures

Figure 1

Article
Copper Recovery from Aqueous Solutions by Hemp Shives: Adsorption Studies and Modeling
Processes 2023, 11(1), 191; https://doi.org/10.3390/pr11010191 - 06 Jan 2023
Cited by 1 | Viewed by 718
Abstract
This article describes the performance of hemp shives, a co-product of the hemp industry, when used as an adsorbent to recover copper present in aqueous solutions by a batch method. Two materials provided by an industrial partner, namely water-washed hemp shives (SHI-W) and [...] Read more.
This article describes the performance of hemp shives, a co-product of the hemp industry, when used as an adsorbent to recover copper present in aqueous solutions by a batch method. Two materials provided by an industrial partner, namely water-washed hemp shives (SHI-W) and Na2CO3-activated shives (SHI-C), were studied. Two important variables in the water treatment industry, i.e., pH and ionic strength of the solution, were studied to evaluate their impact on the purification performance of the materials. The results obtained clearly indicated that the performance in terms of Cu removal obtained from the SHI-C material was significantly higher than that obtained with SHI-W, mainly due to the structural and chemical modifications after carbonate treatment. For each dose of this adsorbent, a percentage of recovery between 90 and 100% was achieved, independently of the pH value in the range 3–5. In the case of SHI-W, the highest values were between 60 and 75% and were both dependent on the pH and the dose used. SHI-C was also able to selectively remove 70% of copper in the presence of NaCl 1 M. The analysis of the isotherms indicated the presence of a complex adsorption mechanism that cannot be described by only one isotherm model. Full article
(This article belongs to the Special Issue Eco-Friendly Materials in Emergent Contaminants Removal Processes)
Show Figures

Figure 1

Article
Investigation of Island Growth on Fluidized Particles Coated by Means of Aerosol
Processes 2023, 11(1), 165; https://doi.org/10.3390/pr11010165 - 05 Jan 2023
Viewed by 973
Abstract
In this study, an aerosol fluidized bed is used to coat particles. A new aerosol generator is used to obtain coating solution droplets with a diameter of around 1 μm or smaller. Glass particles, which have a mean diameter of 653 μ [...] Read more.
In this study, an aerosol fluidized bed is used to coat particles. A new aerosol generator is used to obtain coating solution droplets with a diameter of around 1 μm or smaller. Glass particles, which have a mean diameter of 653 μm, were the non-porous core material and the coating solution was sodium benzoate. Scanning electron microscope pictures were analyzed by MATLAB image processing for evaluating the coverage with the curvature effect. Monte Carlo simulation was used to describe the coating of fluidized particles by aerosol droplets. The purpose of this work was the determination of possible island growth on particles, and investigation of the reasons of it by comparing the experimental and simulation results. The preferential deposition of droplets on already occupied positions is seen as the main possible reason for island growth. Full article
(This article belongs to the Special Issue Computational and Experimental Study of Granulation in Fluidized Beds)
Show Figures

Figure 1

Article
Heat and Mass Transfer to Particles in One-Dimensional Oscillating Flows
Processes 2023, 11(1), 173; https://doi.org/10.3390/pr11010173 - 05 Jan 2023
Cited by 1 | Viewed by 743
Abstract
The heat and mass transfer to solid particles in one-dimensional oscillating flows are investigated in this work. A meta-correlation for the calculation of the Nusselt number (Sherwood number) is derived by comparing 33 correlations and data point sets from experiments and simulations. These [...] Read more.
The heat and mass transfer to solid particles in one-dimensional oscillating flows are investigated in this work. A meta-correlation for the calculation of the Nusselt number (Sherwood number) is derived by comparing 33 correlations and data point sets from experiments and simulations. These models are all unified by their dependencies on the amplitude parameter 103ϵ103 and the Reynolds number 101Re106, while the ϵ-Re plane is applied as a framework in order to graphically display the various models. This is the first study to consider this problem in the entire ϵ-Re plane quantitatively while taking preexisting asymptotic models for various areas of the ϵ-Re plane into account. Full article
(This article belongs to the Special Issue Multiphase Flows and Particle Technology)
Show Figures

Figure 1

Article
Parallel Walking-Worker Flexible Assembly Lines for High-Mix Low-Volume Demand
Processes 2023, 11(1), 172; https://doi.org/10.3390/pr11010172 - 05 Jan 2023
Viewed by 1144
Abstract
Demand trends towards mass customization drive the need for increasingly productive and flexible assembly operations. Walking-worker assembly lines can present advantages over fixed-worker systems. This article presents a multiproduct parallel walking-worker assembly line with shared automated stations, and evaluates its operational performance compared [...] Read more.
Demand trends towards mass customization drive the need for increasingly productive and flexible assembly operations. Walking-worker assembly lines can present advantages over fixed-worker systems. This article presents a multiproduct parallel walking-worker assembly line with shared automated stations, and evaluates its operational performance compared to semiautomated and manual fixed-worker lines. Simulation models were used to set up increasingly challenging scenarios based on an industrial case study. The results revealed that semiautomated parallel walking-worker lines could achieve greater productivity (+30%) than fixed-worker lines under high-mix low-volume demand conditions. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Article
Validation of Two Theoretically Derived Equations for Predicting pH in CO2 Biomethanisation
Processes 2023, 11(1), 113; https://doi.org/10.3390/pr11010113 - 31 Dec 2022
Cited by 2 | Viewed by 986
Abstract
CO2 biomethanisation is a rapidly emerging technology which can contribute to reducing greenhouse gas emissions through the more sustainable use of organic feedstocks. The major technical limitation for in situ systems is that the reaction causes CO2 depletion which drives up [...] Read more.
CO2 biomethanisation is a rapidly emerging technology which can contribute to reducing greenhouse gas emissions through the more sustainable use of organic feedstocks. The major technical limitation for in situ systems is that the reaction causes CO2 depletion which drives up pH, potentially leading to instability and even digestion failure. The study aimed to test fundamentally derived predictive equations as tools to manage H2 addition to anaerobic digesters. The methodology used data from the literature and from experimental digesters operated with excess H2 to a point of failure and subsequent recovery. Two equations were tested: the first relating pH to CO2 partial pressure (pCO2), and the second extending this to include the influence of volatile fatty acids and ammonia. The first equation gave good agreement for data from studies covering a wide range of operating conditions and digester types. Where agreement was not good, this could usually be explained, and in some cases improved, using the second equation, which also showed excellent predictive performance in the experimental study. The results validated the derived equations and identified typical coefficient values for some organic feedstocks. Both equations could provide a basis for process control of CO2 biomethanisation using routine monitoring of pH or pCO2 with additional analysis for volatile fatty acids and total ammonia nitrogen when required. Full article
(This article belongs to the Special Issue New Frontiers in Anaerobic Digestion (AD) Processes)
Show Figures

Graphical abstract

Article
Thin-Film Carbon Nitride (C2N)-Based Solar Cell Optimization Considering Zn1−xMgxO as a Buffer Layer
Processes 2023, 11(1), 91; https://doi.org/10.3390/pr11010091 - 29 Dec 2022
Cited by 1 | Viewed by 2200
Abstract
Carbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the photovoltaic (PV) research community owing to its excellent properties, such as high thermal and chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells. This study [...] Read more.
Carbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the photovoltaic (PV) research community owing to its excellent properties, such as high thermal and chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells. This study uses a detailed numerical investigation to explore the influence of C2N-based solar cells with zinc magnesium oxide (Zn1−xMgxO) as a buffer layer. The SCAPS-1D simulator is utilized to examine the performance of four Mg-doped buffer layers (x = 0.0625, 0.125, 0.1875, and 0.25) coupled with the C2N-based absorber layer. The influence of the absorber and buffer layers’ band alignment, quantum efficiency, thickness, doping density, defect density, and operating temperature are analyzed to improve the cell performance. Based on the simulations, increasing the buffer layer Mg concentration above x = 0.1875 reduces the device performance. Furthermore, it is found that increasing the absorber layer thickness is desirable for good device efficiency, whereas a doping density above 1015 cm−3 can degrade the cell performance. After optimization of the buffer layer thickness and doping density at 40 nm and 1018 cm−3, the cell displayed its maximum performance. Among the four structures, C2N/Zn0.8125Mg0.1875O demonstrated the highest PCE of 19.01% with a significant improvement in open circuit voltage (Voc), short circuit density (Jsc), and fill factor (FF). The recorded results are in good agreement with the standard theoretical studies. Full article
(This article belongs to the Special Issue Recent Advances in Electrical Power Engineering)
Show Figures

Figure 1

Review
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
Processes 2023, 11(1), 97; https://doi.org/10.3390/pr11010097 - 29 Dec 2022
Cited by 7 | Viewed by 3959
Abstract
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context, the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell [...] Read more.
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context, the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell technology for maritime applications has been rising during the last decade, pushing the research developed by academia and industries. This paper aims to present a comparative review of the fuel cell systems suitable for the maritime field, focusing on PEMFC and SOFC technologies. This choice is due to the spread of these fuel cell types concerning the other ones in the maritime field. The following issues are analyzed in detail: (i) the main characteristics of fuel cell systems; (ii) the available technology suppliers; (iii) international policies for fuel cells onboard ships; (iv) past and ongoing projects at the international level that aim to assess fuel cell applications in the maritime industry; (v) the possibility to apply fuel cell systems on different ship types. This review aims to be a reference and a guide to state both the limitations and the developing potential of fuel cell systems for different maritime applications. Full article
(This article belongs to the Special Issue Thermodynamic Analysis in Energy Storage and Conversion Processes)
Show Figures

Figure 1

Article
Bio-Innovative Pretreatment of Coarse Wool Fibers
Processes 2023, 11(1), 103; https://doi.org/10.3390/pr11010103 - 29 Dec 2022
Cited by 1 | Viewed by 1237
Abstract
From the textile manufacturers’ point of view, coarse and medullated fibers are undesirable in the production of fine woolen materials, but highly desirable in the production of textiles and yarns with special effects, especially in carpet production. For sustainability, the entire sheep fleece [...] Read more.
From the textile manufacturers’ point of view, coarse and medullated fibers are undesirable in the production of fine woolen materials, but highly desirable in the production of textiles and yarns with special effects, especially in carpet production. For sustainability, the entire sheep fleece should be used, including the coarse and medullated fibers. The raw wool must be scoured to obtain clean wool fibers without damage or excessive fiber entanglement, with a certain moisture content, low dirt content and residual grease for further processing, and proper color. In order to remove the impurities in raw wool with maximum efficiency, save energy and minimize the environmental impact, this study investigated the changes in some fiber properties during the scouring process due to the effect of the enzyme complex on coarse wool fibers. The effects were studied through the amount of clean wool fibers and impurities within the fleece, the fiber diameter and color. Conventional and enzyme scoured coarse wool were bleached with an unconventional bleaching agent, percarbonate, and compared to bleaching with hydrogen peroxide to achieve higher whiteness and brilliant color with minimal fiber property changes. The changes after the bleaching process were determined based on the sorption of moisture and dyes and the color parameters. The bio-innovative pretreatment with enzyme complex scouring and percarbonate bleaching resulted in excellent fiber properties even for coarse wool. SEM analysis was performed to confirm these results. Taking into account the sustainability of the process and environmental protection, enzyme complex scouring and percarbonate bleaching are recommended as pretreatment processes for raw coarse wool. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability)
Show Figures

Figure 1

Back to TopTop