The historical industrial waste deposit Gater was used to dispose of different metallurgy wastes from lead and zinc production. The metallurgical waste deposit was situated in the open space, between the tailing waste deposit Žitkovac and river Ibar flow. Large amounts of lead-containing wastes are produced in the non-ferrous metallurgical industry, such as lead ash and lead slag generated in Pb smelting, lead anode slime, and lead sludge produced in the raw lead refining process. In addition to the lead concentration, numerous valuable components are found in the lead refinery waste from the group of Critical Raw Materials, such as antimony, arsenic, bismuth, copper, nickel, magnesium, scandium, as well as Rare-Earth Elements. Samples with eight characteristic points were taken to obtain relevant data indicating a possible recycling method. The chemical composition analysis was conducted using ICP; the scanning was completed using SEM-EDS. The mineralogical composition was determined by using XRD. The chemical analysis showed a wide range of valuable metal concentrations, from Ag (in the range from 14.2 to 214.6, with an average 86.25 mg/kg) to heavy metals such as Cu (in the range from 282.7 to 28,298, with an average 10,683.7 mg/kg or 1.0683% that corresponds to some active mines), Ni and Zn (in the range from 1.259 to 69,853.4, with an average 14,304.81 mg/kg), Sc (in the range from 2.4 to 75.3, with an average 33.61 mg/kg), Pb (in the range from 862.6 to 154,027.5, with an average 45,046 mg/kg), Sb (in the range from 51.7 to 18,514.7, with an average 2267.8 mg/kg), Ca (in the range from 167.5 to 63,963, with an average 19,880 mg/kg), Mg (in the range from 668.3 to 76,824.5, with an average 31,670 mg/kg), and As (in the range from 62.9 to 24,328.1, with an average 5829.53 mg/kg). The mineralogy analysis shows that all metals are in the form of oxides, but in the case of As and Fe, SEM-EDS shows some portion of elemental lead, pyrite, and silica-magnesium-calcium oxides as slag and tailing waste residues. The proposed recovery process should start with leaching, and further investigation should decide on the type of leaching procedure and agents, considering the waste’s heterogeneous nature and acidity and toxicity.
Full article