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Abstract: Renewable energy is a key technology for achieving carbon-free energy transitions, and
solar power systems are one of the most reliable resources for achieving this. Solar power systems
have a simple structure and are inexpensive. However, depending on the input irradiance, the
existing maximum output control algorithm (P&O) has disadvantages due to its slow transient
response and steady-state vibration. Therefore, in this paper, we propose a maximum output control
algorithm based on a deep learning algorithm that can predict the input irradiance. This can achieve
a quick transient response and steady-state stability. The proposed method predicts the irradiance
based on the output voltage/current and power of the photovoltaic (PV) system and calculates the
duty ratio that can accurately follow the maximum output point according to the irradiance. The deep
learning model applied in this study was trained based on the experimental results using a 100 W PV
panel, and the performance of the proposed algorithm was verified by comparing its performance
with that of the conventional algorithm under various input irradiance conditions. The proposed
algorithm exhibits a maximum efficiency increase of 11.24% under the same input conditions as those
of the existing algorithms.

Keywords: deep-learning algorithm; irradiance prediction; maximum power point tracking (MPPT);
output power performance; perturb and observe algorithm (P&O); large-step (LS); short-step (SS);
photovoltaics

1. Introduction

Many countries are already making efforts on low carbon and greenhouse gas re-
duction for carbon neutrality. The method using renewable energy is the most important
policy for carbon neutrality [1]. Among existing renewable energy sources, photovoltaics
is a promising resource that provide large amounts of energy [2–4]. In addition, the PV
(solar photovoltaic) power generation system can easily expand its capacity and can be an
alternative to environmental pollution. Furthermore, it is characterized by low maintenance
costs. However, PV solar power faces several challenges, including high installation costs,
low efficiencies, and weather-dependent energy generation [5–8]. Taking into account
the changing environmental conditions, the efficiency of solar panels is between 9% and
17% [9]. In addition, the weather dependence of solar energy makes the solar system
an unstable power source. Therefore, a good control strategy is essential to ensure the
efficient and safe operation of PV systems. The I-V and P-V characteristic curves of a solar
panel change non-linearly according to the amount of insolation and the temperature of
the module. A unique point on the P-V curve, called the maximum power point (MPP),
is where the optimal power is delivered. Therefore, different tracking algorithms have
been proposed for the maximum power point tracking (MPPT) in PV applications under
different irradiance conditions [10–14]. Among MPPT technologies for photovoltaic power
generation, the industry mainly uses partial short current, partial open circuit voltage,
perturbation and observation (P&O), hill climbing (HC) and incremental conductance (IC)
methods due to their low cost [15–17]. Although the simple method is widely applied in
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industry, it does not guarantee accurate operations under varying insolation and shading
conditions. These methods have major problems involving low tracking rates and high
steady-state oscillations. Therefore, research has been conducted to overcome the shortcom-
ings of existing technology by applying soft computing-based MPPT technology. Typical
examples include fuzzy logic control, sliding mode control, artificial neural networks, and
genetic algorithms.

These MPPT methods can overcome the limitations of general algorithms by applying
computational methods and follow the global optimum. However, the computational burden
and complexity of these computational algorithms are unavoidable problems [5,18,19]. Re-
searchers have invested efforts into developing MPPT algorithms to improve the response
of PV systems. Ghassami et al. in [20] reported that an improved P&O MPPT algorithm
was introduced to improve the tracking efficiency of PV systems under rapidly changing
irradiation conditions. However, steady-state system oscillations exhibit slow tracking re-
sponses in PV systems with high oscillations. Elgendy et al. applied IC MPPT technology
to set a dynamic response that satisfies certain permissible conditions even under rapidly
changing insolation conditions. However, in order to satisfy this method, a special controller
specification is inevitably required, and the amount of calculation rapidly increased. Belkaid
et al. in [21] reported that an MPPT algorithm that considered IC trackers was presented to
improve the dynamic response of the system. However, it still had a relatively slow response
time compared with that of other algorithms. In [22], MPPT technology that considered a
photodiode as an irradiance sensor was presented. However, the proposed method was
applicable only to small and simple PV systems. Bayod-Rújula et al. applied a new MPPT
algorithm to improve the dynamic response and accuracy. The method shown in [23] had a
low relative MPP follow-up rate. In conclusion, a neural network-based [24] paper was stud-
ied. However, implementing an MPPT strategy involved a complex computational burden.
Ahmed et al. proposed an improved P&O algorithm, which enabled steady-state vibration
reductions. Ali et al. showed a fast transient response and changed the size of the voltage
increment step according to the PV operating area. However, steady-state oscillations were
observed in the PV system. Existing studies focused on fast response or steady-state vibration
reduction; however, there are limitations.

Recently, extensive research on deep learning algorithms focused on the excellent
learning ability from environmental interaction historical data instead of the requirements
of the complex mathematical models of control systems as in the conventional MPPT
method [25,26]. In Kofinas et al.’s study [27], RL is a potential tool for optimally solving
MPPT control problems because of its shorter computation time and higher convergence
stability compared to meta-heuristic methods. In particular, research implementing deep
learning for MPPT control of solar energy conversion systems can be found in [27–29].
However, this approach has the disadvantage of data count. Kofinas et al. [27] used a
combination of 800 states and 5 actions to form a state action space of 4000 state actions,
whereas Hsu et al. [28] and Youssef [29] only used four states. As a result, systems with
large states and workspaces required longer periods for computation. Additionally, a new
deep learning algorithm-based MPPT control for PV systems under partial shade conditions
has been developed [30] and a deep learning algorithm approach has been studied to deal
with the global maximum power point tracking problem [31,32]. However, in general,
the main drawbacks of the aforementioned methods are that they are fast computations
and use large amounts of data. However, the method proposed in this paper was able to
implement the algorithm of the deep learning model with a simple learned model.

Therefore, in this paper, irradiance is predicted using a deep learning algorithm, and
the duty ratio that follows the maximum output point is calculated based on these predicted
irradiance data. Because it precisely follows the optimum point, it is possible to minimize
the vibration with a quick dynamic response and steady-state operation. The proposed
tracking algorithm was applied to various actual insolation data, which confirmed the
efficiency of the proposed tracking algorithm in the irradiance estimation strategy. The
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proposed algorithm showed an efficiency increase of up to 11.24% under actual insolation
conditions compared with the existing algorithm.

The remainder of this paper is organized as follows. Section 2 describes the modeling
and control algorithm of the existing solar power generation system, and Section 3 describes
the proposed algorithm. Section 4 describes the deep learning model applied in this study,
and Section 5 presents the results and analysis. Finally, conclusions are presented in
Section 6.

2. Solar Power Generation System Modeling and Conventional Control Algorithms
2.1. PV Cell Modeling

PV cells are the main component of solar power systems that can be used by customers
to convert solar energy into electrical energy. Solar cells can be combined in parallel and
series to change the output voltage, current and rating of the solar panel. That is, the power
required by the load can be satisfied by configuring the solar cells in series and in parallel.

Figure 1 shows the configuration of a typical PV system. The solar power system
consists of two stages. The solar cell outputs a DC voltage that charges the battery via a
DC/DC converter, and the battery voltage is connected to the grid via an AC inverter. The
mathematical modeling of the solar panel can be represented by a simplified model, and
the equivalent circuit model is shown in Figure 2.
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Figure 1. Configuration diagram of a typical PV system with two stages (DC-DC converter and
DC-AC inverter).
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The voltage–current relationship in a PV system can be described as follows:

VPV =
A·K·T

q
ln
(

Iph/IPV + 1
)

(1)

IPV = Iph − IPVO

[
exp

(
q(VPV + IPV Rs)

A·K·T

)
− 1
]
− VPV + IPV Rs

Rsh
(2)

where Rs and Rsh are the series and shunt resistors, respectively; Iph is the photocurrent
of the PV cell; A is the p-n ideality factor; IPVO is the reverse saturation current; K is the
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Boltzmann constant (1.38 × 10−23 J/K); q is the electronic charge (1.602 × 10−19 C); T is the
temperature of the cell (in Kelvin).

To optimize the fill factor, the ratio of the photocurrent to the reverse saturation
current was maximized while minimizing the series resistance, Rs, and the maximum shunt
resistance Rsh within the PV cell. Therefore, it can be assumed that the series resistor Rs is
close to zero and the shunt resistor Rsh is close to infinity. We can simplify (2) by ignoring
Rs and Rsh, as shown in the formula below [33].

IPV = Iph − IPVO

[
exp

(
q(VPV + IPV Rs)

A·K·T

)
− 1
]

(3)

2.2. Boost Converter (BC) Modeling

The power conversion system (DC-DC) is the path that connects the solar cell and the
grid inverter. The power conversion system (DC-DC) is used for boosting DC voltages and
for the optimal operation of solar panels [34].

ω =

{
0, openswitch

1, closedswitch
(4)

The dynamic model of the power converter (DC-DC) can be expressed as follows [35].

didc
dt

=
VPV − Vo

L
+ ω

Vo

L
(5)

dVo

dt
=

idc
Cout

− ω
idc

Cout
(6)

Here, Vo is the DC-DC output DC voltage, and idc is the current of the grid inverter.
The power converter’s (DC-DC) output voltage can be expressed as a function of input
voltage Vpv and converter switch duty ratio D. L represents an inductor of BC, and Cout
represents the output filter capacitor.

2.3. Conventional MPPT Control Algorithm (P&O Algorithm)

The PV cell must implement an MPPT algorithm so that the voltage operates close
to the maximum power point in an environment with changing inputs. A solar power
system consists of a PV panel, DC/DC converter, battery, and control algorithm, which are
typically controlled by a controller to keep track of maximum power. The MPPT is also
used to provide a constant voltage to the required load.

Because the general MPPT method is simple and easy to implement, it is currently
applied in multiple areas in the industry. The most applied P&O algorithm changes the
output power (∆P) of the solar panel and changes the operating position appropriately
through voltage increments (∆V) in Figure 3. The red line in Figure 3 is an increasing
voltage and the blue line is a decreasing voltage. That is, the maximum power point is
found by changing the step up to the maximum power point (MPP). The ratio of the change
in power (P) to voltage (V) is considered the duty ratio, D, which is the slope of each
operating point over a short sampling time. That is, when the magnitude of the voltage
increment increased, a fast response can be obtained, but the stability of the steady state
is reduced. Conversely, when the magnitude of the voltage increment decreases, a fast
response cannot be ob-tained. P&O methods must overcome these limitations.
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Figure 3. Control strategy of the conventional P&O algorithm.

3. Proposed Maximum Power Point Tracking Algorithm

The PV system must apply the MPPT algorithm to operate close to the maximum
power, depending on the environmental inputs. Among the existing PV system MPPT
methods, the P&O method has many advantages, such as the simplicity of control imple-
mentation and simple settings; however, the voltage ripple may increase at the optimum
point depending on the voltage’s increment size. It also has the disadvantage that tracking
can be extremely slow during transient periods. Therefore, in this study, we applied a
deep learning algorithm to predict the illuminance, and based on the illuminance, we
directly calculated the duty ratio that could follow the MPP. As the maximum output point
changes according to the illuminance of the solar power generation system, it is always
possible to quickly calculate the duty ratio to follow the maximum output point to predict
the illuminance. A deep learning algorithm for predicting illuminance constructs a deep
learning neural network based on the solar panel voltage and current. Figure 4 shows a
block diagram of the proposed algorithm for PV power generation.
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The proposed algorithm predicts illuminance by composing a deep-learning model
based on the solar panel voltage and current. Long short-term memory (LSTM) was applied
to the deep learning algorithm used in this study, and learning was performed on training
datasets of PV voltage and current according to irradiation changes. Based on the predicted
illuminance, the solar power generation’s reference voltage that follows the maximum
output point can be calculated. Figure 5 shows the change in the maximum output point
according to the change in irradiation. That is, the proposed method can calculate the
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solar power generation reference voltage and obtain the maximum output point from the
amount of irradiation based on the predicted illuminance.
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Based on the solar power generation reference and output voltages, the duty ratio (D)
of the DC/DC converter can be calculated as follows.

D = 1 −
V∗

PV
Vo

(7)

The proposed method based on the calculated duty ratio has the advantage of being
able to accurately follow the maximum output point even if the amount of irradiation
changes and it is able to quickly follow the maximum output point. It can mitigate
disadvantages of the widely used P&O method: steady-state voltage ripple and slow
tracking speeds of the transients. Figure 6 shows a flowchart of the proposed algorithm.
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4. Deep Learning Algorithm Model Construction

Experimental data obtained using the DFSP-100M model of DOKIO were used as
training data. Figure 7 shows images of the experimental setup, including the solar panel,



Processes 2022, 10, 2201 7 of 15

load system, and instrumentation used in this study. Table 1 lists the specifications of
the solar panels used in this study. The generated voltage and current of the solar power
generation system were used. Based on this, a survey to follow the maximum output
point was predicted. Because the output power generation voltage and current are directly
affected by irradiation, the voltage and current of the solar power generation system were
used when constructing the deep learning neural network.
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Table 1. DOKIO DFSP-100M PV Module Characteristics.

Maximum Power, PMPP 100 (W)

Voltage at MPP, VMPP 18.00 (V)
Current at MPP, IMPP 5.56 (A)

Open circuit voltage, VOC 22.50 (V)
Short circuit current, ISC 5.81 (A)

Temperature, ate STC 25 ◦C

Irradiation data were obtained by measuring the voltage and current of the PV system
while changing the amount of irradiation (200, 400, 600, and 800 W/m2). The values of
the measured data were interpolated using linear interpolation and extrapolation. For
survey data that could not be obtained via experiments, additional data were derived using
MATLAB/Simulink PV module blocks based on the specifications presented in Table 1.
In addition, the derived data verified the validity of the data by directly comparing them
with the experimental data. Figure 8 shows the data obtained during the experiment.
The solid line in Figure 8 represents the simulation result, and the dot represents the
experimental result.

In the deep learning algorithms, we constructed a model that predicted the output
based on training data. The root mean squared error was used in the model’s evaluation to
update the model weights. The loss model used for model evaluation can be constructed
as follows:

RMSE =

√
1
N ∑

(
Gmeasure − Gpredict

)2
(8)

where Gmeasure is the actual value, Gpredict is the predicted value, and N is the sample size.
A low root mean square error (RMSE) value indicated a well-trained model. The weight
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update period was optimized using the Adam function of the KERAS optimizer, which
is an advanced gradient-descent method. Keras is an open-source neural network library
written in Python.
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Figure 9 shows the results of the correlation analysis between the data for the deep-
learning model. The closer the number is to 1, the higher the correlation; the closer it is
to 0, the lower the correlation. In addition, the closer the color is to white, the higher the
correlation, and the closer the color is to black, the lower the correlation. The deep learning
model uses the output voltage, current, and power of the PV system as input data and
provides the input illuminance as the prediction result.
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Figure 10 shows the actual and predicted illuminance values using the LSTM algorithm.
The predicted value of illuminance via the deep learning model based on the input data
according to the actual illuminance change shows results that are almost similar to the
actual value. Because the proposed method controls the maximum output using the
predicted illuminance, accurately tracking the actual value reaches the maximum output
point and reduces the variability at steady state. The analysis of the output data according
to the error change is performed in detail in the subsequent section.



Processes 2022, 10, 2201 9 of 15

Processes 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 

Figure 10 shows the actual and predicted illuminance values using the LSTM algo-

rithm. The predicted value of illuminance via the deep learning model based on the input 

data according to the actual illuminance change shows results that are almost similar to 

the actual value. Because the proposed method controls the maximum output using the 

predicted illuminance, accurately tracking the actual value reaches the maximum output 

point and reduces the variability at steady state. The analysis of the output data according 

to the error change is performed in detail in the subsequent section. 

 

Figure 10. Comparison of real and predicted data to check deep learning model performance. 

5. Results and Discussion 

To evaluate the efficiency of the proposed MPPT algorithm, a detailed model of the 

PV system shown in Figure 1 was implemented in Matlab/Simulink. To evaluate the per-

formance of the proposed MPPT algorithm, PV systems were simulated under various 

solar irradiance profiles (e.g., ramps, sine waves, and daily irradiance profiles), assuming 

a fixed ambient temperature of 25 °C. In addition, a comparison with the existing P&O 

algorithm was conducted to highlight the advantages of the proposed MPPT strategy. The 

existing MPPT method uses voltage increments to reach the maximum output point. Since 

there are advantages and disadvantages depending on the size of the voltage increment, 

in this paper, the voltage increment that changes greatly and the voltage increment that 

has minimal changes are applied. The existing P&O algorithm applies a large-step P&O 

(LS-PO) algorithm with a large voltage increment and a short-step P&O (SS-PO) algorithm 

with a small voltage increment. Overall, the proposed deep-learning-based maximum 

power control algorithm shows improved MPPT efficiency and dynamic performance 

compared to existing algorithms. Additionally, the analysis of MPPT method can be ana-

lyzed by applying IET EN50530 to more accurately analyze the performance of the algo-

rithm [36]. The parameters of DC-DC converter for simulation are shown in Table 2. 

Table 2. System Specifications. 

Description DC-DC Boost Converter 

Input capacitor (Cin) 200 μF 

Output capacitor (Cf) 20 μF 

Output inductor (Lf) 15 mH 

Switching frequency 10 kHz 

The result of Figure 11a is congested with abrupt and gentle changes in the changing 

illuminance profile. The performance of the proposed method was evaluated under these 

conditions. The proposed method showed superior tracking performance than existing 

methods (LS-PO SS-PO). It showed the same results for output, efficiency, and volt-

age/current. Clearly, the algorithm proposed in Figure 11b,c provides steady-state oscil-

lations of low power/current and small stabilization time compared to the conventional 

method. In addition, as shown in Figure 11d, the proposed method exhibits steady-state 

oscillations of low voltage, whereas the existing SS-PO strategy and LS-PO technology 

exhibit high steady-state oscillations. Therefore, the proposed algorithm exhibits a faster 

Figure 10. Comparison of real and predicted data to check deep learning model performance.

5. Results and Discussion

To evaluate the efficiency of the proposed MPPT algorithm, a detailed model of the
PV system shown in Figure 1 was implemented in Matlab/Simulink. To evaluate the
performance of the proposed MPPT algorithm, PV systems were simulated under various
solar irradiance profiles (e.g., ramps, sine waves, and daily irradiance profiles), assuming
a fixed ambient temperature of 25 ◦C. In addition, a comparison with the existing P&O
algorithm was conducted to highlight the advantages of the proposed MPPT strategy. The
existing MPPT method uses voltage increments to reach the maximum output point. Since
there are advantages and disadvantages depending on the size of the voltage increment, in
this paper, the voltage increment that changes greatly and the voltage increment that has
minimal changes are applied. The existing P&O algorithm applies a large-step P&O (LS-PO)
algorithm with a large voltage increment and a short-step P&O (SS-PO) algorithm with
a small voltage increment. Overall, the proposed deep-learning-based maximum power
control algorithm shows improved MPPT efficiency and dynamic performance compared
to existing algorithms. Additionally, the analysis of MPPT method can be analyzed by
applying IET EN50530 to more accurately analyze the performance of the algorithm [36].
The parameters of DC-DC converter for simulation are shown in Table 2.

Table 2. System Specifications.

Description DC-DC Boost Converter

Input capacitor (Cin) 200 µF
Output capacitor (Cf) 20 µF
Output inductor (Lf) 15 mH
Switching frequency 10 kHz

The result of Figure 11a is congested with abrupt and gentle changes in the chang-
ing illuminance profile. The performance of the proposed method was evaluated under
these conditions. The proposed method showed superior tracking performance than
existing methods (LS-PO SS-PO). It showed the same results for output, efficiency, and
voltage/current. Clearly, the algorithm proposed in Figure 11b,c provides steady-state os-
cillations of low power/current and small stabilization time compared to the conventional
method. In addition, as shown in Figure 11d, the proposed method exhibits steady-state
oscillations of low voltage, whereas the existing SS-PO strategy and LS-PO technology
exhibit high steady-state oscillations. Therefore, the proposed algorithm exhibits a faster
response and lower steady-state oscillation than the LS-PO and SS-PO. Regarding the
performance improvement, the proposed method, as shown in Figure 11e, showed a high
value with an average efficiency of 98.4% due to the low steady-state vibration. Meanwhile,
the SS-PO algorithm shows an improved efficiency in the steady state but a significant
decrease in efficiency in the transient state due to slow operations (86.1%). The LS-PO
algorithm increased efficiencies under transient conditions due to its fast operation but
decreased efficiencies under steady-state conditions (85.9%). In conclusion, the proposed
algorithm shows improved tracking efficiency in transient and steady-state conditions,
increased MPPT speed, and reduced steady-state oscillations.
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Although the dynamic characteristics of Figure 12 are abrupt conditions, the pro-
posed method showed excellent performance even under non-linear slope conditions. The
proposed algorithm showed excellent performance even in the sine wave illuminance
profile. As shown in Figure 12a, the sinusoidal irradiance profile starts at 300 W/m2,
exhibits a sinusoidal change at t = 0.9 s, peaks at 400 W/m2 and decreases at 300 W/m2.
The tracking performance of the proposed algorithm and the existing technique can be
compared in terms of the output power and current/voltage, as shown in Figure 12b–d.
Evidently, the proposed algorithm improved the overall performance compared to the
existing P&O-MPPT technology. However, the proposed algorithm shows the highest
efficiency in Figure 12e because of its high tracking performance and steady-state stability.
Figure 13 compares the performance based on the profile for one day, and the proposed
method shows excellent performance.

Figure 14 shows a histogram of the output voltage and the efficiency of the PV system.
As shown in Figure 14a, the proposed method accurately tracks the PV voltage for following
the MPP; therefore, it can be confirmed that the voltage fluctuation is low in the steady state.
However, existing PO methods significantly fluctuate the PV voltage to follow the MPP.
Accordingly, as shown in Figure 14b, the proposed method has high efficiencies even when
the input illuminance changes. However, it can be confirmed that the existing method
greatly changes efficiencies according to the illuminance change. Table 3 summarizes the
results for the average and standard deviation of the output voltage and efficiency of the
PV system according to the change in the insolation. The proposed method can confirm
the result of the increase in average efficiency by up to 11.24% compared to the existing
algorithm according to Table 3. This is because the proposed method reduces steady-state
vibrations and obtains a fast response.
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Table 3. Comparison of Output Results Among Various P&O MPPT Algorithms.

SS-PO LS-PO Proposed

PV voltage (V) Mean 14.94 14.94 14.45
Standard deviation 1.53 1.53 0.03

Efficiency (%) Mean 87.37 87.14 98.38
Standard deviation 9.77 10.23 0.34

Transient time (s) - 0.63 0.19 0.07

Figure 15 shows the normalization of the average value and standard deviation of
the PV system output power generation according to the change in the average error of
the deep-learning model. Because the proposed algorithm performs the maximum power
control based on the predicted illuminance, a power generation performance analysis was
performed according to the accuracy of the deep learning model. The average error of the
predicted model is calculated as follows.

Error =

(
Gmeasure − Gpredict

)
Gmeasure

∗ 100 (9)

Errormean =
1
N ∑n

i=1 Errori (10)
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As the average error increases, the average power generation of the proposed algo-

rithm to which the deep learning model is applied decreases. Even if an average error of 

approximately 70% occurs compared with the average error of 10% used in this study, the 

average power generation is reduced by approximately 4%. In addition, it was confirmed 

that the standard deviation value of the power generation increased as the error increased, 

and when an average error of approximately 70% occurred, the standard deviation value 

increased by approximately 10%. 

6. Conclusions 

The proposed algorithm could obtain a fast transient response and steady-state sta-

bility under irregular input irradiation conditions. The existing maximum output control 

algorithm has the advantage of being simple and easy to implement. However, its effi-

ciency may be reduced due to the slow response and steady-state vibration. Therefore, the 

proposed algorithm can solve the fast transient response and steady-state vibration. This 

is because it predicts the current irradiation by applying a deep learning algorithm. Fur-

thermore, the proposed algorithm directly calculates the duty ratio that can obtain the 

maximum output according to the irradiation value. The deep learning model was trained 

based on the experimental data of a 100 W class PV panel. In summary, the proposed 

algorithm showed superior results compared to the existing algorithm, even under vari-

ous irradiation conditions. The method proposed in daily dose data-based conditions 
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sec was obtained. 

In a future study, we will analyze the effect of the irradiation prediction performance 
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tiple PV panels. 
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As the average error increases, the average power generation of the proposed algo-
rithm to which the deep learning model is applied decreases. Even if an average error of
approximately 70% occurs compared with the average error of 10% used in this study, the
average power generation is reduced by approximately 4%. In addition, it was confirmed
that the standard deviation value of the power generation increased as the error increased,
and when an average error of approximately 70% occurred, the standard deviation value
increased by approximately 10%.

6. Conclusions

The proposed algorithm could obtain a fast transient response and steady-state sta-
bility under irregular input irradiation conditions. The existing maximum output control
algorithm has the advantage of being simple and easy to implement. However, its effi-
ciency may be reduced due to the slow response and steady-state vibration. Therefore,
the proposed algorithm can solve the fast transient response and steady-state vibration.
This is because it predicts the current irradiation by applying a deep learning algorithm.
Furthermore, the proposed algorithm directly calculates the duty ratio that can obtain the
maximum output according to the irradiation value. The deep learning model was trained
based on the experimental data of a 100 W class PV panel. In summary, the proposed
algorithm showed superior results compared to the existing algorithm, even under var-
ious irradiation conditions. The method proposed in daily dose data-based conditions
showed an average efficiency increase of up to 11.24% and a fast transient response of 0.11 s
was obtained.

In a future study, we will analyze the effect of the irradiation prediction performance
of a deep learning model and the amount of power generated by it when operating multiple
PV panels.
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