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Abstract: Providing a cost-efficient feeding strategy for cell expansion processes remains a challenging
task due to, among other factors, donor variability. The current method to use a fixed medium
replacement strategy for all cell batches results often in either over- or underfeeding these cells.
In order to take into account the individual needs of the cells, a model predictive controller was
developed in this work. Reference experiments were performed by expanding human periosteum
derived progenitor cells (hPDCs) in tissue flasks to acquire reference data. With these data, a time-
variant prediction model was identified to describe the relation between the accumulated medium
replaced as the control input and the accumulated lactate produced as the process output. Several
forecast methods to predict the cell growth process were designed using multiple collected datasets
by applying transfer function models or machine learning. The first controller experiment was
performed using the accumulated lactate values from the reference experiment as a static target
function over time, resulting in over- or underfeeding the cells. The second controller experiment used
a time-adaptive target function by combining reference data as well as current measured real-time
data, without over- or underfeeding the cells.

Keywords: real-time model predictive control; cell expansion; lactate; cell-based therapies

1. Introduction

Recent years are seeing a constant increase of cell-based therapeutic products creating
thus the need for the development of efficient cell expansion methods [1]. Cells are the
core element in these therapies; hence, efficient, well-monitored and controlled processes
are needed [2]. For autologous therapies, cells isolated from biopsies require considerable
expansion in order to reach clinically relevant numbers for treatments requiring up to
107–108 cells per treatment [3,4]. Due to the increasing demand for cells, the need for
improving cell expansion process efficiency becomes critical.

The urge to manage process variability motivates the sector to adopt QbD (Quality
by Design) principles under which the process conditions might vary (within validated
limits, e.g., to compensate for differences in the starting cell material), but where the final
product and its effect in the patient are robust and reproducible [5]. A significant impact
on the cell expansion process is the concentration of waste products, nutrients and other
soluble growth factors present in the medium. Without medium replacements, the cell
proliferation is inhibited by a combination of several influences such as lactate inhibition [6],
acidification of the medium [7], energy sources depletion [8] and the presence or absence of
other soluble factors [9]. Previous work [10,11] and other research [12,13] report an increase
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in lactate correlated with a decrease in medium exchanges during the cell expansion, where
a higher amount or frequency of medium exchanges increases cell proliferation. However,
overfeeding the cells is not cost-efficient and underfeeding the cells strongly reduces the cell
growth and thus their growth potential. To enhance the process efficiency, this work focused
on developing a model predictive controller (MPC), aiming at supplying a cost-efficient
amount of medium, regardless of donor variability.

For autologous cell expansion bioprocesses, the identification of optimal media ex-
change regimens is challenging due to the donor-derived variability [14]. This variability
means that fixed feeding strategies are most likely inadequate in supporting optimal cell
expansion for different cell batches. The MPC developed in this work would predict a
cost-efficient feeding strategy adapted to the donor variability of the cell batch. In order to
be able to apply an MPC, there is a need for a process output variable that can be measured
throughout the expansion process. Ideally, the exact number of cells at each time point
during the expansion is known. However, using cell counts is a destructive method and
thus not interesting to use. Another method to estimate the cell expansion progress is by
using a soft sensor. Such a soft sensor indirectly calculates a certain variable (which is
difficult or expensive to measure directly) by using several other measured variables (which
are easier to obtain) [15,16]. This in-line sensor system will provide a better understanding
of the process and the ability to control it, which is advised by regulatory agencies. The
regulatory agencies advise to ensure the final product quality by using the Process Ana-
lytical Technology (PAT) framework [17] and by designing the cell manufacturing process
according to the QbD principles. The QbD principles allow a certain variability during
the production to guarantee the safety and efficacy of the end product [5,18]. The PAT
system uses measurements performed during the process of critical quality and perfor-
mance attributes of raw and in-process materials and processes [17]. Currently used soft
sensors in other research are chemical sensors such as oxygen [19] or metabolic sensors like
glucose [20].

The experimental set-up in this work used human periosteum derived cells (hPDCs)
harvested from the periosteum of donors. These cells have been used for tissue engineering
applications for the regeneration of long bone defects [21–25]. hPDCs are highly glycolytic
in standard serum containing growth medium [26–29], resulting in a high glucose con-
sumption and lactate production rates. Based on the lactate production of the cells, this
work used accumulated lactate produced as an indication for cell growth throughout the
cell expansion process, which has also been used in previous work [11].

2. Materials and Methods
2.1. Cell Culture Experiments

Three sets of experiments were performed [30]. The first experiment consisted of cell
expansion in tissue flasks using a fixed scheme to replace the medium. This reference
experiment was performed to generate reference data of lactate produced and medium
supplied by a certain hPDC cell expansion process. The second experiment used a model
predictive controller that suggested a medium replacement scheme based on the lactate
measurements. The target function used in this MPC was predefined, without real-time
adaptation, following the known lactate values of the reference data. The prediction model
used in this MPC was based on transfer function models used on the current experimental
data available up to that time. The third experiment used an MPC to suggest the medium
replacements using an adaptive target function combining information of the lactate values
of the reference data as well as of the actual lactate values of the ongoing experiment. The
prediction model in this MPC used transfer function models on the previous reference
experimental data in order to have a full dataset available at all times.

2.1.1. Cell Culture

Human periosteum derived cells were used, which were acquired from biopsies after
obtaining patients’ informed consent; the cells were then expanded in tissue flasks. The
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expansion was performed according to standard protocols as described in a previous
work [11].

The medium used in these experiments was high glucose Dulbecco’s modified Ea-
gle’s medium (DMEM + GlutaMAXTM + pyruvate, GibcoTM by Thermo Fisher Scien-
tific, Waltham, MA, USA), supplemented with 7.5% (v/v) heparin-free pooled human
platelet lysate (StemulateTM by Cook Regentec, Indianapolis, IN, USA) and 1% antibiotic-
antimycotic (GibcoTM by Thermo Fisher Scientific, Waltham, MA, USA). This complete
medium is further abbreviated as DMEM-c in the text.

The cells were incubated in a humidified atmosphere of 90% at 37 ◦C and 5% CO2.

2.1.2. Reference Experiment

hPDCs were cultured for eight days in tissue flasks. On the starting day, eight T175
flasks were seeded at a density of 2500 cells/cm2 and supplied with 25 mL DMEM-c
medium. After 24 h, the medium was replaced every 12 or 24 h according to the scheme
represented in Table 1. All four conditions (A, B, C and D) were performed in duplicates.
The frequency at which the medium was replaced as well as the total amount of medium
supplied to the cells is represented in Table 2.

Table 1. Medium replacement scheme of the reference experiment indicating the percentage and
volume of medium replaced at each time point, where a 100% medium replacement is equal to 25 mL.

A (TF 1, 2) B (TF 3, 4) C (TF 5, 6) D (TF 7, 8)
Hours % mL % mL % mL % mL

Day 1 24 5 1.25 5 1.25 10 2.5 10 2.5
36 5 1.25 5 1.25 - -

Day 2 48 10 2.5 7.5 1.875 20 5 15 3.75
60 10 2.5 7.5 1.875 - -

Day 3 72 15 3.75 10 2.5 30 7.5 20 5
84 15 3.75 10 2.5 - -

Day 4 96 20 5 12.5 3.125 40 10 25 6.25
108 20 5 12.5 3.125 - -

Day 5 120 25 6.25 15 3.75 50 12.5 30 7.5
132 25 6.25 15 3.75 - -

Day 6 144 30 7.5 17.5 4.375 60 15 35 8.75
156 30 7.5 17.5 4.375 - -

Day 7 168 35 8.75 20 5 70 17.5 40 10
180 35 8.75 20 5 - -

Table 2. Scheme of the frequency and amount of medium replacements of the different tissue flasks
of the reference experiment. The total amount is the sum of the initial 25 mL and all replacements as
described in Table 1.

Tissue Flasks Frequency Total Amount

TF 1 & 2 Every 12 h 95 mL
TF 3 & 4 Every 12 h 68.75 mL
TF 5 & 6 Every 24 h 95 mL
TF 7 & 8 Every 24 h 68.75 mL

2.1.3. Controller Experiments

The experimental set-up of the controller experiments was similar to the reference
experiments, except for the amount of medium supplied. In the reference experiments,
the time and amount of medium replaced was fixed following the predefined scheme in
Table 1, whereas the controller experiments were performed after an initial 48 h following
the suggested inputs from the controller at a fixed time interval (every 12 or every 24 h).
During the initial 48 h, the amount of medium supplied to the controller experiments was
the same as that used during the selected reference experiment of the target function. More
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information on the controller and how it works is explained in a following paragraph
(Section 2.3. Model Based Control and Optimization). The reference data used for the target
function of the controller experiments were different for each tissue flask (TF controller)
and are described in Table 3. The second controller experiment combined the reference
data with current experimental data for six tissue flasks. Only tissue flask TF4 and TF8
followed a fixed medium replacement scheme as used for TF1REF or TF6REF, respectively,
in order to function as a control experimental run.

Table 3. Scheme to indicate which reference data were used in the target function for the two
controller experiments.

Controller Experiment 1 Controller Experiment 2
Target Function TF Controller Target Function TF Controller

TF1REF TF1 TF1REF + TF1 TF1
TF2REF TF2 TF1REF + TF2 TF2
TF3REF TF3 TF1REF + TF3 TF3
TF4REF TF4 Control: TF1REF TF4
TF5REF TF5 TF6REF + TF5 TF5
TF6REF TF6 TF6REF + TF6 TF6
TF7REF TF7 TF6REF + TF7 TF7
TF8REF TF8 Control: TF6REF TF8

After measuring the lactate concentration from start every 12 h until 48 h, the controller
used the measured past inputs (medium replacements) and outputs (lactate concentrations),
together with the DARX prediction model (cf. Section 2.3. Model Based Control and
Optimization) to calculate the future medium replacement (control input). The previous
accumulated amount of medium was subtracted from the suggested future amount of
accumulated medium to determine the amount of medium required for replacement at the
next input moment. Following each new lactate measurement, the controller calculated
the next required amount of medium replacement based on the updated past process
information and targeted future lactate concentration (proxy for cell amount).

2.1.4. Lactate Measurements and Cell Counts

Medium samples of 100 µL were gathered every 12 h during the eight days of cell
culture and always before the medium replacement. Lactate measurements were performed
on these samples using the CEDEX medium analyzer (Roche, Custom Biotech, Brussels,
Belgium). At the end of the eight days of cell culture, the cells were detached from the tissue
flasks with TrypleE and counted in Trypan blue 0.25% using a Bürker haemocytometer
(Assistant®, Sondheim vor der Rhön, Germany).

2.2. Data Processing
2.2.1. Cumulative Lactate Calculation

To calculate the cumulative lactate produced during the cell expansion process, the
lactate before (C1(k)) and after (C2(k)), each medium replacement at a certain time (k),
must be known. The lactate before a medium replacement C1(k) was measured in mmol,
and the lactate value after medium replacement C2(k) was calculated based on the known
amount of medium U(k) replaced with a known baseline lactate value C0(k) in mmol
according to the following equation:

C2(k) = C1(k)(1 − U(k)) + C0U(k) (1)

where U(k) is the fraction of medium replaced compared to the total volume, resulting in a
number between 1, for a total replacement, and 0, for no medium replacement.
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2.2.2. Data Interpolation

In order to not disturb the cell expansion system too much, lactate was only measured
every 12 h. However, the data were too sparse to use for prediction models. Therefore, a
piecewise interpolation was performed to acquire a datapoint for every hour in between
the measured datapoints. For all measured datapoints (t1, y1),. . . , ( tn, yn), the following
function was used to interpolate the data p(t) between two consecutive datapoints, where
tk < t < tk + 1,

p(t) = yk +
yk + 1 − yk
tk + 1 − tk

(t − tk). (2)

The accumulated medium that was replaced remained the same as the previous value
when there was no change in the medium supply. This resulted into a step function for the
interpolated data in between two consecutive measured datapoints.

2.3. Model Based Control and Optimization

For developing a model predictive controller of a process, having an accurate predic-
tion model and target function is key. Different methods for both estimating the prediction
model as well as defining the target function were used in this work and are represented in
Figure 1. The prediction model predicts the output of the system based on the previous
inputs and outputs of the system. This relation is then used by the controller to calculate the
next future input required to minimize the difference between the target and the predicted
output. For the prediction model, transfer function models were applied and estimated
based on the experimental data. These data were either from the current controller ex-
periment (controller experiment 1) or from a previously performed reference experiment
(controller experiment 2). The target function used in the model predictive controller was
either predefined (controller experiment 1) or adaptive over time (controller experiment 2).
Additional forecasting techniques were performed by applying transfer function models as
well as machine learning on multiple previous experimental data simultaneously.
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2.3.1. Prediction Model

The first step towards developing a model predictive controller (MPC) was to find a
prediction model for the input-output relation that described the dominant processes of
the system. In this work, the input used for the prediction model was the accumulated
medium replaced and the output was the accumulated lactate produced by the cells.

The controller experiments in this work used a prediction model by applying transfer
function models on one experimental dataset as used in previous work [11].

To describe the output as a dynamic response to the input, a dynamic model was
estimated through a dynamic auto-regressive with exogenous (DARX) variables model.
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The model structure of the single-input, single-output discrete time transfer function is
given in the following equation [31,32]:

yt =
B
(
z−1, t

)
A(z−1, t)

ut − δ +
1

A(z−1, t)
et, (3)

with yt the output or accumulated lactate (mmol) of the system and ut−δ the input or
accumulated medium replaced (mL). z − 1 is the backward shift operator, δ is a time
delay and et is white noise with a zero mean and uncorrelated variance N

(
0, σ2). The

polynomials A and B contain the time-variant model parameters and are described by the
following equations:

A
(

z−1, t
)

= 1 + a1,tz−1 + a2,tz−2 + . . . + an,tz−na (4)

B
(

z−1, t
)

= b0,t + b1,tz−1 + b2,tz−2 + . . . + bm,tz−nb , (5)

The estimation of the DARX variables was performed using the CAPTAIN toolbox in
MATLAB 2021b (The Mathworks, Inc., Natick, MA, USA) [33]. The time-variant parameters
describe the changing input-output relation of the system during the different stages of the
cell culture period [34].

The best model orders of the polynomials A and B from Equations (4) and (5) together
with the time delay were identified using the refined instrumental variable algorithm. The
rivid function from the CAPTAIN toolbox selected the best model orders based on the eval-
uation of the Young identification criteria (YIC) and the coefficient of determination (R2).

The selected model orders were then further used for the estimation of the time-
variant parameters. These were estimated using the DARX function from the CAPTAIN
toolbox. The normalized root mean square error (NRMSE) was calculated to assess the
performance of the prediction model. The NRMSE was calculated using the MATLAB
function goodnessOfFit, which compares the values of the measured reference output to the
estimated DARX outputs. This calculation is described as follows:

NRMSE =
‖yre f − y f it‖

‖yre f − mean
(

yre f

)
‖

, (6)

where y f it, the modeled DARX data is compared to yre f , the reference data. The NRMSE
equal to zero represents a perfect fit.

2.3.2. Optimizer

The model predictive controller used previous input and output measurements to
predict future outputs using the prediction model. Next, the predicted outputs were
compared with the target function. This error information was than supplied to the
optimizer, which considered the constraints and cost function to estimate the required
future inputs to minimize the error between the desired output and the real output.

The cost function used by the optimizer is described by

J(Nc, Np) = ∑Np
j = 1 δ(j)[ŷ(k + j|k) − r(k + j)]2 + ∑Nc

j = 1 λ(j)[∆u(k + j − 1)]2, (7)

where the difference between the predicted output (ŷ) and the target function (r) is mini-
mized, together with minimizing the change of the control signal (∆u) (i.e., the replaced
medium volume). Nc is the control horizon, Np is the prediction horizon and δ, λ are used
as weights [31,35].

The MPC was developed using the MPC toolbox in MATLAB, starting with defining
the MPC object using the function mpc. The next step was to update this object with the
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most recently measured output. To integrate the update of the prediction model within this
MPC update, the command mpcmoveAdaptive was used.

2.3.3. Target Function

The target function (or reference trajectory) of the controller describes the path to
follow for the output values of the system. This path was either predefined following
a fixed target function or adaptive over time. Both target functions were based on the
measured values of a similar cell expansion, called the reference experiment.

Two types of target functions were addressed in this work, as shown in Figure 2. The
first target function was fixed over time (Figure 2c); the defined target function was not
changed during the experiment but was defined by one previously performed experiment
(Figure 2a) and then further used in controller experiment 1. The second type of target
function was adaptive over time (Figure 2d); the defined target function was adapted
during the experiment by using ongoing data (Figure 2b) to compensate for over- or
under- performing cell batches and then further used in controller experiment 2. As
an adaptation of the first type of target function, another target function was also fixed
over time (Figure 2e), but was defined by using a forecast based on multiple previously
performed experiments. This last method was not applied during experiments in this work,
but the forecast method is explained in Section 2.4. Forecasting the Cell Growth Expansion
Process, as a possible alternative for defining target functions.
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Figure 2. (a) Reference experimental data, (b) ongoing controller experimental data, (c) fixed target
function, defined as the accumulated lactate values generated during one reference experiment,
(d) adaptive target function, starting after 48 h, combining the measured accumulated lactate value of
the ongoing controller experiment at time t together with the increase in accumulated lactate values
of the reference experiment between time t and t + 1, (e) fixed target function, defined by a forecast of
the accumulated lactate based on multiple previously gathered datasets.
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The equations used for the fixed and adaptive target functions of controller
experiment 1 and 2 are defined by Equation (8) and by Equation (9), respectively.
Equation (9) consists of two parts. The first part, p(t), makes the trajectory adaptive towards
the current controller experiment by updating the target function value at time t to the
measured amount of accumulated lactate at time t. The second part, pre f (t + 1) − pre f (t),
assumes that the increase in accumulated lactate equals the change in accumulated lactate
as measured in the reference experiment (Figure 2a).

r = pre f . (8)

r(t + 1) = p(t) +
[

pre f (t + 1) − pre f (t)
]
, (9)

with r the reference trajectory, p the piecewise linear interpolated data and pre f the piecewise
linear interpolated reference data from the initial reference experiment.

2.3.4. Simulation

Before performing the controller experiments, the performance of the controller was
evaluated using simulations. This means that the reference data generated from the initial
experiment with a fixed predefined medium schedule were used simultaneously as the
target function and as past input and output data. Starting after 48 h of initial data collection,
the controller used the DARX model of the reference data as a prediction model to estimate
the future control input that would generate a future output as close as possible to the
target function. The simulation returned a set of control inputs estimated each time for
one medium replacement in advance. In addition, the controller predicted the output that
would occur after applying the suggested control input.

2.4. Forecasting the Cell Growth Expansion Process

In Section 2.3 (Model Based Control and Optimization) of the work, a prediction model
was estimated based on the experimental data gathered during the experiment in which
it was used to calculate the control inputs. In contrast to this approach, in this part of
the work, a forecast of the cell expansion process is defined based on multiple previously
gathered datasets. This forecast could be either used to calculate the control inputs (as
described in Section 2.3) or to define the target function of a model predictive controller.

Since the previously described prediction modelling approach (Section 2.3) needs a
minimum amount of data to start estimating the model parameters in real-time, ideally,
an alternative model should be available to make predictions during the initial period of
48 h, during which the previously described prediction model, using only online data, is
gathering enough data to estimate a transfer function after the first 48 h.

As briefly mentioned in Section 2.3.3 (Target Function), a forecast using multiple previously
gathered datasets could be useful for defining a robust fixed target function, by including more
data than a fixed target function based on data of only one reference experiment.

2.4.1. Transfer Function Approach

To develop a forecast based on several datasets, there are two options when using the
DARX databased modelling approach.

The first option fits a different model with a certain set of parameters (a- and b-
parameters) for each interpolated dataset of each tissue flask. These are then averaged for
the different tissue flasks within the training set. The resulting mean a- and b-parameters
are then used for forecasting. To simulate the output of the forecast based on these a and b
parameters, Equation (10) was used.

y(k) =
b0(k)

1 + a1(k)z−1 u(k − 1) +
1

1 + a1(k)z−1 e(k). (10)
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The second option takes the average of the input and output measurements to first
design an average dataset. This is only applicable for similar experiments with the same
amount of input and output measurements. Due to interpolation, both type of datasets
with either every 12 h or every 48 h were combined into one averaged dataset. A forecast
for this average dataset is then modelled using again the DARX function in MATLAB.

2.4.2. Machine Learning Approach

This work used a least-squares support vector machine (LS-SVM) regression estimator
to forecast the accumulated lactate as a function of the supplied medium. The least squares
support vector machines (LS-SVM) toolbox from the department of Electrical Engineering
(ESAT) of KU Leuven in Matlab 2021b was used for developing the predictive model [36,37].

The input of the data, the accumulated medium replaced in mL, was pre-processed
by normalizing the value to a zero mean. The output of the system was the accumulated
lactate in mM.

In order to predict the upcoming output value, we developed an LS-SVM-based time
series prediction model. The developed model is a Radial Basis Function (RBF) LS-SVM
model. The following equations formulate the working of the RBF LS-SVM [36–39].

The LS-SVM error loss function is defined as

min
w,b,e

1
2

wTw +
1
2
γ∑N

i = 1 e2
i , (11)

while complying to the following constraint

yi = wT ϕ(xi) + b + ei, i = 1, . . . , N, (12)

with γ the regularization parameter, which determines the balance between minimizing
the training error and smoothening the estimated function

The Lagrangian is constructed as follows

L(w, b, e; α) =
1
2

wTw +
1
2
γ∑N

i = 1 e2
i − ∑N

i = 1 αi

{
wT ϕ(xi) + b + ei − yi

}
, (13)

with αi the Lagrangian multipliers.
To solve the equation in α, b after eliminating w, e, the Kernel function is applied,

which in this case is a Radial Basis Function (RBF) kernel. This RBF kernel function replaces
the dot product as follows:

ϕ(x)T ϕ(xi) = K(x, xi) (14)

K(x, xi) = exp

(
−‖x − xi‖2

2σ2

)
(15)

with σ2 the kernel function parameter, which results in the RBF LS-SVM model for function
estimation as described by the following equation.

y(x) = ∑N
i = 1 αiK(x, xi) + b (16)

The model’s hyperparameters (γ and σ2) of the RBF LS-SVM are tuned using a 10-fold
cross validation approach.

2.4.3. Evaluation Forecast Using Multiple Datasets

The developed predictive model is evaluated using the leave-one-out method by
iteratively training the model with all data points except one to be used to test the model.
The error performance of the model is evaluated using the NRMSE error metric.
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3. Results
3.1. Experimental Data

During 2D cell growth, cells progressively cover the entire available culture surface,
Figure 3 shows typical low, mid, and high confluency over time. For quantitative analysis
of cell growth, cell counts were also performed; the results of the cell expansions of the
reference experiment as well as both controller experiments are summarized in Tables 4–6.
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Figure 3. Bright field microscopic images of the hPDCs cultured in tissue flasks (growing on the
bottom of the tissue flasks): (a) low cell culture confluency one day after cell seeding, (b) medium
cell culture confluency four days after cell seeding, (c) high cell culture confluency seven days after
cell seeding.

Table 4. Cell expansion results from the reference experiment. Number of cells counted, total amount
of accumulated lactate produced (mM), total amount of medium supplied (mL) and the overall
medium efficiency (cells/mL).

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8

Cells counted (1.0 × 106) 3.13 2.79 3.26 2.97 1.74 1.29 1.27 0.65
Accumulated lactate (mM) 15.81 15.48 13.86 14.70 7.21 6.74 6.79 6.91

Accumulated medium (mL) 95.00 95.00 68.75 68.75 95.00 95.00 68.75 68.75
Medium efficiency (1.0 × 104 cells/mL) 3.29 2.93 4.73 4.32 1.83 1.36 1.85 0.95

Table 5. Cell expansion results from the first controller experiment. Number of cells counted, total
amount of accumulated lactate produced (mM), total amount of medium supplied (mL) and the
overall medium efficiency (cells/mL).

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8

Cells counted (1.0 × 106) 1.15 1.20 1.03 0.93 1.21 1.23 1.04 0.92
Accumulated lactate (mM) 8.29 8.27 8.45 8.55 10.40 9.83 9.22 9.73

Accumulated medium (mL) 151.25 96.25 96.88 64.38 79.07 56.45 73.01 53.20
Medium efficiency (1.0 × 104 cells/mL) 0.76 1.24 1.06 1.44 1.53 2.18 1.42 1.72

Table 6. Cell expansion results from the second controller experiment. Number of cells counted,
total amount of accumulated lactate produced (mM), total amount of medium supplied (mL) and the
overall medium efficiency (cells/mL).

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8

Cells counted (1.0 × 106) 2.72 2.49 2.34 2.28 2.53 2.45 2.54 2.44
Accumulated lactate (mM) 13.80 13.15 13.29 12.98 13.47 13.07 12.78 13.34

Accumulated medium (mL) 93.79 95.71 95.53 95.00 84.71 86.83 87.73 95.00
Medium efficiency (1.0 × 104 cells/mL) 2.90 2.60 2.45 2.39 2.98 2.82 2.89 2.59
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To assess the correlation between cell counts and accumulated lactate, all data points
from the three different experiments were plotted in Figure 4. A significantly different
value from zero trendline was fitted through the data with an R2 equal to 0.82.
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Figure 4. Regression between the number of cells counted and the total amount of accumulated
lactate produced at the end of the cell culture expansion. The data are gathered from both the
reference experiment as well as the two controller experiments.

3.2. Prediction Model

A prediction model applying transfer function models on one dataset was used in
the controller experiments. The collected data from the reference experiments were used
to identify which model order would be best to describe the process. The use of the rivid
function in Matlab identified the [1 1 1] model order as the best suited model based on the
YIC and R2 criteria (Equation (10)).

The DARX [1 1 1] model resulted in an a1 parameter with minimal variation over time.
Therefore, it was decided to keep the a1 parameter fixed in time while allowing the b0 to be
time-variant. By fixing one of the two parameters, the computational complexity is reduced
and the mechanistic understanding is simplified, since only one parameter (b0) explains the
variation of the model over time. The DARX [1 1 1] was evaluated as a prediction model
based on the normalized root mean square error (NRMSE), which was calculated using the
goodnessOfFit function in MATLAB. The NRMSE compares the simulated output predicted
by the DARX function with the experimental data and is represented in Table 7.

Table 7. NRMSE, model evaluation of the DARX [1 1 1] model for the data of all eight tissue flasks
for all three experiments. A NRMSE equal to zero represents a perfect fit of the DARX model when
compared to the experimental data.

NRMSE

Reference Exp Controller Exp 1 Controller Exp 2

TF1 0.0115 0.0148 0.0088
TF2 0.0016 0.0048 0.0122
TF3 0.0074 0.0140 0.0010
TF4 0.0077 0.0166 0.0021
TF5 0.0155 0.0017 0.0130
TF6 0.0021 0.0033 0.0038
TF7 0.0027 0.0010 0.0142
TF8 0.0093 0.0010 0.0023

The visualisation of the DARX model compared to the interpolated experimental data
is presented in Figure 5.
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Figure 5. The prediction model using a dynamic auto-regressive exogenous (DARX) [1 1 1] model for
accumulated lactate (mM) compared to the interpolated data for the experimental data of tissue flask
eight of the reference experiment.

3.3. Controller Experiments
3.3.1. Controller Experiment One

The results of the controller experiments performed using a fixed target function in
time based on the accumulated lactate values of the reference experiment are shown in
Figure 6 and Table 8.

Processes 2022, 10, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 5. The prediction model using a dynamic auto-regressive exogenous (DARX) [1 1 1] model 

for accumulated lactate (mM) compared to the interpolated data for the experimental data of tissue 

flask eight of the reference experiment. 

3.3. Controller Experiments 

3.3.1. Controller Experiment One 

The results of the controller experiments performed using a fixed target function in 

time based on the accumulated lactate values of the reference experiment are shown in 

Figure 6 and Table 8. 

  
(a) (b) 

  
(c) (d) 

Figure 6. The results of the first controller experiment: (a) and (c) representing both the input values 

of the controller experiment as well as the reference experiment for TF1 and TF6, respectively; (b) 

and (d) representing both the output measurements of the controller experiment as well as the ref-

erence experiment for TF1 and TF6, respectively. 

Figure 6. The results of the first controller experiment: (a,c) representing both the input values
of the controller experiment as well as the reference experiment for TF1 and TF6, respectively;
(b,d) representing both the output measurements of the controller experiment as well as the reference
experiment for TF1 and TF6, respectively.
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Table 8. NRMSE values comparing the accumulated lactate output values of the controller experiment
one with the trajectory values using the goodnessOfFit function in MATLAB. The NRMSE closer to
zero represents the better fit.

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8

NRMSE 0.9107 0.9091 0.8739 0.8485 0.9125 1.0486 0.7550 0.9637

3.3.2. Controller Experiment Two

The results of the controller experiments using and adaptive target function in time
are shown in Figure 7 and Table 9. The MPC from this second controller experiment used
an adaptive target function.
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Figure 7. The results of the second controller experiment: (a,c) representing both the input values
of the controller experiment as well as the reference experiment for TF1 and TF6, respectively;
(b,d) representing both the output measurements of the controller experiment as well as the reference
experiment for TF1 and TF6, respectively.

Table 9. NRMSE values comparing the accumulated lactate output values of the controller experiment
two with the trajectory values using the goodnessOfFit function in MATLAB. The NRMSE closer to
zero represents the better fit.

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8

NRMSE 0.0054 0.0071 0.0068 0.0073 0.0149 0.0145 0.0143 0.0147

3.4. Forecasting the Cell Expansion Process Using Multiple Datasets

The results of forecasting the cell expansion process using multiple datasets for the
transfer function and machine learning models applied to the data of the eight different
tissue flasks of the second controller experiment are represented below.

3.4.1. Transfer Function
Averaging Parameter Values

The first method to apply transfer function models on different datasets was to apply
transfer functions onto all different datasets and averaging the different a- and b-parameters
of the DARX model into one transfer function. These results are shown in Figure 8 and
Table 10.
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Figure 8. Visualisation of the prediction models using multiple datasets by applying a transfer
function model for all datasets and averaging the model parameters a and b into one average transfer
function model. The number in the title refers to the number of the tissue flask used as the test
set. (a) visualizes the prediction model developed using the average parameter values obtained by
applying DARX transfer function models on each training set using TF1 as the test set. (b) visualizes
the prediction model developed using the average parameter values obtained by applying DARX
transfer function models on each training set using TF6 as the test set.

Table 10. NRMSE comparing the accumulated lactate output values of the forecast model using
multiple datasets by applying DARX transfer function models on the different datasets and averaging
the parameters using the goodnessOfFit function in MATLAB. The NRMSE closer to zero represents
the better fit. The number of the tissue flasks referrers to the tissue flask used as the test data set.

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8

NRMSE 0.0846 0.1441 0.1319 0.0647 0.0752 0.0647 0.0927 0.0023

Averaging Data

This second method to apply transfer function models on different datasets was to
average all the datasets together into one dataset before applying the transfer function
DARX. These results are shown in Figure 9 and Table 11.
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Figure 9. Visualisation of the forecast models using multiple datasets by applying a transfer function
on the averaged dataset. The number in the title refers to the number of the tissue flask used as the
test set. (a) visualizes the prediction model developed using the DARX transfer function model on
the average of the whole training set with TF1 as the test set. (b) visualizes the prediction model
developed using the DARX transfer function model on the average of the whole training set with TF6
as the test set.
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Table 11. NRMSE comparing the accumulated lactate output values of the forecast model using
multiple datasets by applying DARX transfer function models on the averaged dataset using the
goodnessOfFit function in MATLAB. The NRMSE closer to zero represents the better fit.

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8

NRMSE 0.0439 0.0932 0.0876 0.0443 0.1037 0.0431 0.0682 0.0849

3.4.2. Machine Learning

The results of applying machine learning on multiple datasets are shown in Figure 10
and Table 12.
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Figure 10. Visualisation of the prediction models using multiple datasets by applying machine
learning on all datasets. The number in the title refers to the number of the tissue flask used as the
test set. (a) visualizes the prediction model developed using RBF LS-SVM with TF1 (from the dataset)
as the test set. (b) visualizes the prediction model developed using RBF LS-SVM with TF6 (from the
dataset) as the test set.

Table 12. NRMSE comparing the accumulated lactate output values of the forecast model using
multiple datasets by applying machine learning using the goodnessOfFit function in MATLAB. The
NRMSE closer to zero represents the better fit. The number of the tissue flasks referrers to the tissue
flask used as the test data set.

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8

NRMSE 0.0917 0.1292 0.1094 0.0644 0.1944 0.1300 0.1145 0.1740

3.5. Mechanistic Understanding of the Transfer Function Model

To understand the dynamics of the cell expansion system, the changing relation of the
output compared to the input was investigated. Since the best DARX model resulted in a
fixed a1 parameter over time and a time-variant b0 parameter, the output to input relation
can be approximated by b0 when using the steady state gain response of Equation (17):

SSG =
b0(k)

1 + a1
. (17)

The steady state gain can be interpreted as the change of output (accumulated lactate
produced) per unit change of input (amount of medium spent) and can be approximated
by the b0 value. To understand the effect of a change in the b0 value, different cases during
the controller experiments were observed. A different first order DARX transfer function
was applied on each of the eight tissue flasks of both controller experiments. The fixed a1
parameters of the resulting DARX model for all tissue flasks of both controller experiments
are shown in Figure 11. The time-variant b0 parameter of TF1 and TF6 of both controller
experiments are shown in Figure 12.



Processes 2023, 11, 22 16 of 21

Processes 2022, 10, x FOR PEER REVIEW 16 of 21 
 

 

experiments are shown in Figure 11. The time-variant 𝑏0 parameter of TF1 and TF6 of 

both controller experiments are shown in Figure 12. 

The first case occurred during controller experiment 1 for tissue flasks 1 until 4. In 

this case, the cells were not producing as much lactate as the reference and they were 

pushed to grow faster by supplying more medium. However, the target function was not 

realistic, resulting in overfeeding the cells compared to the reference. At each medium 

replacement, the 𝑏0 value drops and afterwards rises again, resulting in a more or less 

constant 𝑏0 value. This then relates back to a constant ratio of accumulated lactate over 

accumulated medium supplied. 

The second case occurred during controller experiment 1 for tissue flasks 5 until 8. 

Here, the cells were producing more lactate than the target function, resulting in under-

feeding the cells after four days, compared to the reference. Therefore, the amount of lac-

tate produced compared to the amount of medium supplied increases, which is also visi-

ble in the increasing 𝑏0 value. This would mean that the amount of medium supplied for 

the same amount of lactate produced is lowering throughout the cell expansion process. 

There is a balance between supplying the right amount of medium for the cells to 

grow efficiently. The cells should not be underfed or overfed as this unnecessarily in-

creases the costs of the process. The ideal ratio of lactate versus medium and then the 𝑏0 

value will depend on whether the total number of cells at the end of the expansion or the 

total cost of the expansion is more important. It would be interesting to obtain additional 

data regarding clear overfeeding and underfeeding of the cells to observe what the 𝑏0 

value and final cell counts would be. 

  
(a) (b) 

Figure 11. (a) The fixed 𝑎1 parameter of the resulting DARX model for all tissue flasks of controller 

experiment 1. (b) The fixed 𝑎1 parameter of the resulting DARX model for all tissue flasks of con-

troller experiment 2. 

  
(a) (b) 

Figure 11. (a) The fixed a1 parameter of the resulting DARX model for all tissue flasks of controller
experiment 1. (b) The fixed a1 parameter of the resulting DARX model for all tissue flasks of controller
experiment 2.

Processes 2022, 10, x FOR PEER REVIEW 16 of 21 
 

 

experiments are shown in Figure 11. The time-variant 𝑏0 parameter of TF1 and TF6 of 

both controller experiments are shown in Figure 12. 

The first case occurred during controller experiment 1 for tissue flasks 1 until 4. In 

this case, the cells were not producing as much lactate as the reference and they were 

pushed to grow faster by supplying more medium. However, the target function was not 

realistic, resulting in overfeeding the cells compared to the reference. At each medium 

replacement, the 𝑏0 value drops and afterwards rises again, resulting in a more or less 

constant 𝑏0 value. This then relates back to a constant ratio of accumulated lactate over 

accumulated medium supplied. 

The second case occurred during controller experiment 1 for tissue flasks 5 until 8. 

Here, the cells were producing more lactate than the target function, resulting in under-

feeding the cells after four days, compared to the reference. Therefore, the amount of lac-

tate produced compared to the amount of medium supplied increases, which is also visi-

ble in the increasing 𝑏0 value. This would mean that the amount of medium supplied for 

the same amount of lactate produced is lowering throughout the cell expansion process. 

There is a balance between supplying the right amount of medium for the cells to 

grow efficiently. The cells should not be underfed or overfed as this unnecessarily in-

creases the costs of the process. The ideal ratio of lactate versus medium and then the 𝑏0 

value will depend on whether the total number of cells at the end of the expansion or the 

total cost of the expansion is more important. It would be interesting to obtain additional 

data regarding clear overfeeding and underfeeding of the cells to observe what the 𝑏0 

value and final cell counts would be. 

  
(a) (b) 

Figure 11. (a) The fixed 𝑎1 parameter of the resulting DARX model for all tissue flasks of controller 

experiment 1. (b) The fixed 𝑎1 parameter of the resulting DARX model for all tissue flasks of con-

troller experiment 2. 

  
(a) (b) 

Processes 2022, 10, x FOR PEER REVIEW 17 of 21 
 

 

  
(c) (d) 

Figure 12. (a) The 𝑏0 value over time of the resulting DARX model for tissue flasks 1 of controller 

experiment 1. (b) The 𝑏0 value over time of the resulting DARX model for tissue flasks 6 of control-

ler experiment 1. (c) The 𝑏0 value over time of the resulting DARX model for tissue flasks 1 of con-

troller experiment 2. (d) The 𝑏0 value over time of the resulting DARX model for tissue flasks 6 of 

controller experiment 2. 

4. Discussion 

Cell culture processes involving living systems are still far from being perfectly mon-

itored and controlled as compared to chemical production processes [40–43]. This is be-

cause biosystems are complex, individually different, time-varying and dynamic [44]. The 

cell characteristic depends on many factors including the passage number, donor age, 

seeding density and medium replacement strategy, all of which affect the presence of nu-

trients and metabolic by-products [14,45,46]. In case a chemical process starts from a raw 

material that has a certain deviation from the standard raw material, the process can be 

adapted taking this initial deviation into account. However, whether a certain cell batch 

will grow faster or slower than the ‘standard’ batch cannot be predicted or measured like 

a physical characteristic of a raw material in a chemical process. Therefore, it is an ad-

vantage to apply an adaptive control strategy that will learn the characteristics of the con-

sidered cell batch and adapt to it as quickly as possible. 

This work developed a data-based model predictive controller, in order to steer the 

cell expansion process towards an adaptive target function. The medium supplied to the 

system was considered as the control input, while the measured lactate production was 

used as the output of the system. The advantage of using accumulated lactate produced 

by the cells as output is that it can be measured during the process non-invasively as an 

indicator for cell growth. The correlation between cell growth and accumulated lactate 

was demonstrated and visualized in Figure 4, where the total amount of lactate produced 

by the cells follows the same trend as the number of cells counted at the end of the expan-

sion process over the different tissue flasks. The R2 of the linear trendline between the two 

variables is 82% and is significantly different from zero. Other possible output variables 

selected in literature have been glucose [19,20] or dissolved oxygen [47]. The accumulated 

medium was selected as the input of the system because it has a direct impact on the cell 

growth by removing toxic waste products (lactate) and introducing energy sources (glu-

cose) and growth factors [48]. In addition, as the medium replacement rate has a direct 

impact on the cost of the cell production process, optimizing this input will directly influ-

ence the operating cost of the cell expansion. 

Controller experiment 1 tried to mimic the exact amount of lactate produced by the 

cells in the reference experiment. For tissue flasks 1 until 4, this meant giving the cells 

more medium than the reference, and for tissue flask 5 until 8, this meant less medium. 

However, due to cell donor variability, the controller was not capable of reproducing the 

same number of cells for tissue flasks 1 until 4. Although the controller provided more 

medium than the reference experiment, there were less cells in the end. The controller 

tried to cope with the slower growing cells or the lower number of cells. Since the cells 

produced a lower amount of lactate than the reference experiment, the controller saw this 

Figure 12. (a) The b0 value over time of the resulting DARX model for tissue flasks 1 of controller
experiment 1. (b) The b0 value over time of the resulting DARX model for tissue flasks 6 of controller
experiment 1. (c) The b0 value over time of the resulting DARX model for tissue flasks 1 of controller
experiment 2. (d) The b0 value over time of the resulting DARX model for tissue flasks 6 of controller
experiment 2.

The first case occurred during controller experiment 1 for tissue flasks 1 until 4. In
this case, the cells were not producing as much lactate as the reference and they were
pushed to grow faster by supplying more medium. However, the target function was not
realistic, resulting in overfeeding the cells compared to the reference. At each medium
replacement, the b0 value drops and afterwards rises again, resulting in a more or less
constant b0 value. This then relates back to a constant ratio of accumulated lactate over
accumulated medium supplied.

The second case occurred during controller experiment 1 for tissue flasks 5 until 8.
Here, the cells were producing more lactate than the target function, resulting in underfeed-
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ing the cells after four days, compared to the reference. Therefore, the amount of lactate
produced compared to the amount of medium supplied increases, which is also visible
in the increasing b0 value. This would mean that the amount of medium supplied for the
same amount of lactate produced is lowering throughout the cell expansion process.

There is a balance between supplying the right amount of medium for the cells to
grow efficiently. The cells should not be underfed or overfed as this unnecessarily increases
the costs of the process. The ideal ratio of lactate versus medium and then the b0 value
will depend on whether the total number of cells at the end of the expansion or the total
cost of the expansion is more important. It would be interesting to obtain additional data
regarding clear overfeeding and underfeeding of the cells to observe what the b0 value and
final cell counts would be.

4. Discussion

Cell culture processes involving living systems are still far from being perfectly moni-
tored and controlled as compared to chemical production processes [40–43]. This is because
biosystems are complex, individually different, time-varying and dynamic [44]. The cell
characteristic depends on many factors including the passage number, donor age, seeding
density and medium replacement strategy, all of which affect the presence of nutrients and
metabolic by-products [14,45,46]. In case a chemical process starts from a raw material
that has a certain deviation from the standard raw material, the process can be adapted
taking this initial deviation into account. However, whether a certain cell batch will grow
faster or slower than the ‘standard’ batch cannot be predicted or measured like a physical
characteristic of a raw material in a chemical process. Therefore, it is an advantage to apply
an adaptive control strategy that will learn the characteristics of the considered cell batch
and adapt to it as quickly as possible.

This work developed a data-based model predictive controller, in order to steer the
cell expansion process towards an adaptive target function. The medium supplied to the
system was considered as the control input, while the measured lactate production was
used as the output of the system. The advantage of using accumulated lactate produced
by the cells as output is that it can be measured during the process non-invasively as an
indicator for cell growth. The correlation between cell growth and accumulated lactate was
demonstrated and visualized in Figure 4, where the total amount of lactate produced by
the cells follows the same trend as the number of cells counted at the end of the expansion
process over the different tissue flasks. The R2 of the linear trendline between the two
variables is 82% and is significantly different from zero. Other possible output variables
selected in literature have been glucose [19,20] or dissolved oxygen [47]. The accumulated
medium was selected as the input of the system because it has a direct impact on the cell
growth by removing toxic waste products (lactate) and introducing energy sources (glucose)
and growth factors [48]. In addition, as the medium replacement rate has a direct impact
on the cost of the cell production process, optimizing this input will directly influence the
operating cost of the cell expansion.

Controller experiment 1 tried to mimic the exact amount of lactate produced by the
cells in the reference experiment. For tissue flasks 1 until 4, this meant giving the cells
more medium than the reference, and for tissue flask 5 until 8, this meant less medium.
However, due to cell donor variability, the controller was not capable of reproducing the
same number of cells for tissue flasks 1 until 4. Although the controller provided more
medium than the reference experiment, there were less cells in the end. The controller
tried to cope with the slower growing cells or the lower number of cells. Since the cells
produced a lower amount of lactate than the reference experiment, the controller saw this
as a reason to give more medium than used during the reference experiment. However,
the higher supply of medium did not seem to cover the lack of growth, and therefore,
the system was unable to achieve the same number of cells at the end. For tissue flasks 5
until 8, the full capacity of the cells was not used. By only using information of the initial
reference experiment to define the trajectory, fast growing cells that require more medium
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were starved to slow their growth down towards the reference trajectory. The conclusion
here is that it is suboptimal to use a general reference trajectory based on predefined lactate
values for a new experiment since each batch of cells is very different.

Controller experiment 2 used real-time process information to form an adaptive target
trajectory. In addition to the values of the accumulated lactate concentrations of the
reference experiment, the online information of the considered cell expansion process in the
optimization of the process was also included in the adaptive target trajectory. In this way,
the full potential of the cells was used, meaning that the cells were fed according to their
needs, without under or overfeeding them as was the case in the first controller experiment.
To have a better understanding of how the controller works for different groups, it would
be interesting to perform future experiments where the controller is applied to more than
one cell line or to even use another output measurement instead of accumulated lactate.

As a case study, we used results from the controller experiment 2 in order to simulate
how much medium could be saved on a whole cell expansion process by following the
controller’s suggestions regarding medium replacements, without decreasing the number
of obtained cells. Therefore, the amount of medium saved from the triplicate flasks number
5, 6, and 7 was compared to their control flask 8. This resulted in an average of 86.42 mL
medium used compared to 95 mL, which is equal to 9% medium saved. The number of
cells was not decreased due to this medium reduction; there was even a slight average
increase of 6.66 × 106 cells. When simulating this for a whole cell expansion process going
from 0.25 × 106 cells from biopsy to a total of 1 × 108 cells, additional information from the
controller experiments was used. The seeding density of 2500 cells/cm2, together with the
average harvesting density of 14,285 cells/cm2, would result in a sequence of expansions
of tissue flask 175 going from one TF175 to 5, to 28 and finally to 40. When adding up the
8.58 mL of medium saved for each expansion, this would result in a total of 634.92 mL
medium saved.

The collected data from controller experiment 2 were also used to forecast the cell
expansion process by using the combined data of several experimental runs together.
These forecasting techniques could be used in future work either in the prediction model
or as a target function. The first forecast method used transfer functions as previously
used in the prediction models of the controller experiments. Both methods of either
averaging the model parameters or averaging the datapoints for the DARX modelling
approach resulted in similar accuracies of the forecasts. The second forecast method used
machine learning, more specifically LS-SVM, which uses the forecasting model as a machine
learning algorithm.

A next step could be to use other machine learning algorithms, such as k-nearest
neighbours LS-SVM [49] and compare both. Since the power of machine learning was not
fully accessed in this work due to the small size of the dataset, a valuable future approach
would be to gather a large dataset with many possible input and output variables and
release the power of machine learning on such data. Including information on donor
characteristics as well as other relevant process variables could benefit the optimization of
the cell expansion process. In this way, we expect the machine learning-based approach to
outperform the transfer function-based approach.

Another interesting future work would be to start with a medium supply scheme
based on predefined knowledge of the cell batch using machine learning [14] or mecha-
nistic models [50] (e.g., to predict the cell growth) followed by the control strategy using
DARX transfer functions to adapt the medium supply based on the accumulated lactate
measured. Using knowledge and/or data from previous experiments through mechanistic
and machine learning models has the advantage that a more personalized feeding strategy
can be applied at the start of the cell proliferation process. Once enough data are gathered
during an initial period, the applied transfer function modelling approach using real-time
data will take into account the specific individual and time-varying characteristics of the
considered cell growth process and the medium supply scheme can be adapted accordingly.
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Mechanistic modelling and transfer function modelling approaches could also be
combined. One way to do so is by using the mechanistic model for generating or simulating
process data on which a transfer function model is then applied, resulting in a compact
process model focusing only on the dominant processes influencing the cell growth. Via
statistical emulation approaches, the parameters of such higher order mechanistic models
can be mapped onto the dominant modes of a reduced-order transfer function, allowing to
describe the process with a compact transfer function model with biologically interpretable
parameters [51]. Another integration of a mechanistic model into the control strategy is to
use it for estimating the target trajectory of the cell growth process. This mechanistic model
could be similar as the one described by Guyot, but adapted and calibrated for a spinner
flask experiment [50].

5. Conclusions

This work developed a data-based model predictive controller for steering cell growth
processes towards an adaptive target function. Applying an adaptive target function has
proven to be a big advantage compared to a fixed predefined target function. The adaptive
nature of the target function allows taking into account the different characteristics of each
cell batch, resulting in a personalized and optimized feeding strategy for each cell batch. In
addition, a method to combine the data from multiple experimental runs into one model
to forecast the cell expansion process was designed by applying either transfer function
models or machine learning.
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