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Abstract: In the range of 800–1200 K, both experiments and kinetic modeling demonstrate a significant
difference in the dependence of the ignition delay time of methane and hydrogen on pressure
and temperature, with the complex influence of these parameters on the autoignition delay time
of methane–hydrogen–air mixtures. In connection with the prospects for the widespread use of
methane–hydrogen mixtures in energy production and transport, a detailed analysis of their ignition
at temperatures below 1000 K, the most important region from the point of view of their practical
application, is carried out. It is shown that such a complex behavior is associated with the transition
in this temperature range from low-temperature mechanisms of oxidation of both methane and
hydrogen, in which peroxide radicals and molecules play a decisive role, to high-temperature
mechanisms of their oxidation, in which simpler radicals dominate. A kinetic interpretation of the
processes occurring in this case is proposed.
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1. Introduction

Serious concerns from the world community, politicians and industry circles about the
negative impact of energy and transport on the global climate, and active efforts to reduce
the growth of carbon dioxide concentration in the atmosphere [1] have stimulated interest
in low-carbon energy sources and energy carriers. A transition to renewable energy sources
is considered as the main direction, but in the near future their contribution to global
energy is unlikely to be sufficient to significantly affect the emission of carbon dioxide
into the atmosphere [2]. Therefore, more and more attention is being paid to low-carbon
energy carriers, for example, ammonia [3]. However, there is little doubt that hydrogen and
hydrogen-containing mixtures continue to be widely used as low-carbon energy carriers.

The use of methane–hydrogen mixtures with different hydrogen content at the initial
stage of the transition to “hydrogen energy” will make it possible to circumvent many
complex problems concerning the production, storing, transportation and distribution of
hydrogen [4–7]. Along with hydrogen, such mixtures can be used to power traditional
internal combustion engines (ICE) [8–11], the energy efficiency of using hydrogen in which
is not much inferior to the efficiency of its use in fuel cells [9]. In addition, while ICE is a
cheaper and more reliable source of energy than fuel cells, the use of hydrogen and mixtures
containing it in ICE is technically more developed. Additionally, some engine tests have
demonstrated that using hydrogen-enriched natural gas widens the lean burn operation
range, while reducing unburned hydrocarbon and carbon dioxide emissions [12]. Due to
progress in the development of ICE, it is expected that by 2045 their fuel efficiency will
nearly reach that of fuel cells [13]. Therefore, the use of hydrogen and methane–hydrogen
mixtures to power the ICE can become a natural transition link between modern liquid or
gas-fueled ICE and future fuel cell-based transport [14].
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However, practical applications of methane–hydrogen mixtures require a detailed
study of the possibility and conditions of their use for operation with existing power
equipment. To optimize the composition of gas mixtures and the operating modes of
existing power equipment on such mixtures, as well as to ensure the safety of their storage,
transportation and utilization, it is necessary to study the conditions of their ignition and
the parameters characterizing the process of their combustion.

The basic laws of the combustion of hydrogen and methane were established a long
time ago [15]; however, there are still many white spots and a large field for research that
needs to be carried out to ensure the possibility of the widespread use of methane–hydrogen
mixtures. Among the most important parameters determining the optimal conditions and
safety of the utilization of methane–hydrogen mixtures are the autoignition delay time and
laminar burning velocity. A large body of work has been devoted to the study of these
parameters for hydrogen and methane, but there are only a few experimental investigations
on the ignition characteristics and chemistry for methane–hydrogen mixtures. Note also
that almost all studies of the ignition delay time were carried out in shock tubes or in
rapid compression machines [16–25] at temperatures above 1000 K. However, for the safe
utilization of such mixtures, it is desirable to obtain data on their ignition at temperatures
as low as possible. In addition, since the autoignition of the working mixture in the internal
combustion engine occurs at relatively low temperatures, ~500–900 K [26], the optimization
of the performance of methane–hydrogen mixtures in ICEs requires the determination of
the ignition delay time within this temperature range.

2. Effect of Hydrogen on the Autoignition of Methane in the Transition
Temperature Region

Studying the autoignition of methane–hydrogen mixtures at temperatures below
1000 K is complicated by the fact that, in this temperature range, the mechanisms of the
oxidation of methane and hydrogen change dramatically. Within a narrow temperature
range 900–1000 K, the low-temperature mechanisms of their oxidation, in which peroxide
compounds and radicals play a significant role, changes to the high-temperature oxidation
mechanisms, in which reactions involving H•, O••, OH•, and CH3

• dominate. These
changes in the mechanisms strongly affect the autoignition of hydrogen and methane,
which usually begins by a low-temperature mechanism followed by transition to high-
temperature oxidation. For methane oxidation in this temperature range, this gives rise to
various nonlinear effects, such as negative temperature coefficient (NTC) of the oxidation
rate, cool flames, the inhibition of methane oxidation by oxygen, and a number of others [27].
During the oxidation of methane–hydrogen mixtures, these changes in the oxidation
mechanisms of both compounds overlap, leading, depending on the ratio of methane and
hydrogen in the mixture, pressure, initial temperature and other conditions to a complex
pattern of the observed behavior, the study and interpretation of which is devoted to in
this work.

The complex influence of hydrogen on the autoignition of methane has been known for
a long time. Gersen et al. [20] measured the ignition delay of methane–hydrogen mixtures
in a rapid compression machine under stoichiometric conditions at pressures from 1.5 to
7.0 MPa, temperatures from 950 to 1060 K, and hydrogen mole fractions from 0% to 100%.
Their results showed that the promotion effect of hydrogen is only marginal for hydrogen
fraction below 20%, while the ignition delay decreased remarkably when the hydrogen
fraction is over 50%. Furthermore, the promotion of ignition is boosted by increasing
temperature but is suppressed by increasing pressure.

It was found [23] that at T > 1000 K, the measured ignition delay time agrees well with
theoretical predictions, while at T < 1000 K, this parameter turns out to be substantially
smaller than the calculated value, with the difference reaching three orders of magnitude
at ~800 K.

Experiments behind reflected shock waves at temperatures from 1000 to 2000 K and
pressures from 0.5 to 2.0 MPa in conjunction with kinetic simulations [24] have shown
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that the pressure dependence of the ignition delay time for methane–hydrogen mixtures at
hydrogen fractions less than 40% resembles that of methane: the ignition delay decreases
with increasing pressure. At a hydrogen fraction of 60%, the promotion effect of pressure
on the ignition of methane–hydrogen mixtures was negligibly small. At hydrogen fractions
equal or greater than 80%, the ignition response resembled that of hydrogen in that the
ignition delay exhibited a complex dependence on pressure and a two-step transition
in the global activation energy. Kinetic simulations using a NUI Galway mechanism
demonstrated excellent agreement with these results.

According to the hydrogen fraction, the authors of [25] identified three ignition
regimes: at [H2] ≤ 40%, methane chemistry dominates; at [H2] = 60%, combined chemistry
of methane and hydrogen manifests itself; and [H2] ≥ 80%, hydrogen chemistry is leading.
Note also that a significant difference was observed in the temperature dependences of
the autoignition delay time for methane and hydrogen at high and low temperatures.
While at temperatures above 1250 K, the regular Arrhenius dependence is observed in both
cases, at lower temperatures this dependence for both methane and hydrogen exhibit a
complex behavior, with a significant change in the activation energy of the ignition delay
time (Figure 1).
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Due to the importance of information on the autoignition and combustion charac-
teristics of methane–hydrogen mixtures in the temperature range of 800–1000 K for their
safe handling and their utilization in ICE, in this study, the delays of autoignition of
methane–hydrogen mixtures in this range were experimentally determined and a kinetic
analysis of the process of their autoignition was carried out.

3. Experimental Investigation of the Autoignition Delay Time of
Methane–Hydrogen Mixtures

In this study, an experimental investigation of the autoignition delay time of methane–hydro-
gen mixtures was carried out in a static-type setup with a closed reaction vessel by the
high-pressure bomb method described in detail in [28,29]. The reactor was a thick-walled
heated cylindrical vessel made of stainless-steel, with a diameter and height of 10 cm.
Mixtures of methane–hydrogen–air of a given composition were prepared in high-pressure
steel cylinders according to the partial pressures of the components. The prepared mixtures
were allowed to stay in these cylinders for at least 48 h to provide complete mixing of
the gas components. The evacuated reactor was heated to a desired temperature T0 and
filled with a test mixture to a desired initial pressure P0 through an electromagnetic valve
synchronized with the registration system. The pressure in the reactor was recorded by a
sensor with a normal frequency of 5–8 kHz. The autoignition delay time was defined as the
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time from the moment of pressure equalization after mixture admission into the reactor to
the moment of a sharp pressure rise as a result of its autoignition. Typical pressure change
curves are presented in [28,29]. The autoignition delay time that can be measured by this
method is limited from below by the time of mixture inlet in the reactor and equalizing of
its temperature, which is ~0.2 s, and from above by a period of about 20 s, exceeding which
can lead to an uncontrolled change in the composition of the mixture and the state of the
reactor surface. Due to the stochastic nature of the autoignition, uncontrolled changes in
the state of the inner surface of the reactor and the complex gas dynamics of the mixture
injection process, the variation in autoignition delay time between successive experiments
can reach 30%. However, a sufficient number of experiments and the strong temperature
dependence of the autoignition delay time allow us to obtain a fairly reliable array of data
to determine the activation energy.

The autoignition delay times of stoichiometric methane–hydrogen–air mixtures in the
temperature range of 850–1000 K at initial pressures of P0 = 1 and 3 atm and hydrogen
concentrations in the mixture from 0 to 50% were investigated. At higher hydrogen
concentrations, the autoignition delay time for this temperature range is shorter than the
low boundary of reliable measurements. The obtained temperature dependence of the
autoignition delay time for stoichiometric methane–hydrogen–air mixtures (Figure 2) is
well described by the Arrhenius expression

τ = A exp (Ea/RT),

where Ea is the effective activation energy, and A is the pre-exponential factor.
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hydrogen-air mixtures at P0 = (a) 1 and (b) 3 atm.

Note that at high temperatures, the autoignition delay time shortens significantly
with increasing hydrogen concentration, i.e., hydrogen promotes the ignition of methane.
However, at lower temperatures T ≈ 850 K, the promotion effect is weak, if any (Figure 2).
An increase in pressure narrows the range of changes in the effective activation energy of
the autoignition delay time with a change in the hydrogen concentration in the mixture.

The effective activation energy of the autoignition delay time for methane–hydrogen
mixtures increases with the hydrogen concentration, being accompanied by a decrease in
the pre-exponential factor A. At ~900 K and at P0 = 1 atm, the increase in the hydrogen
concentration in the mixture from 0 to 50% results in a threefold increase in the effective
activation energy: from 23.4 to 73.7 kcal/mol (Figure 3). Such a significant change in
the effective activation energy of the autoignition delay time is indicative of a serious



Processes 2022, 10, 2177 5 of 22

change in the mechanism of autoignition in this temperature range. This effect of hydrogen
addition on the autoignition of methane distinguishes it sharply from that addition of
C2–C6 alkanes on it, for which, regardless of the added alkane concentration, the effective
activation energy for the autoignition delay time remain practically unchanged, within
40 ± 10 kcal/mol [28–30].
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the Arrhenius expression for the autoignition delay time for methane–hydrogen-air mixtures on the
concentration of hydrogen at P0 = 1 and 3 atm.

A consequence of the autoignition delay time activation energy for methane–hydrogen
mixtures increasing with the hydrogen concentration is an enhancement in their sensitivity
to temperature changes and, consequently, a decrease in their detonation resistance, since
not only is the value of the ignition delay itself important, but also the sensitivity of the fuel
to changes in temperature, concentration, and pressure. Figure 3 shows that at hydrogen
concentrations in the mixture below 30%, pressure has little effect on the change in the
activation energy for the autoignition delay time. At higher hydrogen concentrations,
an increase in pressure makes the effect of hydrogen on the activation energy of the
autoignition delay time of methane–hydrogen mixtures less pronounced.

4. Kinetic Modeling of Autoignition Delay of Methane-Hydrogen Mixtures

Experimental results obtained even in a limited range of hydrogen concentrations
(≤50%) indicate the complex influence of hydrogen concentration on the autoignition
of methane–hydrogen mixtures at temperatures below 1000 K. To obtain more detailed
information on this influence, simulations of the autoignition delay times of stoichiometric
CH4–H2–air mixtures with different hydrogen concentrations in them were carried out.
The kinetic mechanism NUI Galway [31,32] was used in calculations, which proved to be
the most adequate for describing these processes [30].

Since the mechanism of hydrogen oxidation is a model object of research and has been
studied in sufficient detail, ignition delays for hydrogen–air mixtures calculated by the
mechanism [31,32] were compared with calculations based on more specialized mechanisms
of hydrogen oxidation [33–35]. Analysis shows that for the conditions we consider, the
mechanism from [31,32] adequately describes the process of autoignition of hydrogen–air
mixtures, without revealing any noticeable discrepancies with the mechanisms [33–35]. The
obtained values of the autoignition delay time for temperatures 800–1000 K are presented
in Table 1, while the corresponding temperature dependences are displayed in Figure 4.
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Table 1. Calculated autoignition delay time lgτ (s) of stoichiometric CH4-H2-air mixtures.

[H2], % Temperature, K

1000 950 900 850 800

0 0.090 0.459 0.852 1.276 1.755

10 −0.348 0.009 0.401 0.866 1.440

20 −0.710 −0.338 0.100 0.648 1.319

30 −1.049 −0.654 −0.155 0.490 1.240

40 −1.378 −0.959 −0.377 0.371 1.180

50 −1.719 −1.262 −0.576 0.277 1.127

60 −2.084 −1.600 −0.767 0.197 1.076

70 −2.506 −2.013 −0.971 0.123 1.025

80 −2.971 −2.479 −1.215 0.048 0.967

90 −3.411 −2.936 −1.425 −0.032 0.901

100 −3.690 −3.309 −1.554 −0.122 0.820
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Figure 4. Calculated temperature dependence of the autoignition delay time of stoichiometric CH4-
H2-air mixtures on the initial temperature at different concentrations [H2] (%): 0 (1), 10 (2), 20 (3),
30 (4), 40 (5), 50 (6), 60 (7), 70 (8), 80 (9), 90 (10), 100 (11). P0 = 1 atm.

The calculated dependences demonstrate a complex influence of hydrogen on the
autoignition delay time for methane. At hydrogen concentrations in the mixture up to
40%, the temperature dependence of the autoignition delay time is closely described by the
Arrhenius expression (Figure 4, curves 1–5). However, at higher hydrogen concentrations,
the dependence ceases to be of Arrhenius type (Figure 4, curves 6–11), with the temper-
ature dependence of the effective activation energy for the ignition delay time passing
through a maximum at ~900 K (Figure 5, curves 3–5). While the effective activation energy
of the autoignition delay of methane itself (Figure 5, curve 1) remains almost constant,
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~30 kcal/mol, over the entire temperature range covered, the effective activation energy
of the autoignition delay time of hydrogen and mixtures with its high content increases
near T ≈ 900 K by about a factor of 3–4, compared to the effective activation energy of the
autoignition delay time at lower and higher temperatures (Figure 5, curves 4, 5).
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Figure 5. Calculated temperature dependence of the effective activation energy Ea for the autoignition
delay time of stoichiometric CH4–H2–air mixtures on the initial temperature at various hydrogen
concentrations (%): 0 (1), 40 (2), 70 (3), 90 (4), 100 (5). P0 = 1 atm.

It should also be noted that in low temperatures, T < 850 K, the effective activation
energy for the autoignition delay time of hydrogen and hydrogen-containing mixtures
is higher than the effective activation energy of the autoignition delay time for methane
(Figure 5). Possible reasons for this will be discussed below. For mixtures with a hydrogen
concentration of up to 40 vol%, the effective activation energy of the autoignition delay
time decreases monotonically with increasing temperature, becoming lower than that for
methane at T > 1100 K (Figure 5, curve 2). For methane–hydrogen mixtures with a high
hydrogen content, as well as for hydrogen itself, the effective activation energy of the
autoignition delay time passes through a maximum near T = 900 K, but at T > 1100 K it also
becomes lower than that for methane. At the same time, the higher the hydrogen content
in the mixture, the lower it is (Figure 5).

5. Influence of Hydrogen Concentration on the Laminar Burning Velocity of
Methane–Hydrogen Mixtures

The addition of hydrogen to methane–air mixtures increases their laminar burning
velocity and expands the flammability limits [36–49], although these additives must be
significant for a noticeable effect. For example, it was shown [47] that the addition of 10
or 20% hydrogen to methane has a weak effect on the laminar velocity of its flame, but
significantly expands the lean flame propagation limit. An increase in the initial pressure
leads to a decrease in the burning velocity of both methane–air mixtures and methane–
hydrogen–air mixtures, with the decrease for hydrogen-free mixtures being more noticeable.
The lean flame propagation limit expands with increasing initial pressure.

To obtain a more detailed picture of the effect of hydrogen concentration on the
ignition and combustion of methane–hydrogen mixtures, we calculated their laminar
burning velocity at various initial temperatures. The effect of the initial temperature
on the laminar burning velocity of methane–hydrogen–air mixtures was investigated.
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Calculations were carried out using the mechanism [31,32]; however, for comparison,
in some cases, calculations were also carried out using the global kinetic mechanism of
methane combustion, which includes only 10 elementary reactions involving 9 components
(CH4, O2, CO, CO2, H2, H2O, N2, NO and the formally introduced radical HO0.5) [50,51].
This mechanism has been repeatedly tested when calculating the processes of autoignition
and propagation of laminar flames. Under these conditions, it describes the process of
combustion quite satisfactorily at low hydrogen concentrations, but at high concentrations
it becomes unusable, since it does not reflect changes in the mechanism of hydrogen
combustion in this temperature range. Figure 6a compares the published experimental data
on the dependence of the laminar burning velocity in stoichiometric methane–hydrogen–air
mixtures on the hydrogen concentration and our calculation results.
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Figure 6. Dependence of laminar burning velocity Un in stoichiometric of CH4–H2-air mixtures
on the concentration of hydrogen. (a) T0 = 293 K (line—calculation by the mechanism [31,32],
symbols—experimental values from literary sources: 4—[38], o—[40], �—[41], •—[42], H—[43],
F—[44], �—[45]. (b) Calculation at T0 (K): 1—300, 2—400, 3—500, 4—600.

The good agreement of the experimental data and calculation results for the initial
temperature T0 = 293 K prompted us to perform similar simulations at higher initial
temperatures of the mixture up to T0 = 600 K (Figure 6b). These results allow us to conclude
that even at elevated temperatures, with a hydrogen concentration in a methane–hydrogen
mixture of less than 40%, it has a weak effect on the burning velocity of methane–air
mixtures. A more detailed description of these results is given in [52].

6. Discussion
6.1. Influence of Temperature and Hydrogen Concentration

A sharp change in the dependence of the activation energy of the autoignition delay
time for hydrogen and mixtures with its high concentration at T ≈ 900 K (Figures 4 and 5)
indicates that this temperature should be considered as the boundary between the low-
temperature and high-temperature parts of the considered range, near which significant
changes in the mechanism of the process occur. This is confirmed by the character of
the dependence of the activation energy of the autoignition delay time of stoichiometric
methane–hydrogen mixtures on the hydrogen content in them, which is sharply different for
this temperature (Figure 7). The curve for T0 = 900 K clearly separates two different process
modes with different dependence on the hydrogen concentration. At low temperatures
(T0 < 900 K), the activation energy of the autoignition delay time increases monotonically
with the hydrogen concentration in the mixture, whereas at high temperatures (T0 > 900 K),
it passes through a flat maximum (Figure 7). These temperature regions are separated
by a sharply different dependence for T0 = 900 K, in which the activation energy of the
autoignition delay time of methane–hydrogen mixtures monotonically increases with the
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hydrogen concentration in the mixture from 30.5 kcal/mol for methane to 117.7 kcal/mol
for hydrogen, which is almost fourfold (Figure 7).
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Figure 7. Dependence of the effective activation energy Ea for the autoignition delay time of stoichio-
metric methane–hydrogen–air mixtures on the hydrogen concentration at P0 = 1 atm. •—experimental
results (T0 = 900 K). Calculations at T0 (K) 850–900 (N), 900 (�) and 950–1000 (�).

The experimental results we obtained for T0 = 900 K (Figure 7), taking into account
various factors that can introduce errors [28,29], are in good agreement with the simulation
results. When hydrogen concentration in the mixture is changed from zero to 50%, the
experimentally determined activation energy of the autoignition delay time of methane–
hydrogen mixtures increased monotonically from 23.4 kcal/mol to 73.7 kcal/mol.

The very similar transition in activation energy for hydrogen was also observed in
shock tube experiments [24]. At P = 5 atm activation energy for hydrogen autoignition time
Ea was 39.3 kcal/mol, while at lower temperatures it was equal to 126.9 kcal/mol (Figure 8).
At a higher pressure (10 atm), the change in this activation energy for hydrogen was even
greater, but with an opposite sign relative to the temperature: from Ea = 74.5 kcal/mol
at low (~1025 K) temperature to 258 kcal/mol at 1108 K with a subsequent decrease to
49.2 kcal/mol at higher temperatures. A similar behavior was observed at 20 atm (Figure 8).
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It is worth noting that a significant increase in the activation energy during the transi-
tion from the low-temperature region T < 1000 K to higher temperatures T > 1100 K was
also observed in [53] for methane. However, it is possible that the very low values of the
autoignition delay time obtained in this work at T < 1000 K, which contradict the simulation
results, are caused by the inaccuracy of determining the temperature in the shock wave.

6.2. Effect of Pressure

The effect of pressure on the autoignition of methane–hydrogen mixtures is complex
due to its opposite effect on the autoignition of hydrogen and methane. According to
numerous literature data obtained mainly in shock tube experiments for temperatures
above 1000 K, an increase in pressure reduces the autoignition delay time of hydrocarbons,
including methane. On the contrary, the ignition delays of hydrogen increase with the
increase in pressure at temperatures between 1093 and 1170 K. The results from [24]
show that at T = 1093 K, the ignition delay of hydrogen at a pressure of 2.0 MPa is ten
times longer than that at 0.5 MPa (Figure 8). The complex pressure dependence was also
observed in [21].

The capabilities of the experimental equipment we used are limited to an initial
pressure of P0 = 3 atm. Taking into account the good agreement of experimental and
calculated results for pressures 1 and 3 atm, we found it possible to expand the pressure
range to 15 atm during modeling (Figure 9).
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Figure 9. Temperature dependence of autoignition delay time for stoichiometric methane–hydrogen–
air mixtures at various initial pressures and hydrogen concentrations; (a) [H2] = 20%, (b) [H2] = 80%.

The results show that for [H2] = 20% in the entire temperature range covered at all
pressures used, the temperature dependence of the autoignition delay time of stoichiometric
methane–hydrogen mixtures has an Arrhenius form. In the entire temperature range, an
increase in pressure promotes the ignition (Figure 9a). This confirms the conclusion that
the oxidation of methane–hydrogen mixtures with low hydrogen content occurs mainly
by the methane mechanism. However, the results are drastically different for mixtures
with [H2] = 80%, the oxidation of which proceeds via the hydrogen mechanism [24,25].
While at P0 = 15 atm, the Arrhenius character of the dependence holds, at P0 = 3 atm,
it becomes somewhat distorted, being obviously violated at P0 = 1 atm (Figure 9b). At
the same time, while in the low-temperature part of this range, an increase in pressure
promotes the autoignition, i.e., reduces the ignition delay time, in its high-temperature part,
on the contrary, it inhibits the process. A fundamental change in the nature of the influence
of pressure on the ignition process occurs near T ≈ 900 K. These results are in fairly good
agreement with the results presented in Figure 8 [24], showing that, for hydrogen with an
increase in pressure, the dependence of the autoignition delay time becomes closer to the
Arrhenius expression.

A very similar dependence of the autoignition delay time for hydrogen and methane–
hydrogen mixtures with high hydrogen content was observed in shock-tube experiments [21].
In addition to using a different technique and higher temperatures, the authors of [21] per-
formed experiments with methane containing ~8% ethane, which can significantly affect
the time and nature of the dependence of the ignition delay on various parameters [28–30],
as well as strong dilution (1:5) of the mixture with argon. Nevertheless, in these experi-
ments, the same apparent maximum in the temperature of the autoignition delay time of
hydrogen and mixtures with its high content was observed. At a pressure of 1 atm, the
temperature of this maximum (~950 K) (Figure 10) is practically identical to the calculated
one in Figure 9. As the pressure increases, this maximum shifts to higher temperatures:
~1050 K at P = 4 atm and ~1250 K at P = 16 atm (Figure 10).
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Figure 10. Measured and calculated ignition delay times for H2–CH4–O2–Ar mixtures (ϕ = 1.0,
1:5 dilution) at pressures of 1 (a), 4 (b) and 16 atm (c). Experiments: (�)—100% H2, (•)—80% H2,
(N)—40%, (F)–0% H2. Lines represent the results of kinetic simulations (adapted from [21]).

A different effect of pressure on the autoignition delay time of methane–hydrogen–air
mixtures at different temperatures is clearly seen in Figure 11, which demonstrates the cal-
culated dependence of the autoignition delay time of stoichiometric CH4–H2–air mixtures
at P0 = 15 atm on the initial temperature at various concentrations of hydrogen. While at
high temperatures, an increase in the concentration of hydrogen promotes autoignition, at
low temperatures it clearly, albeit slightly, inhibits it. This is quite consistent with the ex-
perimental results presented in Figure 2, which show that, at low temperatures T ≈ 850 K,
hydrogen very weakly promotes the autoignition of methane; however, the promoting
effect of hydrogen increases with the temperature. If desired, one can even see the presence
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of a small inhibitory effect of hydrogen in Figure 2, but the spread of experimental results
is too large for such an unambiguous conclusion.
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The calculated dependence of the autoignition delay time of methane–hydrogen–air
mixtures with different hydrogen concentration on the pressure in the range from 1 to 15 atm
at T0 = 900 K is shown in Figure 12. With low hydrogen concentration, the autoignition
delay time monotonically decreases with increasing pressure. However, for hydrogen
itself and for mixtures with its high concentration, pressure increases the autoignition
delay time of methane–hydrogen–air mixtures at low pressures, leading to the appearance
of a maximum at P ≈ 3 atm. Only at higher pressures is a monotonous decrease in the
autoignition delay time is observed.

Similar effects were observed in [24] for hydrogen. At slightly higher temperatures,
above 1000 K, an increase in hydrogen pressure from 5 to 20 atm led to a noticeable increase
in the ignition delay time and a change in the ignition delay activation energy (Figure 8).
At even higher temperatures, above 1100 K, apparently due to the final changeover to the
high-temperature mechanism of hydrogen oxidation, both its autoignition delay time and
the activation energy of its change no longer depend on pressure (Figure 8).
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the initial pressure at T0 = 900 K and various hydrogen concentrations.

6.3. Kinetic Interpretation of Observed Phenomena

A kinetic interpretation of the results obtained is presented below. The fact that for a
stoichiometric methane–air mixture, the activation energy of the autoignition delay time
in the studied temperature range is practically constant and significantly lower than the
activation energy (~57 kcal/mol) of the chain initiation reaction,

CH4 + O2 → CH3
• + HO2

•, (1)

can be explained by the branched-chain nature of the process in this temperature range.
It is worth noting that for the branched-chain process of the partial oxidation of very
rich mixtures of methane at similar temperatures, an activation energy of 46 kcal/mol
was experimentally obtained [27,54], whereas for rich mixtures it was in the range of
42.8–48.4 kcal/mol [24]; that is, also significantly lower than the activation energy of
reaction (1).

At temperatures below 900 K, the activation energy of the ignition delay time increases
with the hydrogen concentration in the mixture (Figure 7). This can formally be interpreted
as a manifestation of the inhibitory effect of hydrogen on the methane autoignition in this
temperature range. A similar phenomenon of inhibition by hydrogen was observed for the
autoignition of rich methane–propane mixtures [55]. Significant distinctions in the behavior
of mixtures with high and low hydrogen content is probably due to substantial differences
in the low-temperature (T < 900 K) mechanisms of methane and hydrogen oxidation.

At temperatures below 900 K, methyl peroxy radicals CH3OO• , formed in the
equilibrium reaction

CH3
• + O2 ↔ CH3OO• (2)

play a leading role in the oxidation of methane. They lead to the formation of methyl
hydroperoxide CH3OOH and the subsequent degenerate chain branching when it decays
into radicals

CH3OOH→ CH3O• + OH•, (3)

due to which, at temperatures below 900 K, methane oxidation proceeds as a fast branched-
chain process [27] with an effective activation energy noticeably lower than the energy of
bond rupture in reaction (1). However, at temperatures above 900 K, the equilibrium in
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reaction (2) shifts to the left, the rate of formation of methyl peroxy radicals and, accordingly,
methyl peroxide drops sharply, and the process ceases to be chain-branched, which leads
to a decrease in its rate, with the reaction passing into the region of negative temperature
coefficient (NTC) of the reaction rate. At even higher temperatures, the branched-chain
process of methane oxidation is realized by a different, high-temperature mechanism [15,27].
Therefore, the temperature range near 900 K is transitional from low-temperature to high-
temperature methane oxidation.

Coincidentally, a similar temperature range is also transitional for the mechanism of
hydrogen oxidation, although the reasons here are different. Radical generation reaction
during hydrogen oxidation

H2 + O2 → H• + HO2
•, (4)

is similar to the reaction (1) and yields HO2
• and H• radicals, while the latter reacts with

O2 to produce HO2
•, similar to reaction (2). However, unlike methyl peroxy radicals,

hydroperoxy radicals HO2
• are inactive at temperatures below 900 K, being consumed

mainly by recombination
HO2

• + HO2
• → H2O2 + O2 (5)

Reaction (5) is a chain-termination step, since hydrogen peroxide, unlike methyl
peroxide, is relatively stable at these temperatures, because its decay through the reaction

H2O2 → OH• + OH•, (6)

similar to reaction (3), does not provide fast enough chain-branching at these temperatures.
Note that the rate of the other chain-branching reaction in the hydrogen oxidation mechanism,

H• + O2 → OH• + O••, (7)

is also too low at these temperatures. Therefore, the oxidation of hydrogen at low tem-
peratures proceeds as an unbranched-chain process, and its addition to the system may
even lead to an inhibition effect due to the additional consumption of methyl radicals by
the reactions

CH3
• + H2 → CH4 + H• , (8)

H• + O2 + M→ HO2
• + M, (9)

leading eventually to hydrogen peroxide (reaction (5)), a relatively stable species under
these temperatures. Apparently, this can explain the effect of ignition of oxygen-rich
methane–propane mixtures by hydrogen additives [55], and a threefold increase in the
effective activation energy observed by us as the concentration of hydrogen in methane–
hydrogen–air mixtures was increased (Figure 7). Figure 13 presents the main routes of
reactants’ conversion in the chain mechanism of ignition of CH4–H2–air mixtures at various
temperatures and hydrogen concentrations.
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At T0 < 900 K, when present in low concentrations, hydrogen promotes the removal
of active radicals produced during the branched-chain oxidation of methane due to hydro-
gen peroxide formation (Figure 13a). At high hydrogen concentrations, on the contrary,
hydrogen oxidation is promoted by branched-chain oxidation of methane (Figure 13b). At
T0 > 900 K and a low concentration of hydrogen, conjugate radical oxidation processes
of methane and hydrogen occur, in which hydrogen promotes the oxidation of methane
(Figure 13c). At T0 > 900 K and a high concentration of hydrogen, despite the total pool
of radicals in the system, their oxidation proceeds practically independently (Figure 13d).
An indirect confirmation of this interpretation can be a rapid increase in the maximum
concentration of hydrogen peroxide with an increase in the initial hydrogen concentration
during the oxidation of methane-hydrogen mixtures at low (about 800 K) temperatures
(Figure 14).
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As the temperature increases, the activity of hydroperoxide radicals HO2
• and the rate

of decomposition of hydrogen peroxide increase. In the vicinity of T ≈ 900 K, the rate of
decomposition of hydrogen peroxide becomes quite high, and its maximum concentration
rapidly decreases with increasing temperature (Figure 14). Therefore, at temperatures
above 900 K, the recombination of HO2

• radicals ceases to inhibit the process, which leads
to a significant change in the mechanism of the oxidation of hydrogen and mixtures with
its high content. This temperature region of the fundamental change in the mechanism
is known in the literature as “H2O2 turnover” [56]. In addition, with increasing initial
temperature, the role of branching reaction (7) grows rapidly so that hydrogen oxidation
becomes a branched-chain process. With high hydrogen content, this manifests itself as
a rapid decrease in the effective activation energy of the autoignition delay time. The
changes in the mechanism of hydrogen oxidation described above lead to the appearance
of a maximum in the temperature dependence of the autoignition delay time of hydrogen
and mixtures with its high content (Figure 5).

The unique property of methane to provide a branched-chain oxidation at relatively
low temperatures fundamentally distinguishes its low-temperature oxidation not only from
the oxidation of hydrogen, but also from the oxidation of its closest homologues. Therefore,
despite the higher bond energy and, accordingly, the higher activation energy of radical
generation, the effective activation energy of the ignition delay time of methane oxidation
is lower than that of hydrogen, ethane, propane, or even butane [28–30]. However, at
temperatures above 900 K, the rate of formation of methyl peroxy radicals and their role
in the oxidation of methane turn out to be insignificant, and therefore, the main features
of the mechanisms of oxidation of methane and hydrogen become much similar, which is
reflected similar values of the activation energy for the autoignition delay time of methane,
hydrogen, and mixtures thereof at T > 1000 K (Figure 5). It is quite natural that due to a
somewhat lower H–H bond energy compared to the CH3–H bond energy, the activation
energy for the ignition delay time of hydrogen and mixtures with its high content in this
region is lower than that of methane.

As the methane-to-hydrogen ratio in the mixture changes, so does their role in the
oxidation mechanism. At a low initial concentration of hydrogen in the mixture, as a
result of a rapid branched-chain process, after the ignition the methane concentration
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quickly drops to zero. Note that the concentration of hydrogen, which in this case is an
intermediate product of oxidation, increases, reaching a maximum, which is almost a
third of the initial methane content. Then, due to the end of the branched-chain process,
the hydrogen concentration rapidly decreases to a certain steady-state value as a result of
achieving thermodynamically equilibrium composition of the products (Figure 15, curve 1).
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However, while the kinetics of changes in the methane concentration remains qual-
itatively the same over the entire range of the initial temperatures 800 ≤ T (K) ≤ 1000
and hydrogen concentration in the fuel from 0 to 90%, the behavior of hydrogen changes
significantly as its content in the mixture changes. Figure 15 shows the calculated change
in the kinetics of the hydrogen concentration at T0 = 900 K and various values [H2]. At
10 ≤ [H2] (%) ≤ 30, after a slight gradual decline before ignition, a very sharp spike in
the hydrogen concentration is observed at the moment of ignition, which then rapidly
decreases to a certain stationary value. With an increase in the fraction of H2 in the initial
mixture, the peak hydrogen concentration decreases, and its stationary final concentration
increases slightly. At [H2] = 10%, the decrease in the fraction of hydrogen before ignition
is almost imperceptible; however, with increasing [H2], the difference between its initial
concentration and that reached by the time of ignition increases. At [H2] = 40% (not shown
in Figure 15), the peak of the hydrogen concentration is barely noticeable, and at [H2] = 50%
(Figure 15, curve 4), the peak is not visible at all, while the change in hydrogen concentra-
tion becomes similar to the change in methane concentration, remaining so with a further
increase in the initial hydrogen content. With a change in temperature, the picture does not
change qualitatively, but the peak hydrogen concentration increases with an increase in the
initial temperature.

The peak concentration of hydrogen is explained by the competition of the processes
of its formation and consumption, and with its absence or low initial concentrations in the
fuel at the initial stage of the process its formation clearly prevails. As the initial fraction of
hydrogen in the mixture increases, while the fraction of methane, respectively, decreases,
the rate of hydrogen oxidation begins to prevail from the very beginning over its formation
in secondary reactions, and the peak on its kinetic curve disappears.
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The ignition delay times of the H2 subsystem are determined by the two competing reactions:

H + O2 (+ M)↔ HO2 (+ M) (10)

and
H + O2 ↔ OH + O. (11)

Reaction (10) becomes dominant at higher pressures, whereas reaction (11) becomes
dominant at higher temperatures because of its high activation energy. If reaction (10)
is considerably faster than reaction (11), the ignition delay times are increased because
less chain branching occurs by reaction (11). Therefore, the ignition of the pure hydrogen
system at 16 atm and T < 1100 K is slower than at 4 and 1 atm because reaction (10), which
is close to the low-pressure limit, is about 4 or 16 times faster at the higher pressure [21].
This exceeds the effect of the higher absolute concentrations due to the higher pressure
which dominates at higher temperatures and in hydrocarbon systems.

7. Conclusions

The complex influence of hydrogen concentration, temperature, and pressure on the
autoignition of methane–hydrogen mixtures requires the detailed analysis of these factors.
The results of the present study suggest that simplified approaches to the interpretation
of the autoignition of such mixtures, based on additivity rules for the properties of their
components, are unacceptable. In addition to the safety issues of working with methane–
hydrogen mixtures, the obtained results call into question the expediency of the practical
use of methane–hydrogen mixtures as a reference scale for determining the detonation
characteristics of hydrocarbon gas-engine fuels. Currently, for this purpose, the calculation
of their methane number (MN) is widely used on a scale in which the detonation resistance
of methane is taken as 100, and hydrogen as 0 [57–59]. However, the behavior of methane–
hydrogen mixtures in internal combustion engines will strongly depend on the mode of its
operation, and not all modes provide behavior similar to that of methane–alkane mixtures.
The results of this work show that just in the range of conditions corresponding to the
ignition of the mixture in ICEs [26], the assumption of the identity of the autoignition
of methane–alkane and methane–hydrogen mixtures is not fulfilled, on the use of which
the methane scale is based. Apparently, methane numbers, if they can be used at all, can
be applicable exclusively for comparing the detonation resistance of various mixtures of
methane with its heavier homologues. At high enough concentrations of hydrogen and
compounds of other classes in the mixture, one can hardly expect adequate results by
applying the methane scale to them.

On the other hand, the present work confirms the conclusion drawn in [24,25,47,52,60]
that at a hydrogen concentration of less than 40%, its presence has a rather weak effect on
the propensity to ignite and the combustion characteristics of methane–hydrogen mixtures
(Figures 3 and 6). This allows us to consider this concentration as an upper limit of
hydrogen content in a mixture with methane, which provides the possibility of using
existing gas equipment and established safety rules for the transportation and practical use
of methane–hydrogen mixtures.
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