Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = thiol modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4093 KB  
Article
Computational Study of Graphene Quantum Dots (GQDs) Functionalized with Thiol and Amino Groups for the Selective Detection of Heavy Metals in Wastewater
by Joaquín Alejandro Hernández-Fernández, Juan Sebastian Gómez Pérez and Edgar Marquez
Molecules 2025, 30(24), 4661; https://doi.org/10.3390/molecules30244661 - 5 Dec 2025
Viewed by 264
Abstract
Given the growing interest in contaminant detection, research has addressed the functionalization behavior of graphene quantum dots (GQDs) with thiol (-SH) and amino (-NH2) groups to optimize and improve the selective detection of heavy metals in wastewater. Implementing Density Functional Theory [...] Read more.
Given the growing interest in contaminant detection, research has addressed the functionalization behavior of graphene quantum dots (GQDs) with thiol (-SH) and amino (-NH2) groups to optimize and improve the selective detection of heavy metals in wastewater. Implementing Density Functional Theory (DFT), the interactions between the functionalized GQDs and hydrated metals such as Cr, Cd, and Pb were simulated. The results showed that GQDs with thiol groups exhibited a high affinity for metals such as Pb and Cd, with an energy gap (Eg) of 0.02175 eV in the interaction with Pb, showing optimized reactivity. On the other hand, amino-modified GQDs presented a higher Eg, indicating a lower reactivity and efficacy in contaminant identification. Furthermore, this study evaluated electronic properties such as the energy gap and total dipole moment (TDM), resulting in the -SH-functionalized GQDs showing a higher TDM, which presented a greater interaction capacity with these metals. Likewise, the electrostatic potential maps (MEPs) provided information on the charge distribution when adsorbing metals, an important parameter to understand electronic interactions. These results showed that the modification of GQDs improved the detection of heavy metals, although limitations in the DFT method used are recognized and the need for experimental studies is suggested to validate the results and investigate other functional modifications. Full article
Show Figures

Figure 1

13 pages, 2554 KB  
Article
Mechanistic Investigation of Adociaquinone and Xestoquinone Derivatives in Breast Cancer Cells
by Yu-Dong Zhou, Fakhri Mahdi, Nicholas M. Nagle, Mika B. Jekabsons and Dale G. Nagle
Mar. Drugs 2025, 23(12), 464; https://doi.org/10.3390/md23120464 - 2 Dec 2025
Viewed by 327
Abstract
Xestoquinone derivatives isolated from marine sponges exhibit a range of bioactivities, including the inhibition of HIF signaling, mitochondrial function, and tumor cell proliferation. Mechanistic investigation suggested that 14-hydroxymethylxestoquinone (1) acts as a protonophore. Although adociaquinones A (5) and B [...] Read more.
Xestoquinone derivatives isolated from marine sponges exhibit a range of bioactivities, including the inhibition of HIF signaling, mitochondrial function, and tumor cell proliferation. Mechanistic investigation suggested that 14-hydroxymethylxestoquinone (1) acts as a protonophore. Although adociaquinones A (5) and B (6) each stimulated cellular oxygen consumption, neither affected mitochondrial membrane potential. Cell-based respiration studies revealed that adociaquinones restored sodium azide-stalled oxygen consumption and ascorbate enhanced this response, suggesting ascorbate-supported redox cycling as a possible mechanism by which adociaquinones suppress HIF and tumor cell proliferation. These xestoquinone derivatives activated cellular stress response pathways that inhibit protein translation by phosphorylating key regulatory proteins (i.e., eIF2α, eIF4E, and eEF2). Further, thiol-reducing agents NAC and DTT attenuated the monosubstituted xestoquinone derivatives’ efficacy to inhibit HIF signaling, suggesting a potential mechanism of action that involves sulfhydryl modification. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Invertebrates)
Show Figures

Graphical abstract

26 pages, 4623 KB  
Article
Comparative Study of Functionalized Cellulose Nanocrystal–Silica Aerogels for Methylene Blue Adsorption
by Nduduzo Khumalo, Samson Mohomane, Vetrimurugan Elumalai and Tshwafo Motaung
Polymers 2025, 17(22), 2983; https://doi.org/10.3390/polym17222983 - 10 Nov 2025
Viewed by 645
Abstract
The removal of cationic dyes from industrial wastewater presents a significant environmental challenge. This research examines the effectiveness of functionalized cellulose-based silica aerogels as sustainable adsorbents for methylene blue (MB) dye. This research provides a systematic comparative study on the effectiveness of four [...] Read more.
The removal of cationic dyes from industrial wastewater presents a significant environmental challenge. This research examines the effectiveness of functionalized cellulose-based silica aerogels as sustainable adsorbents for methylene blue (MB) dye. This research provides a systematic comparative study on the effectiveness of four distinct functionalization strategies, carboxylate (CCNC), double carboxylate (DCCNC), carboxymethyl (CMC), and thiol-modification, applied to cellulose-based silica aerogels as sustainable adsorbents for methylene blue (MB) dye. Cellulose nanocrystals (CNCs) were extracted from sugarcane bagasse waste and subsequently functionalized into carboxylate (CCNC), double carboxylate (DCCNC), carboxymethyl (CMC), and thiol-modified variants. The materials were later integrated into a silica matrix, resulting in the formation of porous aerogel nanocomposites. The materials underwent thorough characterization through FTIR, XRD, SEM, TGA, and BET analyses, validating successful functionalization and the development of mesoporous structures. Batch adsorption tests demonstrated that the CMC-silica aerogel exhibited superior performance, attaining a maximum adsorption capacity of 197 mg/g and complete removal efficiency under ideal circumstances (pH 10, 25 °C, 60 min). The adsorption process is accurately characterized by the Langmuir isotherm and pseudo-second-order kinetic models, signifying monolayer adsorption and chemisorption as the rate-limiting step. The thermodynamic parameters indicate that the adsorption process is exothermic and spontaneous. The CMC-silica aerogel exhibited significant reusability, maintaining over 90% efficiency after six consecutive cycles. The findings illustrate the efficacy of functionalized cellulose–silica aerogels, especially the CMC form, as effective, environmentally sustainable, and reusable adsorbents for the treatment of dye-polluted water. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

41 pages, 4051 KB  
Review
Advances in Naturally and Synthetically Derived Bioactive Sesquiterpenes and Their Derivatives: Applications in Targeting Cancer and Neurodegenerative Diseases
by Liana R. Cutter, Alexandra R. Ren and Ipsita A. Banerjee
Molecules 2025, 30(21), 4302; https://doi.org/10.3390/molecules30214302 - 5 Nov 2025
Viewed by 1580
Abstract
Sesquiterpenes are a diverse class of natural products that have garnered considerable interest for their potent bioactivity and structural variability. This review highlights advances in the derivatization of various sesquiterpene lactones, quinones, and alcohols, particularly in targeting cancer and neurodegenerative diseases. The structural [...] Read more.
Sesquiterpenes are a diverse class of natural products that have garnered considerable interest for their potent bioactivity and structural variability. This review highlights advances in the derivatization of various sesquiterpene lactones, quinones, and alcohols, particularly in targeting cancer and neurodegenerative diseases. The structural modifications discussed include the incorporation of triazole, arylidene, or thiol moieties with eudesmane, guaiane, and germacranolide-type sesquiterpenes, among others. In addition, the conjugation with chemotherapeutics, as well as the development of nanoscale therapeutics, is also discussed. Such modifications have expanded the pharmacological potential, enabling improved specificity, cytotoxicity profiles, and sensitization toward tumor cells. Additionally, sesquiterpenes such as parthenolide (20), pterosinsade A (176), and cedrol (186) have demonstrated potential in mitigating neurodegeneration via anti-inflammatory and antioxidant signaling pathway-modulation mechanisms, with potential applications in Alzheimer’s, Parkinson’s, and ALS diseases. Mechanistic insights into redox signaling modulation, NF-κB inhibition, ROS regulation, and disruption of aggregation underscore their multifaceted modes of action. This review highlights the translational promise of sesquiterpene derivatives as dual-action agents for potential drug development in a plethora of diseases that are caused by inflammation and free-radical damage. It provides a framework for future rational design of multifunctional drug candidates and therapeutics. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

27 pages, 2379 KB  
Review
Advances in Understanding Renin–Angiotensin System-Mediated Anti-Tumor Activity of Natural Polyphenols
by Ximing Wu, Mingchuan Yang, Hailing Zhang, Lumin Yang, Yufeng He, Xiaozhong Cheng and Guilan Zhu
Biomolecules 2025, 15(11), 1541; https://doi.org/10.3390/biom15111541 - 2 Nov 2025
Viewed by 716
Abstract
The imbalance of the renin–angiotensin system (RAS), characterized by the overactivation of the pro-tumor ACE/AngII/AT1R axis, is closely linked to tumor growth, angiogenesis, metastasis, and poor prognosis. Natural polyphenols, such as EGCG and resveratrol, exert anti-cancer effects by dual-regulating RAS: they inhibit the [...] Read more.
The imbalance of the renin–angiotensin system (RAS), characterized by the overactivation of the pro-tumor ACE/AngII/AT1R axis, is closely linked to tumor growth, angiogenesis, metastasis, and poor prognosis. Natural polyphenols, such as EGCG and resveratrol, exert anti-cancer effects by dual-regulating RAS: they inhibit the pro-tumor axis by blocking renin, ACE activity, and AT1R expression, while simultaneously activating the protective ACE2/Ang(1-7)/MasR axis. Furthermore, polyphenols and their autoxidation products (e.g., EAOP) modify thiol-containing transmembrane proteins (such as ADAM17 and integrins) and interact with RAS components, further disrupting oncogenic pathways (including MAPK and PI3K/Akt/mTOR) to induce apoptosis, suppress invasion, and reduce oxidative stress. Notably, EAOP exhibits stronger RAS-modulating efficacy than its parent polyphenols. However, challenges such as low bioavailability, insufficient targeting, and limited clinical evidence impede their application. This review provides a comprehensive overview of the anti-cancer mechanisms of polyphenols through RAS regulation, discusses the associated challenges, and proposes potential solutions (including nanodelivery and structural modification) and strategies to advance natural product-based adjuvant treatments. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

38 pages, 3419 KB  
Review
Thiol Isomerases: Enzymatic Mechanisms, Models of Oxidation, and Antagonism by Galloylated Polyphenols
by Osamede C. Owegie, Quinn P. Kennedy, Pavel Davizon-Castillo and Moua Yang
Antioxidants 2025, 14(10), 1193; https://doi.org/10.3390/antiox14101193 - 30 Sep 2025
Viewed by 1620
Abstract
Thiol isomerases are a family of enzymes that participate in oxidative protein folding. They contain highly reactive vicinal thiols in a CXXC motif within their catalytic domains to mediate thiol-disulfide switching as part of their reductase, oxidase, and isomerase activity. In addition, they [...] Read more.
Thiol isomerases are a family of enzymes that participate in oxidative protein folding. They contain highly reactive vicinal thiols in a CXXC motif within their catalytic domains to mediate thiol-disulfide switching as part of their reductase, oxidase, and isomerase activity. In addition, they participate in chaperone function by binding to partially folded or misfolded proteins and preventing aggregation, thereby facilitating correct protein folding. The CXXC motif is conducive to oxidative influence based on the sulfur nucleophilicity. Redox modification of the CXXC motif may influence the enzymatic function. In this review we briefly discuss the family of thiol isomerases as it relates to thrombotic disorders. We then discuss the chemical mechanisms of making and breaking disulfides by the enzymes. Enzymatic and chemical models of oxidizing the CXXC motif are proposed. Lastly, we highlight evidence that natural galloylated polyphenols can inhibit both the coronavirus main protease Mpro and thiol isomerases, supporting a therapeutic strategy for COVID-19-associated coagulopathy and thrombosis by targeting the CXXC motif with these anti-oxidative compounds. Full article
(This article belongs to the Special Issue Redox Regulation in Inflammation and Disease—3rd Edition)
Show Figures

Graphical abstract

16 pages, 1475 KB  
Review
Redox Regulation of Endogenous Gasotransmitters in Vascular Health and Disease
by Giang-Huong Vu and Cuk-Seong Kim
Int. J. Mol. Sci. 2025, 26(18), 9037; https://doi.org/10.3390/ijms26189037 - 17 Sep 2025
Viewed by 1342
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) are now recognized as key gasotranmitters that regulate vascular function, contributing to vasodilation, angiogenesis, inflammation control, and oxidative balance. Initially regarded as toxic gases, they are produced on demand by specific [...] Read more.
Hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) are now recognized as key gasotranmitters that regulate vascular function, contributing to vasodilation, angiogenesis, inflammation control, and oxidative balance. Initially regarded as toxic gases, they are produced on demand by specific enzymes, including cystathionine γ-lyase (CSE), endothelial nitric oxide synthase (eNOS), and heme oxygenase-1 (HO-1). Their activity is tightly controlled by redox-sensitive pathways. Reactive oxygen species (ROS), particularly superoxide and hydrogen peroxide, modulate gasotransmitter biosynthesis at the transcriptional and post-translational levels. Moreover, ROS affect gasotransmitter availability through oxidative modifications, including thiol persulfidation, nitrosative signaling, and carbonylation. This redox regulation ensures a tightly coordinated response to environmental and metabolic cues within the vascular system. This review synthesizes the current understanding of redox–gasotransmitter interactions, highlighting how ROS modulate the vascular roles of H2S, NO, and CO. Understanding these interactions provides critical insights into the pathogenesis of cardiovascular diseases and offers potential redox-targeted therapies. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

27 pages, 2366 KB  
Review
S-Nitrosylation in Cardiovascular Disorders: The State of the Art
by Caiyun Mao, Jieyou Zhao, Nana Cheng, Zihang Xu, Haoming Ma, Yunjia Song and Xutao Sun
Biomolecules 2025, 15(8), 1073; https://doi.org/10.3390/biom15081073 - 24 Jul 2025
Cited by 2 | Viewed by 2082
Abstract
Protein S-nitrosylation is a selective post-translational modification in which a nitrosyl group is covalently attached to the reactive thiol group of cysteine, forming S-nitrosothiol. This modification plays a pivotal role in modulating physiological and pathological cardiovascular processes by altering protein conformation, activity, stability, [...] Read more.
Protein S-nitrosylation is a selective post-translational modification in which a nitrosyl group is covalently attached to the reactive thiol group of cysteine, forming S-nitrosothiol. This modification plays a pivotal role in modulating physiological and pathological cardiovascular processes by altering protein conformation, activity, stability, and other post-translational modifications. It is instrumental in regulating vascular and myocardial systolic and diastolic functions, vascular endothelial cell and cardiomyocyte apoptosis, and cardiac action potential and repolarization. Aberrant S-nitrosylation levels are implicated in the pathogenesis of various cardiovascular diseases, including systemic hypertension, pulmonary arterial hypertension, atherosclerosis, heart failure, myocardial infarction, arrhythmia, and diabetic cardiomyopathy. Insufficient S-nitrosylation leads to impaired vasodilation and increased vascular resistance, while excessive S-nitrosylation contributes to cardiac hypertrophy and myocardial fibrosis, thereby accelerating ventricular remodeling. This paper reviews the S-nitrosylated proteins in the above-mentioned diseases and their impact on these conditions through various signaling pathways, with the aim of providing a theoretical foundation for the development of novel therapeutic strategies or drugs targeting S-nitrosylated proteins. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

22 pages, 1446 KB  
Review
Integrating Redox Proteomics and Computational Modeling to Decipher Thiol-Based Oxidative Post-Translational Modifications (oxiPTMs) in Plant Stress Physiology
by Cengiz Kaya and Francisco J. Corpas
Int. J. Mol. Sci. 2025, 26(14), 6925; https://doi.org/10.3390/ijms26146925 - 18 Jul 2025
Viewed by 1467
Abstract
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. [...] Read more.
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. Advances in mass spectrometry-based redox proteomics have greatly enhanced the identification and quantification of oxiPTMs, enabling a more refined understanding of redox dynamics in plant cells. In parallel, the emergence of computational modeling, artificial intelligence (AI), and machine learning (ML) has revolutionized the ability to predict redox-sensitive residues and characterize redox-dependent signaling networks. This review provides a comprehensive synthesis of methodological advancements in redox proteomics, including enrichment strategies, quantification techniques, and real-time redox sensing technologies. It also explores the integration of computational tools for predicting S-nitrosation, sulfenylation, S-glutathionylation, persulfidation, and disulfide bond formation, highlighting key models such as CysQuant, BiGRUD-SA, DLF-Sul, and Plant PTM Viewer. Furthermore, the functional significance of redox modifications is examined in plant development, seed germination, fruit ripening, and pathogen responses. By bridging experimental proteomics with AI-driven prediction platforms, this review underscores the future potential of integrated redox systems biology and emphasizes the importance of validating computational predictions, through experimental proteomics, for enhancing crop resilience, metabolic efficiency, and precision agriculture under climate variability. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 4345 KB  
Article
Identification of Peroxiredoxin (PRX) Genes from Pepper Fruits: Involvement in Ripening and Modulation by Nitric Oxide (NO)
by Fátima Ramírez-Mellado, Salvador González-Gordo, José M. Palma and Francisco J. Corpas
Antioxidants 2025, 14(7), 817; https://doi.org/10.3390/antiox14070817 - 2 Jul 2025
Viewed by 872
Abstract
Peroxiredoxins (Prxs; EC 1.11.1.15) are a group of thiol peroxidases that catalyze the detoxification of H2O2 and other organic hydroperoxides. The ripening of pepper (Capsicum annuum L.) fruit involves significant phenotypic, physiological, and biochemical changes. Based on the available [...] Read more.
Peroxiredoxins (Prxs; EC 1.11.1.15) are a group of thiol peroxidases that catalyze the detoxification of H2O2 and other organic hydroperoxides. The ripening of pepper (Capsicum annuum L.) fruit involves significant phenotypic, physiological, and biochemical changes. Based on the available pepper plant genome, eight PRX genes were identified and named CaPRX1, CaPRX1-Cys, CaPRX2B, CaPRX2E, CaPRX2F, CaPRX2-CysBAS1, CaPRX2-CysBAS2, and CaPRX Q. Among these, only CaPRX1-Cys was not detected in the transcriptome (RNA-Seq) of sweet pepper fruits reported previously. This study analyzes the modulation of these seven CaPRX genes during ripening and after treating fruits with nitric oxide (NO) gas. A time-course expression analysis of sweet pepper fruit during ripening revealed that two genes were upregulated (CaPRX1 and CaPRX2E), two were downregulated (CaPRX2B and PRX Q), and three were unaffected (CaPRX2F, CaPRX2-CysBAS1, and CaPRX2-CysBAS2). Gene expression was also studied in three hot pepper varieties with varying capsaicin contents (Piquillo < Padrón < Alegría riojana), showing a differential expression pattern during ripening. Furthermore, NO treatment of sweet pepper fruits triggered the upregulation of CaPRX2B and CaPRXQ genes and the downregulation of CaPRX1 and CaPRX2-CysBAS1 genes, while the other three remained unaffected. Among the CaPrx proteins, four (CaPrx2B, CaPrx2-CysBAS1, CaPrx2-CysBAS2, and CaPrx2E) were identified as susceptible to S-nitrosation, as determined by immunoprecipitation assays with an antibody against S-nitrocysteine and further mass spectrometry analyses. These findings indicate the diversification of PRX genes in pepper fruits and how some of them are regulated by NO, either at the level of gene expression or through protein S-nitrosation, a NO-promoting post-translational modification (PTM). Given that Prxs play a crucial role in stress tolerance, these data suggest that Prxs are vital components of the antioxidant system during pepper fruit ripening, an event that is accompanied by physiological nitro-oxidative stress. Full article
(This article belongs to the Special Issue Reactive Oxygen and Nitrogen Species in Plants―2nd Edition)
Show Figures

Figure 1

29 pages, 2376 KB  
Review
Role of Redox-Induced Protein Modifications in Spermatozoa in Health and Disease
by Chika Onochie, Keturah Evi and Cristian O’Flaherty
Antioxidants 2025, 14(6), 720; https://doi.org/10.3390/antiox14060720 - 12 Jun 2025
Cited by 1 | Viewed by 2279
Abstract
Male infertility contributes to approximately half of all infertility cases, with most cases associated with oxidative stress. Spermatozoa depend on finely tuned redox signaling for critical processes such as capacitation, motility, and fertilization competence; however, their unique structural and metabolic features render them [...] Read more.
Male infertility contributes to approximately half of all infertility cases, with most cases associated with oxidative stress. Spermatozoa depend on finely tuned redox signaling for critical processes such as capacitation, motility, and fertilization competence; however, their unique structural and metabolic features render them particularly vulnerable to oxidative damage. Reversible oxidative modifications regulate enzymatic activity, signaling cascades, and structural stability, supporting normal sperm function, whereas irreversible oxidative damage impairs motility, acrosome reaction, and DNA integrity, contributing to male infertility. The intricate balance between physiological redox signaling and pathological oxidative stress demonstrates the potential of redox modifications as biomarkers for infertility diagnosis and as targets for antioxidant-based therapeutic interventions. This review explores the role of redox-induced protein modifications in sperm function, focusing on thiol oxidation, S-nitrosylation, sulfhydration, glutathionylation, CoAlation, and protein carbonylation. By uncovering the mechanisms of these redox modifications, we provide a framework for their modulation in the development of targeted redox interventions to improve male fertility. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

11 pages, 1667 KB  
Communication
Analysis of Ergothioneine Using Surface-Enhanced Raman Scattering: Detection in Mushrooms
by Federico Puliga, Veronica Zuffi, Alessandra Zambonelli, Pavol Miškovský, Ornella Francioso and Santiago Sanchez-Cortes
Chemosensors 2025, 13(6), 213; https://doi.org/10.3390/chemosensors13060213 - 10 Jun 2025
Cited by 1 | Viewed by 1897
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a straightforward analytical technique capable of providing detailed information about metabolites in biological samples. The objective of this study was to perform a SERS analysis of ergothioneine (EGT), an amino acid synthesized by microbes and fungi, across [...] Read more.
Surface-enhanced Raman scattering (SERS) spectroscopy is a straightforward analytical technique capable of providing detailed information about metabolites in biological samples. The objective of this study was to perform a SERS analysis of ergothioneine (EGT), an amino acid synthesized by microbes and fungi, across a range of pH values (acidic to alkaline) and concentrations (2 × 10−5 M to 2 × 10−7 M), to understand the dynamic interactions between EGT and silver (Ag) nanoparticles. Furthermore, SERS was applied in situ on mushroom fruiting bodies to detect the presence of EGT. The SERS spectra revealed that the interaction of EGT with Ag nanoparticles underwent significant alterations at varying pH levels, primarily due to isomerization. These changes were associated with modifications in the aromaticity and ionization of the imidazole ring, driven by both metal adsorption and alkaline conditions. Our results indicated the formation of distinct tautomeric forms of the imidazole group, namely the thione and thiol forms, in aqueous solution and on the Ag surface, respectively. Furthermore, the EGT spectra at different concentrations suggested that ionization occurred at lower concentrations. Notably, the SERS spectra of the mushroom fruiting bodies were dominated by prominent bands attributable to EGT, as corroborated by the comparison with the EGT fungal extract and EGT standard. These findings underscore the utility of SERS spectroscopy as a rapid and effective tool for obtaining comprehensive molecular fingerprints, even directly from complex biological matrices such as mushroom fruiting bodies. Full article
Show Figures

Figure 1

16 pages, 2414 KB  
Article
Prolonged In Vivo Chemogenetic Generation of Hydrogen Peroxide by Endothelial Cells Induces Cardiac Remodelling and Vascular Dysfunction
by Melina Lopez, Niklas Herrle, Bardia Amirmiran, Pedro F. Malacarne, Julia Werkhäuser, Souradeep Chatterjee, Carine Kader, Victoria Jurisch, Xin Wen, Maedeh Gheisari, Katrin Schäfer, Christian Münch, Florian Leuschner, Ralf Gilsbach, Flávia Rezende and Ralf P. Brandes
Antioxidants 2025, 14(6), 705; https://doi.org/10.3390/antiox14060705 - 10 Jun 2025
Viewed by 1313
Abstract
Increased levels of reactive oxygen species (ROS) are a hallmark of cardiovascular disease. ROS impact the function of proteins largely through thiol modification leading to redox signalling. Acute, targeted interference with local ROS levels has been difficult. Therefore, how dynamics in redox signalling [...] Read more.
Increased levels of reactive oxygen species (ROS) are a hallmark of cardiovascular disease. ROS impact the function of proteins largely through thiol modification leading to redox signalling. Acute, targeted interference with local ROS levels has been difficult. Therefore, how dynamics in redox signalling impact cardiovascular health is still a matter of current research. An inducible, endothelial cell-specific knock-in mouse model expressing a yeast D-amino acid oxidase enzyme was generated (Hipp11-Flox-Stop-Flox-yDAO-Cdh5-CreERT2+/0 referred to as ecDAO). DAO releases H2O2 as a by-product of the conversion of D-amino acids into imino acids. The D-amino acid treatment of DAO-expressing cells therefore increases their intracellular H2O2 production. The induction of yDAO in the ecDAO mice was performed with tamoxifen. Subsequently, the mice received D-Alanine (D-Ala, 0.5 M) through drinking water, and the effects on ROS production and vascular and cardiac function were determined. ecDAO induction increased endothelial ROS production as well as ROS production in the lung, which is rich in endothelial cells. The functional consequences of this were, however limited: After minimally invasive myocardial infarction, there was no difference in the outcome between the control (CTL) and ecDAO mice. With respect to vascular function, three days of D-Ala slightly improved vascular function as demonstrated by an increase in the diameter of the carotid artery in vivo and decreased vessel constriction to phenylephrine. Fifty-two days of D-Ala induced cardiac remodelling, increased peripheral resistance, and overoxidation of peroxiredoxins. In conclusion, acute stimulation of endothelial ROS improves cardiovascular function, whereas prolonged ROS exposure deteriorates it. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 14917 KB  
Article
Preparation of Nanoparticle-Immobilized Gold Surfaces for the Reversible Conjugation of Neurotensin Peptide
by Hidayet Gok, Deniz Gol, Betul Zehra Temur, Nureddin Turkan, Ozge Can, Ceyhun Ekrem Kirimli, Gokcen Ozgun and Ozgul Gok
Biomolecules 2025, 15(6), 767; https://doi.org/10.3390/biom15060767 - 27 May 2025
Viewed by 3235
Abstract
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface [...] Read more.
Polymer coatings as thin films stand out as a commonly used strategy to modify biosensor surfaces for improving detection performance; however, nonspecific biomolecule interactions and the limited degree of ligand conjugation on the surface have necessitated the development of innovative methods for surface modification. To this end, methacrylated tethered telechelic polyethylene glycol (PEG-diMA) chains of three different molecular weights (2, 6, and 10 kDa) were synthesized herein and used for obtaining thiolated nanoparticles (NPs) upon adding excess amounts of a tetra-thiol crosslinker. Characterized according to their size, surface charge, morphology, and thiol amounts, these nanoparticles were immobilized on gold surfaces that mimicked gold-coated mass sensor platforms. The PEG-based nanoparticles, prepared especially by PEG6K-diMA polymers, were shown to result in the preparation of a monolayer and smooth coating of 80–120 nm thickness. Cysteine-modified NTS(8–13) peptide (RRPYIL) was conjugated to thiolated NP with reversible disulfide bonds and it was demonstrated that its cleavage with a reducing agent such as dithiothreitol (DTT) restores the NP-immobilized gold surface for at least two cycles. Together with its binding studies to NTSR2 antibodies, it was revealed that the peptide-conjugated NP-modified gold surface could be employed as a model for a reusable sensor surface for the detection of biomarkers of same or different types. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

11 pages, 1777 KB  
Article
Evaluation of the Ellman’s Reagent Protocol for Free Sulfhydryls Under Protein Denaturing Conditions
by Sophia R. Ginet, Frank Gonzalez, Maxine L. Marano, Megha D. Salecha, Joseph E. Reiner and Gregory A. Caputo
Analytica 2025, 6(2), 18; https://doi.org/10.3390/analytica6020018 - 13 May 2025
Cited by 2 | Viewed by 4848
Abstract
Early detection of cancer can dramatically improve long-term prognosis and survivability in a variety of different cancer types. However, for many cancer types, the ability to effectively detect early-developing tumors is challenging, especially in physiological locations with limited visibility or access. Previously, we [...] Read more.
Early detection of cancer can dramatically improve long-term prognosis and survivability in a variety of different cancer types. However, for many cancer types, the ability to effectively detect early-developing tumors is challenging, especially in physiological locations with limited visibility or access. Previously, we reported a sensing platform and methodology to detect biomarker peptides found in urine from ovarian cancer patients. This sensing platform relies on peptide interactions with gold nanoclusters through thiol-mediated linkages; thus, the sensitivity of the biomarker assay is directly related to appropriate redox states of the biomarkers in question. Here, we report on an expansion of the traditional thiol-reactivity assay originally developed by Ellman to include and evaluate a variety of solution modifications that may be used in conjunction with the biomarker-sensing platform. Because biomarker peptides may be isolated from a variety of biological tissues or fluids, depending on the target condition or disease, we screened numerous solution conditions that may be directly used in sample preparation and peptide extraction. The data demonstrate that the assay maintains linearity under these various conditions. The assay was then applied to a variety of models and biomarker peptides and exhibits the expected linear response. These results demonstrate the applicability of the thiol-reactivity assay to biologically derived samples, and the flexibility to ensure sample preparation and treatment will retain the appropriate sample redox conditions to ensure optimal interactions with the biosensor platform. It also facilitates the ability to perform quality control on clinically derived biological samples to ensure appropriate preparations, and concentrations are available for application to the nanopore biosensor platform. Full article
Show Figures

Figure 1

Back to TopTop