Journal Description
Metabolites
Metabolites
is an international, peer-reviewed, open access journal of metabolism and metabolomics, published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Embase, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Biochemistry and Molecular Biology) / CiteScore - Q2 (Endocrinology, Diabetes and Metabolism)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.4 days after submission; acceptance to publication is undertaken in 3.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.7 (2024);
5-Year Impact Factor:
4.1 (2024)
Latest Articles
Impact of Stress on Adrenal and Neuroendocrine Responses, Body Composition, and Physical Performance Amongst Women in Demanding Tactical Occupations: A Scoping Review
Metabolites 2025, 15(8), 506; https://doi.org/10.3390/metabo15080506 (registering DOI) - 29 Jul 2025
Abstract
Background/Objectives: This scoping review critically evaluated existing literature and summarized the impact of occupational, physiological, and psychological stressors on adrenal and neuroendocrine responses, body composition, and physical performance amongst women in tactical occupations. Methods: Boolean searches identified potentially qualifying reports involving: (1) adult
[...] Read more.
Background/Objectives: This scoping review critically evaluated existing literature and summarized the impact of occupational, physiological, and psychological stressors on adrenal and neuroendocrine responses, body composition, and physical performance amongst women in tactical occupations. Methods: Boolean searches identified potentially qualifying reports involving: (1) adult women (≥19 y) currently employed or completing their training for a tactical profession; (2) ≥1 marker of “stress”; and (3) ≥1 adrenal, neuroendocrine, body composition, or fitness/performance outcome. Quantitative data (e.g., sample characteristics, outcomes of interest) were extracted and summarized. The completeness of reporting for each study was documented using existing checklists and quantified as: low (<50%), moderate (50–79%), or high (≥80%). Results: 40 studies (k) of moderate reporting quality (~64%) were included in the final sample (3,693 women); 11 studies (28%) focused on women exclusively, and 16 studies identified sex differences in ≥1 outcome. Most studies involved military trainee populations (80%, k = 32). Occupation-related stress tended to negatively impact adrenal, neuroendocrine, body composition, and performance outcomes. Conclusions: This review highlights progress in assessing occupational performance in female tactical personnel exposed to diverse stressors; however, our understanding remains incomplete due to methodological and conceptual limitations in the literature. Holistic research strategies are needed to capture the complexity of performance readiness in women, integrating how stress affects key tactical performance aspects such as muscle physiology, reproductive health, and energy and nutrient balance in realistic operational contexts. Integrating such data is vital for informing policy, improving readiness, and enhancing the health and career longevity of female tactical personnel.
Full article
(This article belongs to the Special Issue Sex Differences in Physical Exercise and Dietary Habits Effects on Metabolic Health)
Open AccessReview
The Promotion of Cell Proliferation by Food-Derived Bioactive Peptides: Sources and Mechanisms
by
Yuhao Yan, Yinuo Liu, Xinwei Zhang, Liting Zan and Xibi Fang
Metabolites 2025, 15(8), 505; https://doi.org/10.3390/metabo15080505 - 29 Jul 2025
Abstract
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological
[...] Read more.
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological processes related to cell proliferation. This work summarizes peptides derived from animals and plants that stimulate cell proliferation, focusing on their amino acid composition, physicochemical properties, and preparation techniques. Furthermore, we highlight the major signaling pathways—such as the PI3K/Akt, MAPK/ERK, and Wnt/β-catenin pathways—that have been implicated in the mechanistic studies of food-derived peptides. Through the analysis and summary of previous studies, we observe a notable lack of in vivo animal models and clinical trials, indicating that these may represent promising directions for future research on food-derived bioactive peptides. Meanwhile, the potential safety concerns of proliferation-enhancing peptides—such as immunogenicity, appropriate dosage, and gastrointestinal stability—warrant greater attention. In summary, this review provides a comprehensive overview of the sources and mechanisms of cell proliferation-promoting peptides and addresses the challenges in industrializing bioactive peptide-based functional foods; therefore, further research in this area is encouraged.
Full article
(This article belongs to the Special Issue Insights into the Metabolic Absorption of Bioactive Peptides Derived from Food Sources)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Metabolomic Profiling of Hepatitis B-Associated Liver Disease Progression: Chronic Hepatitis B, Cirrhosis, and Hepatocellular Carcinoma
by
Junsang Oh, Kei-Anne Garcia Baritugo, Jayoung Kim, Gyubin Park, Ki Jun Han, Sangheun Lee and Gi-Ho Sung
Metabolites 2025, 15(8), 504; https://doi.org/10.3390/metabo15080504 - 29 Jul 2025
Abstract
Background/Objective: The hepatitis B virus (HBV) can cause chronic hepatitis B (CHB), which can rapidly progress into fatal liver cirrhosis (CHB-LC) and hepatocellular carcinoma (CHB-HCC). Methods: In this study, we investigated metabolites associated with distinct clinical stages of HBV infection for the identification
[...] Read more.
Background/Objective: The hepatitis B virus (HBV) can cause chronic hepatitis B (CHB), which can rapidly progress into fatal liver cirrhosis (CHB-LC) and hepatocellular carcinoma (CHB-HCC). Methods: In this study, we investigated metabolites associated with distinct clinical stages of HBV infection for the identification of stage-specific serum metabolite biomarkers using 1H-NMR-based metabolomics. Results: A total of 64 serum metabolites were identified, among which six core discriminatory metabolites, namely isoleucine, tryptophan, histamine (for CHB), and pyruvate, TMAO, lactate (for CHB-HCC), were consistently significant across univariate and multivariate statistical analyses, including ANOVA with FDR, OPLS-DA, and VIP scoring. These metabolites were closely linked to key metabolic pathways, such as propanoate metabolism, pyruvate metabolism, and the Warburg effect. Conclusions: The findings suggest that these six core metabolites serve as potential stage-specific biomarkers for CHB, CHB-LC, and CHB-HCC, respectively, and offer a foundation for the future development of metabolomics-based diagnostic and therapeutic strategies.
Full article
(This article belongs to the Special Issue Harnessing the Power of NMR Metabolomics in Unraveling Metabolic Diseases)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Measurement of Oxidative Stress Index in 102 Patients with Peyronie’s Disease
by
Gianni Paulis, Andrea Paulis, Giovanni De Giorgio and Salvatore Quattrocchi
Metabolites 2025, 15(8), 503; https://doi.org/10.3390/metabo15080503 - 29 Jul 2025
Abstract
Background: Peyronie’s disease (PD) is a chronic inflammatory condition that affects the penile albuginea. Oxidative stress (OS) plays a crucial role in the development of the disease, prompting us to investigate OS levels at the site of the disease and in peripheral
[...] Read more.
Background: Peyronie’s disease (PD) is a chronic inflammatory condition that affects the penile albuginea. Oxidative stress (OS) plays a crucial role in the development of the disease, prompting us to investigate OS levels at the site of the disease and in peripheral blood. This article presents our second study in which the OS was evaluated by calculating the OS index (OSI) in blood samples taken directly from the penile corpora cavernosa of patients with PD. Our innovative diagnostic method, which focuses on the analysis of oxidative stress (OS) in the corpora cavernosa of the penis, allows us to accurately identify the “chemical” signals (OS levels) of the pathology in the area where it is present. Methods: Our study included 102 PD patients from our Peyronie’s care center and 100 control cases. To conduct a comprehensive OS analysis, we measured both the total oxidant status (TOS) and total antioxidant status (TAS) and calculated the oxidative stress index (OSI) as OSI = TOS/TAS × 100. Blood samples were collected from the penis and a vein in the upper extremity, and OS was measured using d-ROMs and PATs (FRAS kit). Results: Pearson’s analyses revealed a significant statistical correlation between penile OSI values and PD plaque volumes (p = 0.003), while no correlation was found between systemic OSI values and plaque volumes (p = 0.356). Penile OSI values decreased significantly after PD plaque removal (p < 0.0001). A comparison of penile OSI values in PD patients (post plaque removal) and the control group showed no significant differences (p = 0.418). Conclusions: The lack of correlation between systemic OSI values and Peyronie’s plaque volume suggests that direct sampling from the site of the disease is preferable for OS studies. Conducting a penile OSI study could provide a precise oxidative marker dependent on plaque volume. In addition, the penile OSI study can biochemically monitor the therapeutic result, alongside penile ultrasound imaging.
Full article
(This article belongs to the Special Issue Interplay Between Metabolism, Oxidative Stress, and Cellular Signaling in Health and Disease)
►▼
Show Figures

Figure 1
Open AccessReview
Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism
by
Renata Nurzyńska-Wierdak
Metabolites 2025, 15(8), 502; https://doi.org/10.3390/metabo15080502 - 28 Jul 2025
Abstract
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption
[...] Read more.
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption of fruits, vegetables, whole grains and other plant foods negatively correlates with the risk of developing chronic diseases. Green leafy vegetables (GLVs) are a key element of healthy eating habits and an important source of vitamins C and E, carotenoids—mainly β-carotene and lutein—and minerals. This review discusses and summarizes the current knowledge on the health benefits of consuming GLVs in the prevention and treatment of MetS to provide a compendium for other researchers investigating new natural products.
Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
►▼
Show Figures

Figure 1
Open AccessArticle
The Causal Role of the Gut Microbiota–Plasma Metabolome Axis in Myeloproliferative Neoplasm Pathogenesis: A Mendelian Randomization and Mediation Analysis
by
Hao Kan, Ka Zhang, Aiqin Mao and Li Geng
Metabolites 2025, 15(8), 501; https://doi.org/10.3390/metabo15080501 - 28 Jul 2025
Abstract
Background: Myeloproliferative neoplasms (MPN), a group of chronic hematologic neoplasms, are driven by inflammatory mechanisms that influence disease initiation and progression. Emerging evidence highlights the gut microbiome and plasma metabolome as pivotal immunomodulators, yet their causal roles in MPN pathogenesis remain uncharacterized. Methods:
[...] Read more.
Background: Myeloproliferative neoplasms (MPN), a group of chronic hematologic neoplasms, are driven by inflammatory mechanisms that influence disease initiation and progression. Emerging evidence highlights the gut microbiome and plasma metabolome as pivotal immunomodulators, yet their causal roles in MPN pathogenesis remain uncharacterized. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to systematically evaluate causal relationships between 196 gut microbial taxa, 526 plasma metabolites, and MPN risk. Instrumental variables were derived from genome-wide association studies (GWASs) of microbial/metabolite traits. Validation utilized 16S rRNA sequencing data from NCBI Bioproject PRJNA376506. Mediation and multivariable MR analyses elucidated metabolite-mediated pathways linking microbial taxa to MPN. Results: Our MR analysis revealed that 7 intestinal taxa and 17 plasma metabolites are causally linked to MPN. External validation confirmed the three taxa’s differential abundance in MPN cohorts. Mediation analysis revealed two mediated relationships, of which succinylcarnitine mediated 14.5% of the effect, and lysine 27.9%, linking the Eubacterium xylanophilum group to MPN. Multivariate MR analysis showed that both succinylcarnitine (p = 0.004) and lysine (p = 0.040) had a significant causal effect on MPN. Conclusions: This study identifies novel gut microbiota–metabolite axes driving MPN pathogenesis through immunometabolic mechanisms. The validated biomarkers provide potential therapeutic targets for modulating inflammation in myeloproliferative disorders.
Full article
(This article belongs to the Special Issue Metabolomics in Personalized Medicine)
►▼
Show Figures

Figure 1
Open AccessReview
Antiphospholipid Syndrome—Diagnostic and Methodologic Approach
by
Agata Stańczewska, Karolina Szewczyk-Golec and Iga Hołyńska-Iwan
Metabolites 2025, 15(8), 500; https://doi.org/10.3390/metabo15080500 - 27 Jul 2025
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by venous and arterial thrombosis and obstetric complications, driven by antiphospholipid antibodies (APLAs). This review synthesizes the latest advancements and current understanding, diagnosis, and treatment of APS. APLAs, including lupus anticoagulant (LAC), anticardiolipin (aCL), and
[...] Read more.
Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by venous and arterial thrombosis and obstetric complications, driven by antiphospholipid antibodies (APLAs). This review synthesizes the latest advancements and current understanding, diagnosis, and treatment of APS. APLAs, including lupus anticoagulant (LAC), anticardiolipin (aCL), and anti-β2-glycoprotein I (aβ2-GPI), interfere with coagulation and endothelial function, as well as with placental health. APS can be primary or secondary; it is often associated with systemic autoimmune diseases like lupus. The pathogenesis of APS remains only partially understood. APLAs promote thrombosis through endothelial damage, platelet activation, and inflammatory signaling pathways. Laboratory diagnosis relies on persistent positivity for APLAs and LAC through tests like ELISA and clotting assays, following a three-step confirmation process. New integrated test systems have been introduced to improve standardization. Classification criteria have evolved, with the 2023 EULAR-ACR criteria providing a weighted, domain-based scoring system, enhancing diagnostic precision. Catastrophic APS (CAPS) is a severe, rare manifestation of APS, characterized by multi-organ failure due to rapid, widespread microthrombosis and systemic inflammation, which requires urgent anticoagulation. Seronegative APS is proposed for patients with clinical features of APS but negative standard antibody tests, possibly due to non-criteria antibodies or transient immunosuppression. Treatment primarily involves long-term anticoagulation with vitamin K antagonists; direct oral anticoagulants are generally not recommended. APS diagnosis and management remain complex due to clinical heterogeneity and laboratory challenges. Continued refinement of diagnostic tools and criteria is essential for improving outcomes in this life-threatening condition.
Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigating Lipid and Energy Dyshomeostasis Induced by Per- and Polyfluoroalkyl Substances (PFAS) Congeners in Mouse Model Using Systems Biology Approaches
by
Esraa Gabal, Marwah Azaizeh and Priyanka Baloni
Metabolites 2025, 15(8), 499; https://doi.org/10.3390/metabo15080499 - 24 Jul 2025
Abstract
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This
[...] Read more.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This study investigates metabolic alterations in the liver following PFAS exposure to identify mechanisms leading to hepatoxicity. Methods: We analyzed RNA sequencing datasets of mouse liver tissues exposed to PFAS to identify metabolic pathways influenced by the chemical toxicant. We integrated the transcriptome data with a mouse genome-scale metabolic model to perform in silico flux analysis and investigated reactions and genes associated with lipid and energy metabolism. Results: PFESA-BP2 exposure caused dose- and sex-dependent changes, including upregulation of fatty acid metabolism, β-oxidation, and cholesterol biosynthesis. On the contrary, triglycerides, sphingolipids, and glycerophospholipids metabolism were suppressed. Simulations from the integrated genome-scale metabolic models confirmed increased flux for mevalonate and lanosterol metabolism, supporting potential cholesterol accumulation. GenX and PFOA triggered strong PPARα-dependent responses, especially in β-oxidation and lipolysis, which were attenuated in PPARα−/− mice. Mitochondrial fatty acid transport and acylcarnitine turnover were also disrupted, suggesting impaired mitochondrial dysfunction. Additional PFAS effects included perturbations in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and blood–brain barrier (BBB) function, pointing to broader systemic toxicity. Conclusions: Our findings highlight key metabolic signatures and suggest PFAS-mediated disruption of hepatic and possibly neurological functions. This study underscores the utility of genome-scale metabolic modeling as a powerful tool to interpret transcriptomic data and predict systemic metabolic outcomes of toxicant exposure.
Full article
(This article belongs to the Special Issue Comprehensive Insights into Metabolic Pathways: Genome-Scale Modeling Techniques)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Dysmagnesemia in the ICU: A Comparative Analysis of Ionized and Total Magnesium Levels and Their Clinical Associations
by
Jawahar H. Al Noumani, Juhaina Salim Al-Maqbali, Mohammed Al Maktoumi, Qasim Sultan AL-Maamari, Abdul Hakeem Al-Hashim, Mujahid Al-Busaidi, Henrik Falhammar and Abdullah M. Al Alawi
Metabolites 2025, 15(8), 498; https://doi.org/10.3390/metabo15080498 - 24 Jul 2025
Abstract
Background: Magnesium (Mg) is an essential mineral that plays a vital role in various physiological processes, including enzyme regulation, neuromuscular function, and cardiovascular health. Dysmagnesemia has been associated with arrhythmias, neuromuscular dysfunction, and poor outcomes in intensive care unit (ICU) settings, representing diagnostic
[...] Read more.
Background: Magnesium (Mg) is an essential mineral that plays a vital role in various physiological processes, including enzyme regulation, neuromuscular function, and cardiovascular health. Dysmagnesemia has been associated with arrhythmias, neuromuscular dysfunction, and poor outcomes in intensive care unit (ICU) settings, representing diagnostic and therapeutic challenges. However, the relationship between dysmagnesemia and health outcomes in the ICU remains inadequately defined. Aim/Objective: This study aimed to assess the prevalence of dysmagnesemia and evaluate the correlation between total (tMg) and ionized magnesium (iMg) levels in a cohort of ICU and high dependency unit (HDU) patients. It also sought to evaluate patient characteristics and relevant health outcomes by comparing both concentrations of iMg and tMg. Methods: This prospective study was conducted among adult patients admitted to the ICU and the high dependency unit (HDU). Results: Among the 134 included patients, the median age was 63.5 years (IQR: 52.0–77.0). The majority, 91.0%, required mechanical ventilation. Additionally, 50.0% were diagnosed with diabetes, 28.4% had chronic kidney disease, and proton pump inhibitors (PPIs) were administered to 67.2% of the patients. The prevalence of hypomagnesemia, as measured by iMg, was 6.7%, while hypermagnesemia was at 39.6%. When measured by tMg, hypomagnesemia and hypermagnesemia were observed at rates of 14.9% and 22.4%, respectively. The iMg measurements showed an association between the incidence of atrial fibrillation and hypomagnesemia (p = 0.015), whereas tMg measurements linked hypomagnesemia with longer hospital stays. Notably, only a few patients identified with iMg-measured hypomagnesemia received magnesium replacement during their ICU stay. Conclusions: Dysmagnesemia is prevalent among critically ill patients, with discordance between iMg and tMg measurements. iMg appears more sensitive in detecting arrhythmia risk, while tMg correlates with length of stay. These findings support the need for larger studies and suggest considering iMg in magnesium monitoring and replacement strategies.
Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
►▼
Show Figures

Figure 1
Open AccessArticle
A Comparative Study Using Reversed-Phase and Hydrophilic Interaction Liquid Chromatography to Investigate the In Vitro and In Vivo Metabolism of Five Selenium-Containing Cathinone Derivatives
by
Lea Wagmann, Jana H. Schmitt, Tanja M. Gampfer, Simon D. Brandt, Kenneth Scott, Pierce V. Kavanagh and Markus R. Meyer
Metabolites 2025, 15(8), 497; https://doi.org/10.3390/metabo15080497 - 23 Jul 2025
Abstract
Background/Objectives: The emergence of cathinone-based psychostimulants necessitates ongoing research and analysis of the characteristics and properties of novel derivatives. The metabolic fate of five novel cathinone-derived substances (ASProp, MASProp, MASPent, PySProp, and PySPent) containing a selenophene moiety was investigated in vitro and
[...] Read more.
Background/Objectives: The emergence of cathinone-based psychostimulants necessitates ongoing research and analysis of the characteristics and properties of novel derivatives. The metabolic fate of five novel cathinone-derived substances (ASProp, MASProp, MASPent, PySProp, and PySPent) containing a selenophene moiety was investigated in vitro and in vivo. Methods: All compounds were incubated individually with pooled human liver S9 fraction. A monooxygenase activity screening investigating the metabolic contribution of eleven recombinant phase I isoenzymes was conducted. Rat urine after oral administration was prepared by urine precipitation. Liquid chromatography–high-resolution tandem mass spectrometry was used for the analysis of all samples. Reversed-phase liquid chromatography (RPLC) and zwitterionic hydrophilic interaction liquid chromatography (HILIC) were used to evaluate and compare the metabolites’ chromatographic resolution. Results: Phase I reactions of ASProp, MASProp, MASPent, PySProp, and PySPent included N-dealkylation, hydroxylation, reduction, and combinations thereof. The monooxygenase activity screening revealed the contribution of various isozymes. Phase II reactions detected in vivo included N-acetylation and glucuronidation. Both chromatographic columns complemented each other. Conclusions: All substances revealed metabolic reactions comparable to those observed for other synthetic cathinones. Contributions from isozymes to their metabolism minimized the risk of drug–drug interactions. The identified metabolites should be considered as targets in human biosamples, especially in urine screening procedures. RPLC and HILIC can both be recommended for this purpose.
Full article
(This article belongs to the Special Issue Metabolite Profiling of Novel Psychoactive Substances)
►▼
Show Figures

Figure 1
Open AccessArticle
Study of Metabolite Detectability in Simultaneous Profiling of Amine/Phenol and Hydroxyl Submetabolomes by Analyzing a Mixture of Two Separately Dansyl-Labeled Samples
by
Sicheng Quan, Shuang Zhao and Liang Li
Metabolites 2025, 15(8), 496; https://doi.org/10.3390/metabo15080496 - 23 Jul 2025
Abstract
Background: Liquid chromatography-mass spectrometry (LC-MS), widely used in metabolomics, is often limited by low ionization efficiency and ion suppression, which reduce overall metabolite detectability and quantification accuracy. To address these challenges, chemical isotope labeling (CIL) LC-MS has emerged as a powerful approach, offering
[...] Read more.
Background: Liquid chromatography-mass spectrometry (LC-MS), widely used in metabolomics, is often limited by low ionization efficiency and ion suppression, which reduce overall metabolite detectability and quantification accuracy. To address these challenges, chemical isotope labeling (CIL) LC-MS has emerged as a powerful approach, offering high sensitivity, accurate quantification, and broad metabolome coverage. This method enables comprehensive profiling by targeting multiple submetabolomes. Specifically, amine-/phenol- and hydroxyl-containing metabolites are labeled using dansyl chloride under distinct reaction conditions. While this strategy provides extensive coverage, the sequential analysis of each submetabolome reduces throughput. To overcome this limitation, we propose a two-channel mixing strategy to improve analytical efficiency. Methods: In this approach, samples labeled separately for the amine/phenol and hydroxyl submetabolomes are combined prior to LC-MS analysis, leveraging the common use of dansyl chloride as the labeling reagent. This integration effectively doubles throughput by reducing LC-MS runtime and associated costs. The method was evaluated using human urine and serum samples, focusing on peak pair detectability and metabolite identification. A proof-of-concept study was also conducted to assess the approach’s applicability in putative biomarker discovery. Results: Results demonstrate that the two-channel mixing strategy enhances throughput while maintaining analytical robustness. Conclusions: This method is particularly suitable for large-scale studies that require rapid sample processing, where high efficiency is essential.
Full article
(This article belongs to the Special Issue Method Development in Metabolomics and Exposomics)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Comparison of Anthropometric and Metabolic Indexes in the Diagnosis of Metabolic Syndrome: A Large-Scale Analysis of Spanish Workers
by
Juan José Guarro Miquel, Pedro Juan Tárraga López, María Dolores Marzoa Jansana, Ángel Arturo López-González, Pere Riutord Sbert, Carla Busquets-Cortés and José Ignacio Ramirez-Manent
Metabolites 2025, 15(8), 495; https://doi.org/10.3390/metabo15080495 - 23 Jul 2025
Abstract
Background: Metabolic syndrome (MS) is a major public health concern linked to an elevated risk of type 2 diabetes and cardiovascular disease. Simple, reliable screening tools are needed for early identification, especially in working populations. Objective: To compare the diagnostic accuracy of body
[...] Read more.
Background: Metabolic syndrome (MS) is a major public health concern linked to an elevated risk of type 2 diabetes and cardiovascular disease. Simple, reliable screening tools are needed for early identification, especially in working populations. Objective: To compare the diagnostic accuracy of body mass index (BMI), waist-to-height ratio (WtHR), triglyceride–glucose index (TyG), and waist–triglyceride index (WTI) for detecting MS based on NCEP ATP III and IDF criteria in a large cohort of Spanish workers. Methods: This cross-sectional study analyzed data from 386,924 Spanish workers. MS was diagnosed using NCEP ATP III and IDF definitions. The four indexes were evaluated by sex using a receiver operating characteristic (ROC) curve analysis. Area under the curve (AUC), optimal cut-off points, and Youden’s index were calculated. Results: TyG and WTI had the highest AUC values in men (0.911 and 0.901, respectively) for NCEP ATP III-defined MS, while WtHR and WTI achieved the best performance in women (0.955 and 0.953, respectively). WtHR outperformed BMI in all subgroups. Optimal cut-off values were identified according to sex and the definition of MS: TyG (8.95 men, 8.51 women), WtHR (0.54 men, 0.51 women), and WTI (170.6 men, 96.5 women), supporting their practical implementation in occupational health programs. All indexes showed significant discriminatory capacity (p < 0.001). Conclusions: TyG, WtHR, and WTI are more effective than BMI in detecting MS among Spanish workers, with sex-specific patterns. Their ease of use and diagnostic strength support their adoption in occupational health programs for early cardiometabolic risk detection.
Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
►▼
Show Figures

Figure 1
Open AccessReview
Sex Hormone-Binding Globulin and Metabolic Syndrome in Children and Adolescents: A Focus on Puberty
by
Banu Aydin and Stephen J. Winters
Metabolites 2025, 15(8), 494; https://doi.org/10.3390/metabo15080494 - 22 Jul 2025
Abstract
Metabolic syndrome (MetS) is a cluster of conditions, including obesity, insulin resistance (IR), dyslipidemia, and hypertension, that increase the risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). While studied often in adults, the increasing prevalence of MetS in children and
[...] Read more.
Metabolic syndrome (MetS) is a cluster of conditions, including obesity, insulin resistance (IR), dyslipidemia, and hypertension, that increase the risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). While studied often in adults, the increasing prevalence of MetS in children and adolescents underscores the need for its early detection and intervention. Among various biomarkers, sex hormone-binding globulin (SHBG) has gained substantial attention due to its associations with metabolic health and disease. This review provides a comprehensive overview of SHBG and its association with MetS, with a focus on the pediatric and adolescent population. The interplay between SHBG, puberty, and metabolic risk factors is explored, including racial and ethnic variations. SHBG plays a crucial role in transporting sex hormones and regulating their bioavailability and has been found to correlate inversely with obesity and IR, two key components of MetS. Puberty represents a critical period during which hormonal changes and metabolic shifts may further influence SHBG levels and metabolic health. Understanding SHBG’s role in early metabolic risk detection could provide novel insights into the prevention and management of MetS.
Full article
(This article belongs to the Special Issue Puberty and the Metabolic Syndrome)
►▼
Show Figures

Figure 1
Open AccessArticle
Annual Dynamic Changes in Lignin Synthesis Metabolites in Catalpa bungei ‘Jinsi’
by
Chenxia Song, Yan Wang, Tao Sun, Yi Han, Yanjuan Mu, Xinyue Ji, Shuxin Zhang, Yanguo Sun, Fusheng Wu, Tao Liu, Ningning Li, Qingjun Han, Boqiang Tong, Xinghui Lu and Yizeng Lu
Metabolites 2025, 15(8), 493; https://doi.org/10.3390/metabo15080493 - 22 Jul 2025
Abstract
Background: Catalpa bungei ‘Jinsi’ has excellent wood properties and golden texture, which is widely used in producing furniture and crafts. The lignin content and structural composition often determine the use and value of wood. Hence, investigating the characteristics of the annual dynamics
[...] Read more.
Background: Catalpa bungei ‘Jinsi’ has excellent wood properties and golden texture, which is widely used in producing furniture and crafts. The lignin content and structural composition often determine the use and value of wood. Hence, investigating the characteristics of the annual dynamics of lignin anabolic metabolites in C. bungei ‘Jinsi’ and analyzing their synthesis pathways are particularly important. Methods: We carried out targeted metabolomics analysis of lignin synthesis metabolites using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) on the xylem samples of C. bungei ‘Jinsi’ in February, April, July, October 2022, and January 2023. Results: A total of 10 lignin synthesis–related metabolites were detected: L-phenylalanine, cinnamic acid, p-coumaraldehyde, sinapic acid, p-coumaric acid, coniferaldehyde, ferulic acid, sinapaldehyde, caffeic acid, and sinapyl alcohol (annual total content from high to low). These metabolites were mainly annotated to the synthesis of secondary metabolites and phenylpropane biosynthesis. The annual total content of the 10 metabolites showed the tendency of “decreasing, then increasing, and then decreasing”. Conclusions: C. bungei ‘Jinsi’ is a typical G/S-lignin tree species, and the synthesis of G-lignin occurs earlier than that of S-lignin. The total metabolite content decreased rapidly, and the lignin anabolism process was active from April to July; the metabolites were accumulated, and the lignin anabolism process slowed down from July to October; the total metabolite content remained basically unchanged, and lignin synthesis slowed down or stagnated from October to January of the following year. This reveals the annual dynamic pattern of lignin biosynthesis, which contributes to improving the wood quality and yield of C. bungei ‘Jinsi’ and provides a theoretical basis for its targeted breeding.
Full article
(This article belongs to the Special Issue Phenological Regulation of Secondary Metabolism)
►▼
Show Figures

Figure 1
Open AccessArticle
The Impact of Uranium-Induced Pulmonary Fibrosis on Gut Microbiota and Related Metabolites in Rats
by
Ruifeng Dong, Xiaona Gu, Lixia Su, Qingdong Wu, Yufu Tang, Hongying Liang, Xiangming Xue, Teng Zhang and Jingming Zhan
Metabolites 2025, 15(8), 492; https://doi.org/10.3390/metabo15080492 - 22 Jul 2025
Abstract
Background/Objectives: This study aimed to evaluate the effects of lung injury induced by insoluble uranium oxide particles on gut microbiota and related metabolites in rats. Methods: The rats were randomly divided into six UO2 dose groups. A rat lung injury
[...] Read more.
Background/Objectives: This study aimed to evaluate the effects of lung injury induced by insoluble uranium oxide particles on gut microbiota and related metabolites in rats. Methods: The rats were randomly divided into six UO2 dose groups. A rat lung injury model was established through UO2 aerosol. The levels of uranium in lung tissues were detected by ICP-MS. The expression levels of the inflammatory factors and fibrosis indexes were measured by enzyme-linked immunosorbent assay. Paraffin embedding-based hematoxylin & eosin staining for the lung tissue was performed to observe the histopathological imaging features. Metagenomic sequencing technology and HM700-targeted metabolomics were conducted in lung tissues. Results: Uranium levels in the lung tissues increased with dose increase. The expression levels of Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), Collagen I, and Hydroxyproline (Hyp) in rat lung homogenate increased with dose increase. Inflammatory cell infiltration and the deposition of extracellular matrix were observed in rat lung tissue post-exposure. Compared to the control group, the ratio of Firmicutes and Bacteroides in the gut microbiota decreased, the relative abundance of Akkermansia_mucinphila decreased, and the relative abundance of Bacteroides increased. The important differential metabolites mainly include αlpha-linolenic acid, gamma-linolenic acid, 2-Hydroxybutyric acid, Beta-Alanine, Maleic acid, Hyocholic acid, L-Lysine, L-Methionine, L-Leucine, which were mainly concentrated in unsaturated fatty acid biosynthesis, propionic acid metabolism, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, and other pathways in the UO2 group compared to the control group. Conclusions: These findings suggest that uranium-induced lung injury can cause the disturbance of gut microbiota and its metabolites in rats, and these changes are mainly caused by Akkermansia_mucinphila and Bacteroides, focusing on unsaturated fatty acid biosynthesis and the propionic acid metabolism pathway.
Full article
(This article belongs to the Section Animal Metabolism)
►▼
Show Figures

Figure 1
Open AccessArticle
Riboflavin Transporter Deficiency Type 2: Expanding the Phenotype of the Lebanese Founder Mutation p.Gly306Arg in the SLC52A2 Gene
by
Jean-Marc T. Jreissati, Leonard Lawandos, Julien T. Jreissati and Pascale E. Karam
Metabolites 2025, 15(7), 491; https://doi.org/10.3390/metabo15070491 - 21 Jul 2025
Abstract
Background: Riboflavin transporter deficiency type 2 is an ultra-rare, yet treatable, inborn error of metabolism. This autosomal recessive disorder is caused by pathogenic mutations in the SLC52A2 gene leading to progressive ataxia, polyneuropathy, and hearing and visual impairment. The early initiation of
[...] Read more.
Background: Riboflavin transporter deficiency type 2 is an ultra-rare, yet treatable, inborn error of metabolism. This autosomal recessive disorder is caused by pathogenic mutations in the SLC52A2 gene leading to progressive ataxia, polyneuropathy, and hearing and visual impairment. The early initiation of riboflavin therapy can prevent or mitigate the complications. To date, only 200 cases have been reported, mostly in consanguineous populations. The p.Gly306Arg founder mutation, identified in patients of Lebanese descent, is the most frequently reported worldwide. It was described in a homozygous state in a total of 21 patients. Therefore, studies characterizing the phenotypic spectrum of this mutation remain scarce. Methods: A retrospective review of charts of patients diagnosed with riboflavin transporter deficiency type 2 at a tertiary-care reference center in Lebanon was performed. Clinical, biochemical, and molecular profiles were analyzed and compared to reported cases in the literature. Results: A total of six patients from three unrelated families were diagnosed between 2018 and 2023. All patients exhibited the homozygous founder mutation, p.Gly306Arg, with variable phenotypes, even among family members. The median age of onset was 3 years. Diagnosis was achieved by exome sequencing at a median age of 5 years, as clinical and biochemical profiles were inconsistently suggestive. The response to riboflavin was variable. One patient treated with high-dose riboflavin recovered his motor function, while the others were stabilized. Conclusions: This study expands the current knowledge of the phenotypic spectrum associated with the p.Gly306Arg mutation in the SLC52A2 gene. Increased awareness among physicians of the common manifestations of this rare disorder is crucial for early diagnosis and treatment. In the absence of a consistent clinical or biochemical phenotype, the use of next-generation sequencing as a first-tier diagnostic test may be considered.
Full article
(This article belongs to the Special Issue Research of Inborn Errors of Metabolism)
Open AccessArticle
Decoding Fish Origins: How Metals and Metabolites Differentiate Wild, Cultured, and Escaped Specimens
by
Warda Badaoui, Kilian Toledo-Guedes, Juan Manuel Valero-Rodriguez, Adrian Villar-Montalt and Frutos C. Marhuenda-Egea
Metabolites 2025, 15(7), 490; https://doi.org/10.3390/metabo15070490 - 21 Jul 2025
Abstract
Background: Fish escape events from aquaculture facilities are increasing and pose significant ecological, economic, and traceability concerns. Accurate methods to differentiate between wild, cultured, and escaped fish are essential for fishery management and seafood authentication. Methods: This study analyzed muscle tissue from Sparus
[...] Read more.
Background: Fish escape events from aquaculture facilities are increasing and pose significant ecological, economic, and traceability concerns. Accurate methods to differentiate between wild, cultured, and escaped fish are essential for fishery management and seafood authentication. Methods: This study analyzed muscle tissue from Sparus aurata, Dicentrarchus labrax, and Argyrosomus regius using a multiomics approach. Heavy metals were quantified by ICP-MS, fatty acid profiles were assessed via GC-MS, and metabolomic and lipidomic signatures were identified using 1H NMR spectroscopy. Multivariate statistical models (MDS and PLS-LDA) were applied to classify fish origins. Results: Wild seabream showed significantly higher levels of arsenic (9.5-fold), selenium (3.5-fold), and DHA and ARA fatty acids (3.2-fold), while cultured fish exhibited increased linoleic and linolenic acids (6.5-fold). TMAO concentrations were up to 5.3-fold higher in wild fish, serving as a robust metabolic biomarker. Escaped fish displayed intermediate biochemical profiles. Multivariate models achieved a 100% classification accuracy across species and analytical techniques. Conclusions: The integration of heavy metal analysis, fatty acid profiling, and NMR-based metabolomics enables the accurate differentiation of fish origin. While muscle tissue provides reliable biomarkers relevant to human exposure, future studies should explore additional tissues such as liver and gills to improve the resolution of traceability. These methods support seafood authentication, enhance aquaculture traceability, and aid in managing the ecological impacts of escape events.
Full article
(This article belongs to the Collection Feature Papers in Assessing Environmental Health and Function)
►▼
Show Figures

Figure 1
Open AccessArticle
Human Metabolism of Sirolimus Revisited
by
Baharak Davari, Touraj Shokati, Alexandra M. Ward, Vu Nguyen, Jost Klawitter, Jelena Klawitter and Uwe Christians
Metabolites 2025, 15(7), 489; https://doi.org/10.3390/metabo15070489 - 20 Jul 2025
Abstract
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and
[...] Read more.
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and intestine, but the diversity, pharmacokinetics, and biological activity of its metabolites have been poorly explored due to the lack of structurally identified standards. Methods: To investigate SRL metabolism, we incubated SRL with pooled human liver microsomes (HLM) and isolated the resulting metabolites. Structural characterization was performed using high-resolution mass spectrometry (HRMS) and ion trap MSn. We also applied Density Functional Theory (DFT) calculations to assess the energetic favorability of metabolic transformations and conducted molecular dynamics (MD) simulations to model metabolite interactions within the CYP3A4 active site. Results: We identified 21 unique SRL metabolites, classified into five major structural groups: O-demethylated, hydroxylated, didemethylated, di-hydroxylated, and mixed hydroxylated/demethylated derivatives. DFT analyses indicated that certain demethylation and hydroxylation reactions were energetically preferred, correlating with metabolite abundance. MD simulations further validated these findings by demonstrating the favorable orientation and accessibility of key sites within the CYP3A4 binding pocket. Conclusions: This study provides a comprehensive structural map of SRL metabolism, offering mechanistic insights into the formation of its metabolites. Our integrated approach of experimental and computational analyses lays the groundwork for future investigations into the pharmacodynamic and toxicodynamic effects of SRL metabolites on the mTOR pathway.
Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
►▼
Show Figures

Figure 1
Open AccessArticle
Advancing Semiochemical Tools for Mountain Pine Beetle Management: Dendroctonus ponderosae Responses to Saprophytic Fungal Volatiles
by
Leah Crandall, Rashaduz Zaman, Guncha Ishangulyyeva and Nadir Erbilgin
Metabolites 2025, 15(7), 488; https://doi.org/10.3390/metabo15070488 - 20 Jul 2025
Abstract
Background/Objectives: Within their host trees, mountain pine beetles (MPBs, Dendroctonus ponderosae) interact with many fungal species, each releasing a unique profile of volatile organic compounds (VOCs). The FVOCs released by the two primary symbionts of MPBs, Grosmannia clavigera and Ophiostoma montium,
[...] Read more.
Background/Objectives: Within their host trees, mountain pine beetles (MPBs, Dendroctonus ponderosae) interact with many fungal species, each releasing a unique profile of volatile organic compounds (VOCs). The FVOCs released by the two primary symbionts of MPBs, Grosmannia clavigera and Ophiostoma montium, have been found to enhance MPB attraction in the field and laboratory studies. Opportunistic, saprophytic fungal species, such as Aspergillus sp. and Trichoderma atroviride, are also common in MPB galleries and can negatively impact MPB fitness. However, little is known about the FVOCs produced by these fungal species and how they may impact MPB feeding and attraction. Methods: To address this knowledge gap, we characterized the FVOC profile of T. atroviride, and performed bioassays to test the effects of its FVOCs on MPB attraction and feeding activity. Results: Our chemical analysis revealed several FVOCs from T. atroviride known to inhibit the growth of competing fungal species and impact subcortical-beetle attraction. Conclusions: From those FVOCs, we recommended four compounds—2-pentanone, 2-heptanone, 2-pentanol, and phenylethyl alcohol—for use in future field tests as anti-attraction lures for MPBs. In bioassays, we also observed strong MPB repellency from FVOCs released by T. atroviride, as well as the mild effects of FVOCs on MPB feeding activity. Our findings highlight the potential for these FVOCs to be utilized in the development of more effective MPB anti-attractant lures, which are crucial for the monitoring and management of low-density MPB populations.
Full article
(This article belongs to the Special Issue Dysbiosis and Metabolic Disorders of the Microbiota)
►▼
Show Figures

Figure 1
Open AccessArticle
Exploratory Metabolomic and Lipidomic Profiling in a Manganese-Exposed Parkinsonism-Affected Population in Northern Italy
by
Freeman Lewis, Daniel Shoieb, Somaiyeh Azmoun, Elena Colicino, Yan Jin, Jinhua Chi, Hari Krishnamurthy, Donatella Placidi, Alessandro Padovani, Andrea Pilotto, Fulvio Pepe, Marinella Tula, Patrizia Crippa, Xuexia Wang, Haiwei Gu and Roberto Lucchini
Metabolites 2025, 15(7), 487; https://doi.org/10.3390/metabo15070487 - 20 Jul 2025
Abstract
Background/Objectives: Chronic manganese (Mn) exposure is a recognized environmental contributor to Parkinsonian syndromes, including Mn-induced Parkinsonism (MnIP). This study aimed to evaluate whole-blood Mn levels and investigate disease/exposure-status-related alterations in metabolomic and lipidomic profiles. Methods: A case–control study (N = 97) was conducted
[...] Read more.
Background/Objectives: Chronic manganese (Mn) exposure is a recognized environmental contributor to Parkinsonian syndromes, including Mn-induced Parkinsonism (MnIP). This study aimed to evaluate whole-blood Mn levels and investigate disease/exposure-status-related alterations in metabolomic and lipidomic profiles. Methods: A case–control study (N = 97) was conducted in Brescia, Italy, stratifying participants by Parkinsonism diagnosis and residential Mn exposure. Whole-blood Mn was quantified using ICP-MS. Untargeted metabolomic and lipidomic profiling was conducted using LC-MS. Statistical analyses included Mann–Whitney U tests, conditional logistic regression, ANCOVA, and pathway analysis. Results: Whole-blood Mn levels were significantly elevated in Parkinsonism cases vs. controls (median: 1.55 µg/dL [IQR: 0.75] vs. 1.02 µg/dL [IQR: 0.37]; p = 0.001), with Mn associated with increased odds of Parkinsonism (OR = 2.42, 95% CI: 1.13–5.17; p = 0.022). The disease effect metabolites included 3-sulfoxy-L-tyrosine (β = 1.12), formiminoglutamic acid (β = 0.99), and glyoxylic acid (β = 0.83); all FDR p < 0.001. The exposure effect was associated with elevated glycocholic acid (β = 0.51; FDR p = 0.006) and disrupted butanoate (Impact = 0.03; p = 0.004) and glutamate metabolism (p = 0.03). Additionally, SLC-mediated transmembrane transport was enriched (p = 0.003). The interaction effect identified palmitelaidic acid (β = 0.30; FDR p < 0.001), vitamin B6 metabolism (Impact = 0.08; p = 0.03), and glucose homeostasis pathways. In lipidomics, triacylglycerols and phosphatidylethanolamines were associated with the disease effect (e.g., TG(16:0_10:0_18:1), β = 0.79; FDR p < 0.01). Ferroptosis and endocannabinoid signaling were enriched in both disease and interaction effects, while sphingolipid metabolism was specific to the interaction effect. Conclusions: Mn exposure and Parkinsonism are associated with distinct metabolic and lipidomic perturbations. These findings support the utility of omics in identifying environmentally linked Parkinsonism biomarkers and mechanisms.
Full article
(This article belongs to the Special Issue Metabolomics in Human Diseases and Health)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Metabolites Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomolecules, Foods, Metabolites, Microorganisms, Pathogens, Bacteria
Bioinformatics, Machine Learning and Risk Assessment in Food Industry
Topic Editors: Bing Niu, Suren Rao Sooranna, Pufeng DuDeadline: 31 July 2025
Topic in
Animals, Dairy, Microorganisms, Veterinary Sciences, Metabolites, Life, Parasitologia
The Complexity of Parasites in Animals: Impacts, Innovation, and Interventions
Topic Editors: Kun Li, Rongjun Wang, Ningbo Xia, Md. F. KulyarDeadline: 31 August 2025
Topic in
Agronomy, Metabolites, Microorganisms, Plants, Soil Systems
Interactions between Plants and Soil Microbes in Natural Ecosystem
Topic Editors: Chao Zhang, Jie WangDeadline: 31 October 2025
Topic in
Cells, Chemistry, IJMS, Molecules, Metabolites
Bioactive Compounds and Therapeutics: Molecular Aspects, Metabolic Profiles, and Omics Studies 2nd Edition
Topic Editors: Michele Costanzo, Giovanni N. Roviello, Armando CeveniniDeadline: 20 November 2025

Conferences
Special Issues
Special Issue in
Metabolites
Bioactive Food Ingredients in Prevention and Alleviation of Metabolic Diseases
Guest Editors: Marcelo Macedo Rogero, Marco Antonio Hernández-LepeDeadline: 30 July 2025
Special Issue in
Metabolites
Obesity and Metabolic Health
Guest Editors: Natalia Ferreira Mendes, Eliana Pereira De AraújoDeadline: 30 July 2025
Special Issue in
Metabolites
Advancements in Reproductive Medicine: Unlocking the Secrets of the Ovary and Sperm for Fertility and Beyond
Guest Editors: Konstantinos Dafopoulos, Efthalia MoustakliDeadline: 30 July 2025
Special Issue in
Metabolites
Energy Metabolism in Neurodegenerative Diseases
Guest Editors: Marta Tomczyk, Magdalena PodlachaDeadline: 30 July 2025
Topical Collections
Topical Collection in
Metabolites
Feature Papers Related to Metabolomic Profiling Technology
Collection Editor: Thusitha Rupasinghe
Topical Collection in
Metabolites
Feature Papers in Assessing Environmental Health and Function
Collection Editor: David J. Beale
Topical Collection in
Metabolites
Metabolic Effects of Animal Growth Promoters
Collection Editor: Chi Chen