Journal Description
Reactions
Reactions
is an international, peer-reviewed, open access journal on reaction chemistry and engineering published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 25.3 days after submission; acceptance to publication is undertaken in 4.8 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Impact Factor:
2.2 (2023);
5-Year Impact Factor:
2.1 (2023)
Latest Articles
Impact of Inverse Manganese Promotion on Silica-Supported Cobalt Catalysts for Long-Chain Hydrocarbons via Fischer–Tropsch Synthesis
Reactions 2024, 5(3), 607-622; https://doi.org/10.3390/reactions5030030 - 9 Sep 2024
Abstract
One of the challenges in Fischer–Tropsch synthesis (FTS) is the high reduction temperatures, which cause sintering and the formation of silicates. These lead to pore blockages and the coverage of active metals, particularly in conventional catalyst promotion. To address the challenge, this article
[...] Read more.
One of the challenges in Fischer–Tropsch synthesis (FTS) is the high reduction temperatures, which cause sintering and the formation of silicates. These lead to pore blockages and the coverage of active metals, particularly in conventional catalyst promotion. To address the challenge, this article investigates the effects of the preparation method, specifically the inverse promotion of SiO2-supported Co catalysts with manganese (Mn), and their reduction in H2 for FTS. The catalysts were prepared using stepwise incipient wetness impregnation of a cobalt nitrate precursor into a promoted silica support. The properties of the catalysts were characterized using XRD, XPS, TPR, and BET techniques. The structure–performance relationship of the inversely promoted catalysts in FTS was studied using a fixed-bed reactor to obtain the best performing catalysts for heavy hydrocarbons (C5+). XRD and XPS results indicated that Co3O4 is the dominant cobalt phase in oxidized catalysts. It was found that with increase in Mn loading, the reduction temperature increased in the following sequence 10%Co/SiO2 < 10%Co/0.25%Mn-SiO2 < 10%Co/0.5%Mn-SiO2 < 10%Co/3.0%Mn-SiO2. The catalyst with the lowest Mn loading, 10%Co/0.25%Mn-SiO2, exhibited higher C5+ selectivity, which can be attributed to less MSI and higher reducibility. This catalyst showed the lowest CH4 selectivity possibly due to lower H2 uptake and higher CO chemisorption.
Full article
(This article belongs to the Special Issue Fischer-Tropsch Synthesis: Bridging Carbon Sustainability)
►
Show Figures
Open AccessArticle
Zirconium Complexes Bearing Methyl/tButyl Salicylate and Their Catalytic Activity on ε-Caprolactone
by
Gamze Uzun and Asgar Kayan
Reactions 2024, 5(3), 594-606; https://doi.org/10.3390/reactions5030029 - 2 Sep 2024
Abstract
►▼
Show Figures
In this study, methyl/tbutyl salicylate-bearing zirconium complexes (C1–C8) were prepared by the reaction of zirconium (IV) propoxide/butoxide with salicylic acid, 3-methylsalicylic acid, 4-methylsalicylic acid, and 3,5-di-tert-butylsalicylic acid in alcohols, respectively. All these complexes (C1
[...] Read more.
In this study, methyl/tbutyl salicylate-bearing zirconium complexes (C1–C8) were prepared by the reaction of zirconium (IV) propoxide/butoxide with salicylic acid, 3-methylsalicylic acid, 4-methylsalicylic acid, and 3,5-di-tert-butylsalicylic acid in alcohols, respectively. All these complexes (C1–C8) were characterized by 1H NMR, 13C NMR, FTIR, mass spectroscopy (MS), elemental, and thermogravimetric analyses (TGA). These complexes were utilized as catalysts in the ring-opening polymerization (ROP) of Ɛ-caprolactone and were very effective. Polycaprolactone (PCL) was characterized by 1H-NMR, 13C NMR, and gel permeation chromatography (GPC). In this study, perhaps for the first time, the effects of electron-donating substituents (Me and tBu) on Ɛ-caprolactone polymerization reactions on salicylate ligands linked to zirconium atoms were investigated.
Full article
Figure 1
Open AccessCommunication
Biodiesel Production from Edible Oil Using Heteropoly Acid Catalysts at Room Temperature
by
Noah L. Fioravante, Guoqiang Cao and Nan Yi
Reactions 2024, 5(3), 587-593; https://doi.org/10.3390/reactions5030028 - 1 Sep 2024
Abstract
►▼
Show Figures
Edible oils are one of the renewable sources that enable the possibility of producing biodiesel sustainably. The transesterification of canola oil with methanol using cesium-modified phosphotungstic acid (Cs2.5H0.5PW12O40) as a heterogeneous catalyst was studied. Reaction
[...] Read more.
Edible oils are one of the renewable sources that enable the possibility of producing biodiesel sustainably. The transesterification of canola oil with methanol using cesium-modified phosphotungstic acid (Cs2.5H0.5PW12O40) as a heterogeneous catalyst was studied. Reaction conditions, specifically reaction time, catalyst loading, and the ratio of methanol to canola oil, were systematically explored. The canola oil conversion reached 55% at room temperature after 24 h. The reusability tests showed that the conversion of canola oil to biodiesel was maintained.
Full article
Graphical abstract
Open AccessArticle
C2-Symmetric Amino Acid Amide-Derived Organocatalysts
by
Zahraa S. Al-Taie, Simon J. Coles, Aileen Congreve, Dylan Ford, Lucy Green, Peter N. Horton, Leigh F. Jones, Pippa Kett, Rolf Kraehenbuehl, Patrick J. Murphy, Graham J. Tizzard, Niles B. Willmore and Oliver T. Wright
Reactions 2024, 5(3), 567-586; https://doi.org/10.3390/reactions5030027 - 24 Aug 2024
Abstract
►▼
Show Figures
N-alkylated C2-symmetric amino acid amide derivatives were shown to catalyse the Michael addition of 2-hydroxy-1,4-napthoquinone to β-nitrostyrene, achieving a maximum ee of 44%. The corresponding trifluoroacetic acid salts also catalysed the aldol reaction between 4-nitrobenzaldehyde and hydroxyacetone, leading to the
[...] Read more.
N-alkylated C2-symmetric amino acid amide derivatives were shown to catalyse the Michael addition of 2-hydroxy-1,4-napthoquinone to β-nitrostyrene, achieving a maximum ee of 44%. The corresponding trifluoroacetic acid salts also catalysed the aldol reaction between 4-nitrobenzaldehyde and hydroxyacetone, leading to the formation of predominantly syn-aldol products in up to 55% ee. Aspects of the solvent dependence of the aldol reaction and the H-bonding of the catalyst were investigated.
Full article
Figure 1
Open AccessReview
Synthesis of 2-Azetidinones via Cycloaddition Approaches: An Update
by
Franca Maria Cordero, Donatella Giomi and Fabrizio Machetti
Reactions 2024, 5(3), 492-566; https://doi.org/10.3390/reactions5030026 - 16 Aug 2024
Abstract
The present review is a comprehensive update of the synthesis of monocyclic β-lactams via cycloaddition reactions. According to the IUPAC definition of cycloaddition, both elementary and stepwise processes (formal cycloadditions) have been considered. The years 2019–2022 are covered by the cited literature. The
[...] Read more.
The present review is a comprehensive update of the synthesis of monocyclic β-lactams via cycloaddition reactions. According to the IUPAC definition of cycloaddition, both elementary and stepwise processes (formal cycloadditions) have been considered. The years 2019–2022 are covered by the cited literature. The focus of the review is on synthetic aspects with emphasis on the structural scope, reaction conditions, mechanistic aspects, and selectivity results. Selected significant data related to biological activities and synthetic applications are also highlighted.
Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
►▼
Show Figures
Figure 1
Open AccessArticle
Autocatalytic Acetylation of Crude Glycerol Using Acetic Acid: A Kinetic Model
by
Federico M. Perez, Francisco Pompeo, Gerardo F. Santori and Martín N. Gatti
Reactions 2024, 5(3), 472-491; https://doi.org/10.3390/reactions5030025 - 9 Aug 2024
Abstract
►▼
Show Figures
The aim of this work was to develop a kinetic model based on the power law to describe the evolution of glycerol conversion and product distribution in the crude glycerol (G) acetylation reaction with acetic acid (AA) without the use of a catalyst.
[...] Read more.
The aim of this work was to develop a kinetic model based on the power law to describe the evolution of glycerol conversion and product distribution in the crude glycerol (G) acetylation reaction with acetic acid (AA) without the use of a catalyst. For this purpose, experimental tests were carried out with analytical glycerol under different reaction conditions (T = 80–160 °C, AA/G = 1–9 molar ratio, t = 0.25–2 h). The results showed the formation of mono- (MAG), di- (DAG) and tri- (TAG) acetylglycerols, liquid products with multiple applications in the chemical industry. From these results, a kinetic model based on the power law was implemented, which could acceptably estimate the experimental concentrations with an average relative error of 14.9%. Then, crude glycerol samples from different biodiesel industries were characterized by identifying and quantifying the impurities present in them (H2O, CH3OH, NaOH, NaCOOH, MONG and NaCl), and employed as reactants in the reaction tests. Given the significant differences observed in the glycerol conversion values compared to those obtained with analytical glycerol, further reaction tests were conducted to elucidate the effect of each impurity over the glycerol conversion. In these tests, the different impurities were added individually, maintaining the same concentration range as that of the crude glycerol samples. From the results obtained, global activity factors were introduced, which allowed us to modify the kinetic model to estimate glycerol conversions in the crude glycerol samples with an average relative error of 7%. It is hoped that this kinetic model will be a powerful tool useful for designing reactors on an industrial scale.
Full article
Figure 1
Open AccessArticle
Using Phosphogypsum as a Source of Calcium Sulfate When Synthesizing Calcium Molybdate Nanoparticles
by
Youssef Belaoufi, Meryem Bensemlali, Badreddine Hatimi, Halima Mortadi, Najoua Labjar, Jean-Michel Nunzi, Mohammed El Idrissi, Abdellatif Aarfane, Mina Bakasse and Hamid Nasrellah
Reactions 2024, 5(3), 462-471; https://doi.org/10.3390/reactions5030024 - 7 Aug 2024
Abstract
Calcium molybdate (CaMoO4) is of significant interest due to its unique properties and numerous industrial applications, such as catalysis, electrochemistry, and optoelectronics. In this study, we developed an economical and environmentally friendly method to synthesize calcium molybdate from Moroccan phosphogypsum (PG)
[...] Read more.
Calcium molybdate (CaMoO4) is of significant interest due to its unique properties and numerous industrial applications, such as catalysis, electrochemistry, and optoelectronics. In this study, we developed an economical and environmentally friendly method to synthesize calcium molybdate from Moroccan phosphogypsum (PG) industrial waste and sodium molybdate, all at room temperature. Comprehensive analysis through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman vibrational spectroscopy, and scanning electron microscopy (SEM) revealed the high purity of the synthesized calcium molybdate, with particle sizes of only 12 nm. Additionally, optical characteristics were studied using ultraviolet-visible spectroscopy (UV-vis), which showed an optical band gap of Egap = 3.96 eV for CaMoO4. These results confirm the successful synthesis of calcium molybdate nanoparticles from Moroccan phosphogypsum, demonstrating an effective pathway to valorize this industrial waste into a valuable material. This approach contributes to environmental sustainability by reducing dependence on rare chemicals while offering innovative solutions for the industry’s sustainable development.
Full article
(This article belongs to the Special Issue Nanoparticles: Synthesis, Properties, and Applications)
►▼
Show Figures
Figure 1
Open AccessCommunication
A New Nonaqueous Flow Battery with Extended Cycling
by
Diqing Yue, Weilin Zhang, Ivy Zhao, Xiaoting Fang, Yuyue Zhao, Jenny Li, Feng Zhao and Xiaoliang Wei
Reactions 2024, 5(3), 452-461; https://doi.org/10.3390/reactions5030023 - 28 Jul 2024
Abstract
►▼
Show Figures
Nonaqueous flow batteries hold promise given their high cell voltage and energy density, but their performance is often plagued by the crossover of redox compounds. In this study, we used permselective lithium superionic conducting (LiSICON) ceramic membranes to enable reliable long-term use of
[...] Read more.
Nonaqueous flow batteries hold promise given their high cell voltage and energy density, but their performance is often plagued by the crossover of redox compounds. In this study, we used permselective lithium superionic conducting (LiSICON) ceramic membranes to enable reliable long-term use of organic redox molecules in nonaqueous flow cells. With different solvents on each side, enhanced cell voltages were obtained for a flow battery using viologen-based negolyte and TEMPO-based posolyte molecules. The thermoplastic assembly of the LiSICON membrane realized leakless cell sealing, thus overcoming the mechanical brittleness challenge. As a result, stable cycling was achieved in the flow cells, which showed good capacity retention over an extended test time.
Full article
Figure 1
Open AccessReview
Carbon Nanotubes: A Review of Synthesis Methods and Applications
by
Arash Yahyazadeh, Sonil Nanda and Ajay K. Dalai
Reactions 2024, 5(3), 429-451; https://doi.org/10.3390/reactions5030022 - 4 Jul 2024
Abstract
Carbon nanotubes (CNTs) are cylindrical-shaped materials composed of hexagonally arranged hybridized carbon atoms with versatility in synthesis methods and diverse applications. This review is focused on the fabrication, physicochemical and spectroscopic characterization, and industrial applications of CNTs. This review discusses some promising synthesis
[...] Read more.
Carbon nanotubes (CNTs) are cylindrical-shaped materials composed of hexagonally arranged hybridized carbon atoms with versatility in synthesis methods and diverse applications. This review is focused on the fabrication, physicochemical and spectroscopic characterization, and industrial applications of CNTs. This review discusses some promising synthesis methods for the preparation of CNTs such as catalytic chemical vapor deposition, arc discharge, and laser ablation. A comparative discussion is made between these synthesis methods in terms of strengths, opportunities and challenges. Furthermore, functionalization and purification of CNTs’ surface leading to improved functionality has also been highlighted in this article. Finally, the analytical techniques employed to shed light on the physicochemical and morphological properties of CNTs are described.
Full article
(This article belongs to the Special Issue Nanoparticles: Synthesis, Properties, and Applications)
►▼
Show Figures
Figure 1
Open AccessArticle
Investigation of the First Hydrogenation of LaNi5
by
Salma Sleiman, Samaneh Shahgaldi and Jacques Huot
Reactions 2024, 5(3), 419-428; https://doi.org/10.3390/reactions5030021 - 2 Jul 2024
Abstract
The first hydrogenation of most metal hydrides is a lengthy process that usually requires high pressure and temperature. This, in turn, significantly increases the production cost of metal hydrides. In this paper, the low temperature hydride-forming LaNi5 was selected to investigate the mechanism
[...] Read more.
The first hydrogenation of most metal hydrides is a lengthy process that usually requires high pressure and temperature. This, in turn, significantly increases the production cost of metal hydrides. In this paper, the low temperature hydride-forming LaNi5 was selected to investigate the mechanism of first hydrogenation. For the first time, the effect of particle size, temperature and pressure on the incubation time were studied. We found that the first hydrogenation of LaNi5 follows an Arrhenius process, with an activation energy of EA = 78 ± 4 kJ/mol H2. We also found that the pre-exponential factor depends on the applied pressure.
Full article
(This article belongs to the Special Issue Hydrogen Production and Storage, 2nd Edition)
►▼
Show Figures
Figure 1
Open AccessArticle
The Effect of Temperature and Treatment Regime on the Physical, Chemical, and Biological Properties of Poultry Litter Biochar
by
Joyce Clarke and Maria Olea
Reactions 2024, 5(3), 379-418; https://doi.org/10.3390/reactions5030020 - 25 Jun 2024
Abstract
►▼
Show Figures
Poultry litter was converted to biochar by torrefaction and to hydrochar by hydrothermal carbonisation. Many parameters were measured for the resulting chars, to investigate the effects of the production method and production temperature. SEM showed the presence of large quantities of crystalline material
[...] Read more.
Poultry litter was converted to biochar by torrefaction and to hydrochar by hydrothermal carbonisation. Many parameters were measured for the resulting chars, to investigate the effects of the production method and production temperature. SEM showed the presence of large quantities of crystalline material on the surface of the biochars. The elemental composition of some crystals was determined as 35% K and 31% Cl. This was confirmed as sylvite (KCl) crystals, which explains the high levels of water-extractable potassium in the biochar and may also be important in germination inhibition. Biochars almost totally inhibited germination, whilst hydrochars decreased germination. Although germination occurred on hydrochar, root growth was severely inhibited. Consequently, the germination index may be better to determine total phytotoxicity as it measures both effects and could be used as a bioassay for chars used as soil amendments. Washing removed germination inhibition in a low-temperature char (350 °C), possibly by removing KCl; however, root toxicity remained. There were very low levels of heavy metals, suggesting they are not the source of toxicity. In biochars, pore mean size decreased with temperature from 350 °C to 600 °C, due to changes in pore size distribution. The mean pore size was measured directly using SEM. The merits of this method are discussed. Low-temperature biochars seem best suited for fuel as they have a high calorific value, high hydrophobicity, a low ash content and a high yield. Higher temperatures are better for soil amendment and sequestration applications with a smaller mean pore size, higher surface area, and higher pH.
Full article
Figure 1
Open AccessReview
Furfural and Levulinic Acid: Synthesis of Platform Molecules from Keggin Heteropolyacid-Catalyzed Biomass Conversion Reactions
by
Marcio Jose da Silva, Alana Alves Rodrigues and Daniel Carreira Batalha
Reactions 2024, 5(2), 361-378; https://doi.org/10.3390/reactions5020019 - 9 Jun 2024
Cited by 1
Abstract
►▼
Show Figures
Among the different polyoxometalate compounds, Keggin heteropolyacids have been extensively used as catalysts in several acid-catalyzed reactions, due to their strong strength of Bronsted acidity. These metal–oxygen clusters have a highly versatile structure that allows their conversion to derivatives, which are catalysts that
[...] Read more.
Among the different polyoxometalate compounds, Keggin heteropolyacids have been extensively used as catalysts in several acid-catalyzed reactions, due to their strong strength of Bronsted acidity. These metal–oxygen clusters have a highly versatile structure that allows their conversion to derivatives, which are catalysts that are much more efficient than their precursors, with a greater catalytic activity in a plethora of reactions of industrial interest. Particularly, due to the inevitable exhaustion of fossil sources, reactions to valorize biomass have attracted significant attention, since it is a precious renewable raw material that can provide fine chemicals or fuels, minimizing our dependence on petroproducts. Biorefinery processes can produce platform molecules to achieve this goal. In this review, the recent advances achieved in the development of routes to converting biomass feedstocks to levulinic acid and furfural, which are valuable ingredients in biorefinery processes, using Keggin heteropolyacid catalysts were assessed.
Full article
Graphical abstract
Open AccessArticle
Advanced Thermogravimetric Analyses of Stem Wood and Straw Devolatilization: Torrefaction through Combustion
by
David R. Wagner
Reactions 2024, 5(2), 350-360; https://doi.org/10.3390/reactions5020018 - 7 Jun 2024
Abstract
►▼
Show Figures
Process design critically depends on the characterization of fuels and their kinetics under process conditions. This study steps beyond the fundamental methods of thermogravimetry to modulated (MTGA) and Hi-Res™ (high resolution) techniques to (1) add characterization detail and (2) increase the utility of
[...] Read more.
Process design critically depends on the characterization of fuels and their kinetics under process conditions. This study steps beyond the fundamental methods of thermogravimetry to modulated (MTGA) and Hi-Res™ (high resolution) techniques to (1) add characterization detail and (2) increase the utility of thermal analysis data. Modulated TGA methods overlay sinusoidal functions on the heating rates to determine activation energy as a function of temperature with time. Under devolatilization conditions, Hi-Res™ TGA maintains a constant mass loss with time and temperature. These two methods, run independently or overlaid, offer additional analysis in which multiple samples at different heating rates are run to different final temperatures. Advanced methods allow researchers to use fewer samples by conducting fewer runs, targeting practical experimental designs, and quantifying errors easier. The parameters of the studies included here vary the heating rate at 10, 30, and 50 °C/min; vary gas-phase oxygen for pyrolysis or combustion conditions; and particle size ranges of 100–125 µm, 400–425 µm, and 600–630 µm. The two biomass fuels used in the studies are pinewood from Northern Sweden and wheat straw. The influence of torrefaction is also included at temperatures of 220, 250, and 280 °C. Apparent activation energy results align with the previous MTGA data in that combustion conditions yield higher values than pyrolysis conditions—200–250 kJ/mol and 175–225 kJ/mol for pine and wheat combustion, respectively, depending on pre-treatment. Results show the dependence of these parameters upon one another from a traditional thermal analysis approach, e.g., the Ozawa-Flynn-Wall method, as well as MTGA and Hi-Res™ thermogravimetric investigations to show future directions for thermal analysis techniques.
Full article
Figure 1
Open AccessArticle
Modeling of the Anaerobic Digestion of Biomass Produced by Agricultural Residues in Greece
by
Efstathios Papachristopoulos, George N. Prodromidis, Dennis E. Mytakis, Vagelis G. Papadakis and Frank A. Coutelieris
Reactions 2024, 5(2), 338-349; https://doi.org/10.3390/reactions5020017 - 22 May 2024
Abstract
►▼
Show Figures
This study combines theoretical modeling and experimental validation to explore anaerobic digestion comprehensively. Developing a computational model is crucial for accurately simulating a digester’s performance, considering various feedstocks and operational parameters. The main objective was to adapt the anaerobic digestion model 1 (ADM1)
[...] Read more.
This study combines theoretical modeling and experimental validation to explore anaerobic digestion comprehensively. Developing a computational model is crucial for accurately simulating a digester’s performance, considering various feedstocks and operational parameters. The main objective was to adapt the anaerobic digestion model 1 (ADM1) simulation code to align with the laboratory-scale anaerobic digestion reactor’s specifications, especially regarding the liquid–gas transfer process. Within this computational framework, users may define model parameters and elucidate processes occurring in compartments reflecting the physical design. The model accurately predicts total concentrations of chemical oxygen demand (COD) as well as the produced biogas, with an average difference of less than 10% between experimental and simulated data. This consistency underscores the reliability and effectiveness of the adapted model in capturing anaerobic digestion nuances under specified conditions.
Full article
Figure 1
Open AccessReview
Ir-Catalyzed ortho-C-H Borylation of Aromatic C(sp2)-H Bonds of Carbocyclic Compounds Assisted by N-Bearing Directing Groups
by
Hamad H. Al Mamari
Reactions 2024, 5(2), 318-337; https://doi.org/10.3390/reactions5020016 - 1 May 2024
Abstract
►▼
Show Figures
C-H borylation is a powerful strategy for the construction of C-B bonds due to the synthetic versatility of C-B bonds. Various transition metals affect the powerful functionalization of C-H bonds, of which Ir is the most common. Substrate-directed methods have enabled directed Ir-catalyzed
[...] Read more.
C-H borylation is a powerful strategy for the construction of C-B bonds due to the synthetic versatility of C-B bonds. Various transition metals affect the powerful functionalization of C-H bonds, of which Ir is the most common. Substrate-directed methods have enabled directed Ir-catalyzed C-H borylation at the ortho position. Amongst the powerful directing groups in Ir-catalyzed C-H borylation are N-containing carbocyclic systems. This review covers substrate-directed Ir-catalyzed ortho-C-H borylation of aromatic C(sp2)-H bonds in N-containing carbocyclic compounds, such as anilines, amides, benzyl amines, hydrazones, and triazines.
Full article
Figure 1
Open AccessArticle
Generalized Linear Driving Force Formulas for Diffusion and Reaction in Porous Catalysts
by
Mirosław K. Szukiewicz and Elżbieta Chmiel-Szukiewicz
Reactions 2024, 5(2), 305-317; https://doi.org/10.3390/reactions5020015 - 29 Apr 2024
Cited by 1
Abstract
Approximate models are a fast and most often precise tool for determining the effectiveness factor for heterogeneous catalysis processes that are realized in the real world. They are also frequently applied as robust transient models describing the work of a single catalyst pellet
[...] Read more.
Approximate models are a fast and most often precise tool for determining the effectiveness factor for heterogeneous catalysis processes that are realized in the real world. They are also frequently applied as robust transient models describing the work of a single catalyst pellet or as a part of a more complex model, for example, a reactor model, where mass balances for the gas phase and solid phase are necessary. So far, approximate models for diffusion and reaction processes have been presented for processes described by a single balance equation. In the present work, approximate models without the mentioned limitation are presented and discussed. In addition, simple rules are shown for the development of other complex approximate models without tedious derivation in the complex domain. The formulas considered in this work are typical long-time approximations of the transient process. The accuracy is good, especially in the range of small and intermediate Thiele modulus values.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
Sewage Sludge Plasma Gasification: Characterization and Experimental Rig Design
by
Nuno Pacheco, André Ribeiro, Filinto Oliveira, Filipe Pereira, L. Marques, José C. Teixeira, Cândida Vilarinho and Flavia V. Barbosa
Reactions 2024, 5(2), 285-304; https://doi.org/10.3390/reactions5020014 - 16 Apr 2024
Abstract
The treatment of wastewater worldwide generates substantial quantities of sewage sludge (SS), prompting concerns about its environmental impact. Various approaches have been explored for SS reuse, with energy production emerging as a viable solution. This study focuses on harnessing energy from domestic wastewater
[...] Read more.
The treatment of wastewater worldwide generates substantial quantities of sewage sludge (SS), prompting concerns about its environmental impact. Various approaches have been explored for SS reuse, with energy production emerging as a viable solution. This study focuses on harnessing energy from domestic wastewater treatment (WWT) sewage sludge through plasma gasification. Effective syngas production hinges on precise equipment design which, in turn, depends on the detailed feedstock used for characterization. Key components of plasma gasification include the plasma torch, reactor, heat exchanger, scrubber, and cyclone, enabling the generation of inert slag for landfill disposal and to ensure clean syngas. Designing these components entails considerations of sludge composition, calorific power, thermal conductivity, ash diameter, and fusibility properties, among other parameters. Accordingly, this work entails the development of an experimental setup for the plasma gasification of sewage sludge, taking into account a comprehensive sludge characterization. The experimental findings reveal that domestic WWT sewage sludge with 40% humidity exhibits a low thermal conductivity of approximately 0.392 W/mK and a calorific value of LHV = 20.78 MJ/kg. Also, the relatively low ash content (17%) renders this raw material advantageous for plasma gasification processes. The integration of a detailed sludge characterization into the equipment design lays the foundation for efficient syngas production. This study aims to contribute to advancing sustainable waste-to-energy technologies, namely plasma gasification, by leveraging sewage sludge as a valuable resource for syngas production.
Full article
(This article belongs to the Special Issue Waste Biorefinery Technologies for Accelerating Sustainable Energy Processes)
►▼
Show Figures
Figure 1
Open AccessArticle
Biosynthesis of Copper Nanoparticles from Acacia cornigera and Annona purpurea and Their Insecticidal Effect against Tribolium castaneum
by
Rogelio Solorzano Toala, Federico Gutierrez-Miceli, Benjamin Valdez-Salas, Ernesto Beltran-Partida, Daniel Gonzalez-Mendoza, Olivia Tzintzun-Camacho, Onecimo Grimaldo-Juarez and Antobelli Basilio-Cortes
Reactions 2024, 5(2), 274-284; https://doi.org/10.3390/reactions5020013 - 8 Apr 2024
Abstract
Diverse studies have showed that the pesticides can cause important damages in ecosystem. Therefore, the development of bio pesticides through nanotechnology can increase efficacy and limit the negative impacts in the environmental that traditionally seen through the use of chemical pesticides. Nanoparticles obtained
[...] Read more.
Diverse studies have showed that the pesticides can cause important damages in ecosystem. Therefore, the development of bio pesticides through nanotechnology can increase efficacy and limit the negative impacts in the environmental that traditionally seen through the use of chemical pesticides. Nanoparticles obtained from plants’ extracts can be used for effective pest management as a combined formulation of metal and some other organic material present in the plants. In the present study, our evaluated biosynthesis of nanoparticles of copper used two plant extracts (Acacia cornigera and Annona purpurea), and the Taguchi method was adopted for the synthesis optimization of the following variables of biosynthesis: temperature, pH, extract concentration, and reaction times to maximize the insecticidal activity on Tribolium castaneum. Our results showed that the nanoparticles were successfully synthesized using Acacia cornigera and Anona purpurea extract under optimum conditions under Taguchi L 9 orthogonal design, where copper nanoparticles were obtained with a size of 63–153 nm for using A. cornigera extract, 87–193 nm for A. purpurea extract, and a zeta potential of 9.6 mV and −32.7 mV, respectively. The nanoparticles of copper from A. cornigera showed effective insecticidal activity against Tribolium castaneum, and 90% mortality compared to the 76.6% obtained from nanoparticles of copper from A. purpurea. The results suggest that Cu-nanoparticles derived from both plants could be used as a biocontrol agent of Tribolium castaneum, a pest of stored grain with great economic importance.
Full article
(This article belongs to the Special Issue Nanoparticles: Synthesis, Properties, and Applications)
►▼
Show Figures
Figure 1
Open AccessArticle
Valorization of (Bio)Ethanol over MoO3/(WO3-ZrO2) Sol-Gel-like Catalysts
by
Ana Paula Soares Dias, Bruna Rijo, Manuel Francisco Costa Pereira, Rodica Zăvoianu and Octavian Dumitru Pavel
Reactions 2024, 5(1), 260-273; https://doi.org/10.3390/reactions5010012 - 20 Mar 2024
Abstract
►▼
Show Figures
Bioethanol, which is currently produced commercially from a growing variety of renewable biomass and waste sources, is an appealing feedstock for the production of fuels and chemicals. The literature clearly shows that bioethanol is a versatile building block to be used in biorefineries.
[...] Read more.
Bioethanol, which is currently produced commercially from a growing variety of renewable biomass and waste sources, is an appealing feedstock for the production of fuels and chemicals. The literature clearly shows that bioethanol is a versatile building block to be used in biorefineries. The ethanol conversion using several catalysts with acidic, basic, and redox characteristics results in a diverse assortment of high-value bioproducts. High-acidity tungsten zirconia-based catalysts are stated to compete with traditional zeolitic catalysts and can be employed in the dehydration of ethanol to ethylene, but for a low reaction temperature acetic acid is formed, which causes corrosion issues. WO3-ZrO2 (W/Zr = 1, atomic) catalysts modified with MoO3 were prepared by a sol-gel-like procedure and tested in a gas phase ethanol conversion in the presence of air. The citrate derived xerogels were annealed at 853 K for 12 h, allowing low surface area (<10 m2/g) materials with a Mo-W mixed-oxide-rich surface over tetragonal nanostructured zirconia. Catalysts with MoO3-loading produced mainly acetaldehyde, instead of ethylene, as a result of the high reducibility of Mo6+ when compared to W6+. During the reaction, the Mo6+ becomes partially reduced, but Mo6+/Mo5+ species are still active for methanol conversion with increased ethylene selectivity due to the high acidity of tetrahedral MOX species formed during the reaction. Adding water to ethanol, to simulate bioethanol, only leads to a slight inhibition in ethanol conversion over the MoO3/(WO3-ZrO2) catalysts. The results show that molybdenum oxide deposited on tungstated zirconia catalyst is active, with low sensitivity to water, for the valorization of bioethanol into high-value chemicals, such as ethylene and acetaldehyde, and whose selectivity can be tuned by changing the amount of MoO3 that is loaded. The MoO3/(WO3-ZrO2) catalysts prepared show catalytic behavior similar to that of noble metal-based catalysts reported in the literature for the dehydrogenation of bioethanol in high-value chemicals.
Full article
Figure 1
Open AccessArticle
Analytical and Numerical Thermodynamic Equilibrium Simulations of Steam Methane Reforming: A Comparison Study
by
Bruno Varandas, Miguel Oliveira and Amadeu Borges
Reactions 2024, 5(1), 246-259; https://doi.org/10.3390/reactions5010011 - 8 Mar 2024
Abstract
►▼
Show Figures
Computer simulation is a crucial element in the design of chemical processes. Although numerous commercial software options are widely recognized, the expense associated with acquiring and sustaining valid software licenses can be prohibitive. In contrast, open-source software, being freely available, provides an opportunity
[...] Read more.
Computer simulation is a crucial element in the design of chemical processes. Although numerous commercial software options are widely recognized, the expense associated with acquiring and sustaining valid software licenses can be prohibitive. In contrast, open-source software, being freely available, provides an opportunity for individuals to study, review, and modify simulation models. This accessibility fosters technology transfer and facilitates knowledge dissemination, benefiting both academic and industrial domains. In this study, a thermodynamic equilibrium steady-state analysis of steam methane reforming using a natural-gas-like intake fuel was conducted. An analytical method was developed on the Microsoft Excel platform, utilizing the material balance equations system. The obtained results were compared to numerical methods employing the free-of-charge chemical process simulation software COCO and DWSIM. The investigation explored the influence of temperature, pressure, and steam-to-carbon ratio to determine optimal operating conditions. The findings suggest that higher temperatures and lower pressures are highly favorable for this process, considering that the choice of steam-to-carbon ratio depends on the desired conversion, with a potential disadvantage of coke formation at lower values. Consistent results were obtained through both analytical and numerical methods. Notably, simulations performed using DWSIM showed a deviation of 6.42% on average compared to COCO values. However, it was observed that the analytical method tended to overestimate the results by an average of 3.01% when compared to the simulated results from COCO, highlighting the limitations of this analytical approach.
Full article
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Conferences
Special Issues
Special Issue in
Reactions
Cycloaddition Reactions at the Beginning of the Third Millennium
Guest Editors: Donatella Giomi, Alberto Brandi, Fabrizio MachettiDeadline: 30 November 2024
Special Issue in
Reactions
High Temperature Corrosion
Guest Editor: César Augusto Correia de SequeiraDeadline: 31 December 2024
Special Issue in
Reactions
Feature Papers in Reactions in 2024
Guest Editor: Dmitry Yu. MurzinDeadline: 31 December 2024
Special Issue in
Reactions
Electrocatalysis Technologies for Organic Synthesis
Guest Editor: César Augusto Correia de SequeiraDeadline: 31 December 2024