-
A Simple Way to Decachloro Cobalt Bis(dicarbollide) -
Visible Light Induced C-H/N-H and C-X Bonds Reactions -
UV/VIS-Spectroscopic Inline Measurement for the Detection of Fouling Processes during the Polymerization of N-Vinylpyrrolidone -
Hydrothermal Synthesis of Vanadium Oxide Microstructures with Mixed Oxidation States -
Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1)
Journal Description
Reactions
Reactions
is an international, peer-reviewed, open access journal on reaction chemistry and engineering published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 12.1 days after submission; acceptance to publication is undertaken in 7.2 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
The First Step and the Cob(II)alamin Cofactor Inactive Particles Reactivation in the Updated Mechanism of the Methionine Synthase Process
Reactions 2023, 4(2), 274-285; https://doi.org/10.3390/reactions4020016 - 22 May 2023
Abstract
►
Show Figures
The Methionine Synthase process, in principle, can take an unlimited number of turnovers in the presence of the AdoMet substrate. In the absence of this substrate, the Methionine Synthase process lasts only about 2000 turnovers. During 2000 turnovers, the entire amount of methylcob(II)alamin
[...] Read more.
The Methionine Synthase process, in principle, can take an unlimited number of turnovers in the presence of the AdoMet substrate. In the absence of this substrate, the Methionine Synthase process lasts only about 2000 turnovers. During 2000 turnovers, the entire amount of methylcob(II)alamin cofactor is converted into inactive cob(II)alamin particles. Nevertheless, the mechanism of the Methionine Synthase process determined previously lacks the presence of the AdoMet substrate. On the other hand, the first step of this mechanism was only mentioned earlier without its analysis. The CASSCF geometry optimization of the inactive cob(II)alamin cofactor particle plus the AdoMet ion substrate and of the methylcob(II)alamin cofactor particle plus homocysteine ion and histidine molecule joint models have been performed. CASSCF calculations show that the AdoMet particle transfers the methyl radical to the biologically inactive cob(II)alamin particle during their interaction, transforming it into the biologically active particle of methylcob(II)alamin. CASSCF geometry optimization of the second model leads to the Co-N bond’s full cleavage. The two processes take place in the absence of the total energy barrier. The fully updated mechanism of the Methionine Synthase process has been drawn.
Full article
Open AccessReview
Hemetsberger–Knittel and Ketcham Synthesis of Heteropentalenes with Two (1:1), Three (1:2)/(2:1) and Four (2:2) Heteroatoms
Reactions 2023, 4(2), 254-273; https://doi.org/10.3390/reactions4020015 - 08 May 2023
Abstract
►▼
Show Figures
The synthetic methods leading to furo[3,2-b]pyrroles and thiazolo [5,4-d]thiazoles are reviewed herein. Furo-, thieno- and seleno [3,2-b]pyrroles are related to heteropentalenes, containing two heteroatoms in the entire structure, one each per core. The synthetic approach follows the
[...] Read more.
The synthetic methods leading to furo[3,2-b]pyrroles and thiazolo [5,4-d]thiazoles are reviewed herein. Furo-, thieno- and seleno [3,2-b]pyrroles are related to heteropentalenes, containing two heteroatoms in the entire structure, one each per core. The synthetic approach follows the Hemetsberger–Knittel protocol covering three reaction steps—the nucleophilic substitution of halogen-containing aliphatic carboxylic acid esters, Knoevenagel condensation and, finally, thermolysis promoting the intramolecular cyclocondensation to O,N-heteropentalene. The Hemetsberger–Knittel reaction sequence is also known for the preparation of O,N-heteropentalenes with three heteroatoms (2:1) and their sulphur and selen heteroatoms containing structural analogues and bispyrroles. The synthetic approach towards thiazolo [5,4-d] thiazoles represents a more straightforward route, according to the Ketcham cyclocondensation. Proceeding with the Ketcham process is more challenging since it occurs stepwise and the formation of by-products is obvious. Thiazolo [5,4-d]thiazole is a representative of the aromatic heteropentalene with four heteroatoms in the structure—twinned N and S, two for each of the five-membered rings. The synthetic approaches towards those particular heteropentalnes have been chosen as a consequence of our ongoing research dealing with the design, synthesis and applications of substituted furo [3,2-b]pyrroles and thiazolo [5,4-d]thiazole-based derivatives. While the furopyrroles are known for their pharmacological activity, thiazolothiazoles have become of interest to materials science. We are aware that from a “bank” of existing compounds/procedures not all are presented in this review, and we apologise to respective groups whose research have not been objectively included.
Full article

Figure 1
Open AccessArticle
Enhancing Photon Transfer Efficiency in Photocatalysis Using Suspended LED Lights for Water Treatment
Reactions 2023, 4(2), 246-253; https://doi.org/10.3390/reactions4020014 - 18 Apr 2023
Abstract
Photocatalysis application in water treatment has been the object of many researchers worldwide in recent decades. However, there are limited commercial applications due to low photon transfer efficiency, which create barriers leading to challenges in making the process efficient and economically feasible. Fixed
[...] Read more.
Photocatalysis application in water treatment has been the object of many researchers worldwide in recent decades. However, there are limited commercial applications due to low photon transfer efficiency, which create barriers leading to challenges in making the process efficient and economically feasible. Fixed UV/visible light sources, which are generally located outside the reactor or encapsulated in quartz tube inside the reactor are the source of energy to activate photocatalyst generating powerful oxidants such as electrons and holes. Suspended waterproof LED visible lights were employed to enhance photon transfer efficiency. Consequently, the required energy was lower resulting in negligible temperature increase and eliminated the need for an external cooler, no need for quartz (UV transparent) or treated glass reactors, enhanced mixing due to continuous movement of light bulbs by convective currents, and minimum/no attenuation. Direct Blue 15 (DB15) dye was used as model compound and the photocatalyst was P25 TiO2 (Average particle: 30 nm, Surface area: 50 m2 g−1). The samples taken at different time intervals were analyzed by UV-Vis. spectrophotometer (UV-3600), and TOC-V CPN total organic carbon analyzer (both from Shimadzu). It was found that for the same level of degradation, the degradation rate increased by about 50% compared to conventional fixed light photoreactor. Overall, the cost of the operation can be reduced substantially, paving the road for feasible commercialization of the process.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
►▼
Show Figures

Figure 1
Open AccessArticle
Biocatalytic Profiling of Free and Immobilized Partially Purified Alkaline Protease from an Autochthonous Bacillus aryabhattai Ab15-ES
Reactions 2023, 4(2), 231-245; https://doi.org/10.3390/reactions4020013 - 03 Apr 2023
Abstract
►▼
Show Figures
Partially purified alkaline protease produced by an indigenous bacterial strain, Bacillus aryabhattai Ab15-ES, was insolubilized in alginate beads using an entrapment technique. Maximum entrapped enzyme activities of 68.76% and 71.06% were recorded at optimum conditions of 2% (w/v) sodium
[...] Read more.
Partially purified alkaline protease produced by an indigenous bacterial strain, Bacillus aryabhattai Ab15-ES, was insolubilized in alginate beads using an entrapment technique. Maximum entrapped enzyme activities of 68.76% and 71.06% were recorded at optimum conditions of 2% (w/v) sodium alginate and 0.3 M calcium chloride. Biochemical profiling of free and immobilized proteases was investigated by determining their activity and stability as well as kinetic properties. Both enzyme preparations exhibited maximum activity at the optimum pH and temperature of 8.0 and 50 °C, respectively. However, in comparison to the free enzyme, the immobilized protease showed improved pH stability at 8.0–9.0 and thermal stability at 40–50 °C. In addition, the entrapped protease exhibited a higher Vmax and increased affinity to the substrate (1.65-fold) than the soluble enzyme. The immobilized protease was found to be more stable than the free enzyme, retaining 80.88% and 38.37% of its initial activity when stored at 4 °C and 25 °C, respectively, for 30 d. After repeated use seven times, the protease entrapped in alginate beads maintained 32.93% of its original activity. These findings suggest the efficacy and sustainability of the developed immobilized catalytic system for various biotechnological applications.
Full article

Figure 1
Open AccessReview
Visible Light Induced C-H/N-H and C-X Bonds Reactions
Reactions 2023, 4(1), 189-230; https://doi.org/10.3390/reactions4010012 - 02 Mar 2023
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions.
[...] Read more.
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
►▼
Show Figures

Figure 1
Open AccessArticle
UV/VIS-Spectroscopic Inline Measurement for the Detection of Fouling Processes during the Polymerization of N-Vinylpyrrolidone
Reactions 2023, 4(1), 176-188; https://doi.org/10.3390/reactions4010011 - 01 Mar 2023
Abstract
►▼
Show Figures
With the goal to better process the monitoring of occurring fouling, a backscatter probe was developed to perform in-line measurements in a half-shell reactor during the reaction of N-vinylpyrrolidone (NVP) to polyvinylpyrrolidone (PVP). The measurement technique detects the changes of bands in the
[...] Read more.
With the goal to better process the monitoring of occurring fouling, a backscatter probe was developed to perform in-line measurements in a half-shell reactor during the reaction of N-vinylpyrrolidone (NVP) to polyvinylpyrrolidone (PVP). The measurement technique detects the changes of bands in the UV range, which allows a direct correlation with the concentration. Thus, the measured absorbance signal allows a conclusion on the accumulation of fouling in the reactor and on changes in the conversion at the measurement location.
Full article

Figure 1
Open AccessViewpoint
Initial Steps in the Reaction of H2O2 with Fe2+ and Fe3+ Ions: Inconsistency in the Free Radical Theory
Reactions 2023, 4(1), 171-175; https://doi.org/10.3390/reactions4010010 - 20 Feb 2023
Abstract
Consideration of the changes in free energy shows that the assumed initial steps in reactions of H2O2 with Fe2+ and Fe3+ in the free radical theory are not consistent. The free radical theory is unable to account for
[...] Read more.
Consideration of the changes in free energy shows that the assumed initial steps in reactions of H2O2 with Fe2+ and Fe3+ in the free radical theory are not consistent. The free radical theory is unable to account for the Fe3+-initiated decomposition of H2O2 or for oxidations by it. In reactions with Fe2+ ions at high [H2O2], where O2 evolution reaches a limit, such limit is not foreseen by the free radical model. At lower [H2O2], because of a disallowed substitution in the equation used, the interpretation is not valid. It appears, therefore, that free radicals derived from H2O2 do not provide a suitable basis for constructing models for these reactions. Non-radical models are more successful in interpreting experimental results.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
Open AccessArticle
Behavior of Premixed Sooting Flame in a High-Pressure Burner
by
Reactions 2023, 4(1), 155-170; https://doi.org/10.3390/reactions4010009 - 02 Feb 2023
Abstract
The second-order factor effect of burner optical ports and edge inter-matrices (EIM) and the first-order factor of pressure on the soot formation process and behavior of premixed sooting flames in a high-pressure burner are numerically investigated here. Three-dimensional computational fluid dynamics (CFD) simulations
[...] Read more.
The second-order factor effect of burner optical ports and edge inter-matrices (EIM) and the first-order factor of pressure on the soot formation process and behavior of premixed sooting flames in a high-pressure burner are numerically investigated here. Three-dimensional computational fluid dynamics (CFD) simulations of a premixed flame C2H4/air at p = 1.01 and 10 bar using a one-step chemistry approach are first performed to justify the satisfied predictability of the prospective axisymmetric two-dimensional (2D) and one-dimensional (1D) simulations. The justified 2D simulation approach shows the generation of an axial vorticity around the EIM and axial multi-vorticities due to the high expansion rate of burnt gases at the high pressure of 10 bar. This leads to the development of axial multi-sooting zones, which are manifested experimentally by visible luminous soot streaks, and to the boosting of soot formation conditions of a relatively low-temperature field, <1800 K, and a high mixing rate of gases in combustion around and above the EIM location. Nevertheless, a tolerable effect on the centerline soot volume fraction (fV) profile, fV < 3%, is manifested only at high heights above the burner of the atmospheric sooting flame C2H4/air ϕ = 2.1, and early at the high pressure of 10 bar of this flame, fV < 10%. Enhancing the combustion process reactivity by decreasing the rich equivalence ratio of the fuel/air mixture and/or rising the pressure results in the prior formation of soot precursors, which shifts the sooting zone upstream.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
►▼
Show Figures

Figure 1
Open AccessArticle
A Simple Way to Obtain a Decachloro Derivative of Cobalt Bis(dicarbollide)
Reactions 2023, 4(1), 148-154; https://doi.org/10.3390/reactions4010008 - 01 Feb 2023
Abstract
A simple synthetic way to obtain a decachloro derivative of cobalt bis(dicarbollide) has been found. The reaction of cesium salt of cobalt bis(dicarbollide) anion with aluminum chloride in chloroform under reflux conditions results in Cs[3,3′-Co(4,7,8,9,12-Cl5-1,2-C2B9H6)2] of high purity and good yield.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
►▼
Show Figures

Figure 1
Open AccessReview
A Brief Review: Advancement in the Synthesis of Amine through the Leuckart Reaction
by
and
Reactions 2023, 4(1), 117-147; https://doi.org/10.3390/reactions4010007 - 29 Jan 2023
Cited by 1
Abstract
►▼
Show Figures
This review presents a summary of reactions that take place during the “Leuckart-type reaction”. The significance of, as well as recent advancements in, the synthesis of amines through simple and inexpensive methods using readily available raw materials is discussed. This review includes all
[...] Read more.
This review presents a summary of reactions that take place during the “Leuckart-type reaction”. The significance of, as well as recent advancements in, the synthesis of amines through simple and inexpensive methods using readily available raw materials is discussed. This review includes all catalytic and noncatalytic reactions that involve the Leuckart method. Recent studies have shown that at least a quarter of C–N bond-forming reactions in the pharmaceutical industry are occur with the support of reductive amination. Recently, experimental conditions have achieved excellent yields. The “Leuckart-type reaction” is technically associated with Eschweiler–Clarke methylation. Compounds are grouped in accordance with the precept of action. This includes drugs affecting the central nervous system, cardiovascular system and gastrointestinal tract; anticancer drugs, antibiotics, antiviral and antifungal drugs; drugs affecting anxiety; convulsant, biotic, and HIV drugs; and antidiabetic drugs. Therefore, this review supports the development of the Leuckart-type preparation of nitrogenous compounds, as well as their advancement in other areas of human development.
Full article

Figure 1
Open AccessArticle
Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1)
Reactions 2023, 4(1), 108-116; https://doi.org/10.3390/reactions4010006 - 19 Jan 2023
Abstract
In this paper, we presented the design by computational tools of novel alkyl (2-alcoxy-2-hydroxypropanoyl)-L-tryptophanate derivatives, which can be potential inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The molecular structure optimization of a group of 36 compounds was performed employing DFT-B3LYP calculations
[...] Read more.
In this paper, we presented the design by computational tools of novel alkyl (2-alcoxy-2-hydroxypropanoyl)-L-tryptophanate derivatives, which can be potential inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The molecular structure optimization of a group of 36 compounds was performed employing DFT-B3LYP calculations at the level 6-311G(d,p). Then, molecular docking calculations were performed using Autodock tools software, employing the Lamarckian genetic algorithm (LGA). Four parameters (binding, intermolecular and Van Der Waals hydrogen bonding desolvation energies, and HOMO-LUMO gap) were used to evaluate the potential as 11β-HSD1 inhibitors, which nominate L-tryptophan derivatives as the most promissory molecules. Finally, these molecules were obtained starting from the amino acid and pyruvic acid in a convergent methodology with moderate to low yields.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
►▼
Show Figures

Figure 1
Open AccessEditorial
Acknowledgment to the Reviewers of Reactions in 2022
Reactions 2023, 4(1), 106-107; https://doi.org/10.3390/reactions4010005 - 17 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Open AccessArticle
Determination of Kinetic Parameters of Fischer–Tropsch Synthesis in the Presence of a Granular Cobalt Catalyst
Reactions 2023, 4(1), 92-105; https://doi.org/10.3390/reactions4010004 - 11 Jan 2023
Abstract
Some kinetic parameters of Fischer–Tropsch synthesis (FTS) were determined in the presence of a granular cobalt/zeolite catalyst. Usually, kinetic studies of granular catalysts are considered to be complicated by external and internal diffusion. We managed to obtain a catalyst with a special structure
[...] Read more.
Some kinetic parameters of Fischer–Tropsch synthesis (FTS) were determined in the presence of a granular cobalt/zeolite catalyst. Usually, kinetic studies of granular catalysts are considered to be complicated by external and internal diffusion. We managed to obtain a catalyst with a special structure of the active surface, where sites active in FTS are isolated from each other due to the environment of inactive spinel CoAl2O4 and inter-site transport is provided by an extensive intragranular graphitic network serving simultaneously as a heat-conductive medium. As a result, FTS proceeded in the kinetic region. It was found that the reaction kinetics obey the Arrhenius law; whereas, the activation energy is different in different temperature ranges, i.e., 118.2 kJ/mol in the range of 180–210 °C, and 173.6 kJ/mol in the range of 232–243 °C. This behavior is determined by the presence of zeolite, which becomes active in the secondary transformations of FTS products at temperatures beyond 210 °C.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
►▼
Show Figures

Figure 1
Open AccessReview
A Critical Review of Sustainable Vanillin-modified Vitrimers: Synthesis, Challenge and Prospects
by
, , , and
Reactions 2023, 4(1), 66-91; https://doi.org/10.3390/reactions4010003 - 02 Jan 2023
Cited by 4
Abstract
Nearly 90% of thermosets are produced from petroleum resources, they have remarkable mechanical characteristics, are chemically durable, and dimensionally stable. However, they can contribute to global warming, depletion of petroleum reserves, and environmental contamination during manufacture, use, and disposal. Using renewable resources to
[...] Read more.
Nearly 90% of thermosets are produced from petroleum resources, they have remarkable mechanical characteristics, are chemically durable, and dimensionally stable. However, they can contribute to global warming, depletion of petroleum reserves, and environmental contamination during manufacture, use, and disposal. Using renewable resources to form thermosetting materials is one of the most crucial aspects of addressing the aforementioned issues. Vanillin-based raw materials have been used in the industrial manufacturing of polymer materials because they are simple to modify structurally. Conversely, traditional thermosetting materials as a broad class of high-molecular-weight molecules are challenging to heal, decompose and recover owing to their permanent 3-D crosslinking network. Once the products are damaged, recycling issues could arise, causing resource loss and environmental impact. It could be solved by inserting dynamic covalent adaptable networks (DCANs) into the polymer chains, increasing product longevity, and minimizing waste. It also improves the attractiveness of these products in the prospective field. Moreover, it is essential to underline that increasing product lifespan and reducing waste is equivalent to reducing the expense of consuming resources. The detailed synthesis, reprocessing, thermal, and mechanical characteristics of partly and entirely biomass thermosetting polymers made from vanillin-modified monomers are covered in the current work. Finally, the review highlights the benefits, difficulties, and application of these emerging vanillin-modified vitrimers as a potential replacement for conventional non-recyclable thermosets.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
►▼
Show Figures

Figure 1
Open AccessReview
The Alkyne Zipper Reaction: A Useful Tool in Synthetic Chemistry
Reactions 2023, 4(1), 26-65; https://doi.org/10.3390/reactions4010002 - 30 Dec 2022
Abstract
►▼
Show Figures
The alkyne zipper reaction is an internal-to-terminal alkyne isomerization reaction with many interesting applications in synthetic chemistry, as it constitutes an efficient means of achieving acetylene functionalization. A review of its applications in synthesis processes is presented in this paper, with a brief
[...] Read more.
The alkyne zipper reaction is an internal-to-terminal alkyne isomerization reaction with many interesting applications in synthetic chemistry, as it constitutes an efficient means of achieving acetylene functionalization. A review of its applications in synthesis processes is presented in this paper, with a brief overview of the mechanistic features of the alkyne zipper reaction, as well as a brief overview of its future potential.
Full article

Figure 1
Open AccessReview
Hydrothermal Synthesis of Vanadium Oxide Microstructures with Mixed Oxidation States
by
Reactions 2023, 4(1), 1-25; https://doi.org/10.3390/reactions4010001 - 28 Dec 2022
Abstract
This review is based on hydrothermal synthetic procedures that generate different vanadium oxide microstructures with mixed oxidation states, where different vanadium (V5+) precursors (vanadate, vanadium oxide, vanadium alkoxide, etc.,) are used to obtain various types of morphologies and shapes, such as
[...] Read more.
This review is based on hydrothermal synthetic procedures that generate different vanadium oxide microstructures with mixed oxidation states, where different vanadium (V5+) precursors (vanadate, vanadium oxide, vanadium alkoxide, etc.,) are used to obtain various types of morphologies and shapes, such as sea urchins, cogs, stars, squares, etc., depending on the amphiphilic molecules (usually surfactants) exhibiting a structural director role containing an organic functional group such as primary amines and thiols, respectively. The performance of sol–gel methodology, where intercalation processes sometimes take place, is crucial prior to the hydrothermal treatment stage to control the V4+/V5+. In every synthesis, many physical and chemical parameters, such as temperature, pH, reaction time., etc., are responsible for influencing the reactions in order to obtain different products; the final material usually corresponds to a mixed oxidation state structure with different content rates. This feature has been used in many technological applications, and some researchers have enhanced it by functionalizing the products to enhance their electrochemical and magnetic properties. Although some results have been auspicious, there are a number of projects underway to improve the synthesis in many ways, including yield, secondary products, size distribution, oxidation state ratio, etc., to achieve the best benefits from these microstructures in the large number of technological, catalytic, and magnetic devices, among other applications.
Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
►▼
Show Figures

Figure 1
Open AccessArticle
Study of the Synthetic Approach Influence in Ni/CeO2-Based Catalysts for Methane Dry Reforming
by
, , , , , and
Reactions 2022, 3(4), 634-647; https://doi.org/10.3390/reactions3040043 - 16 Dec 2022
Cited by 1
Abstract
This study focuses on the synthetic approach influence in morphostructural features and catalytic performances for Ni/CeO2 catalysts. Incipient wetness impregnation, coprecipitation and nitrate combustion were studied as catalyst preparation approaches, and the materials were then tested at 700 °C for methane dry
[...] Read more.
This study focuses on the synthetic approach influence in morphostructural features and catalytic performances for Ni/CeO2 catalysts. Incipient wetness impregnation, coprecipitation and nitrate combustion were studied as catalyst preparation approaches, and the materials were then tested at 700 °C for methane dry reforming (MDR). The morphostructural properties of the materials were deeply studied using several techniques, such as temperature programmed reduction (TPR), to investigate reducibility and support-metal interaction, N2 physisorption to evaluate the porosity and the surface area, scanning electron microscopy (SEM) and X-ray diffraction (XRD) to estimate Ni dispersion, and temperature programmed oxidation (TPO) to identify the type and amount of coke formed on catalysts’ surface after reaction. From the data obtained, coprecipitation turned out to be the most suitable technique for this application because this catalyst was able to reach 70% of CO2 conversion and 30% methane conversion, with an H2 yield of 15% and 30% yield of CO at the end of the 30 h test. Moreover, it was also the catalyst with the highest metal dispersion, the strongest interaction with the support, and the lowest coke deposition.
Full article
(This article belongs to the Special Issue Traditional and Innovative Catalysts for Reactions of Industrial Interest)
►▼
Show Figures

Figure 1
Open AccessArticle
Three-Component Condensation of β-Ketonitriles, 4-Fluorobenzaldehyde, and Secondary Cyclic Amines
Reactions 2022, 3(4), 625-633; https://doi.org/10.3390/reactions3040042 - 12 Dec 2022
Abstract
►▼
Show Figures
A new three-component condensation of β-ketonitriles, 4-fluorobenzaldehyde, and secondary cyclic amines was developed. A possible reaction mechanism has been proposed including Knoevenagel condensation followed by aromatic nucleophilic substitution. It was found that in the case of 3-oxopropanenitrile bearing the 6-amino-1,3-dimethyluracil moiety, the reaction
[...] Read more.
A new three-component condensation of β-ketonitriles, 4-fluorobenzaldehyde, and secondary cyclic amines was developed. A possible reaction mechanism has been proposed including Knoevenagel condensation followed by aromatic nucleophilic substitution. It was found that in the case of 3-oxopropanenitrile bearing the 6-amino-1,3-dimethyluracil moiety, the reaction is not accompanied by fluorine substitution in the Knoevenagel adduct, and the Michael addition of a secondary amine occurs followed by oxidation.
Full article

Figure 1
Open AccessArticle
Synthesis and Characterization of Multiple Functionalized Cyclohexanone Using Diels–Alder Reaction of α-Nitrocinnamate
Reactions 2022, 3(4), 615-624; https://doi.org/10.3390/reactions3040041 - 02 Dec 2022
Abstract
A systematic study of the Diels–Alder reaction of α-nitrocinnamate was performed. The reaction of p-substituted α-nitrocinnamate with 2,3-dimethyl-1,3-butadienes smoothly proceeded regardless of the p-substituent, which was either an electron-donating or -withdrawing group. A control reaction revealed that α-nitrocinnamate isomerized during the
[...] Read more.
A systematic study of the Diels–Alder reaction of α-nitrocinnamate was performed. The reaction of p-substituted α-nitrocinnamate with 2,3-dimethyl-1,3-butadienes smoothly proceeded regardless of the p-substituent, which was either an electron-donating or -withdrawing group. A control reaction revealed that α-nitrocinnamate isomerized during the reaction. Danishefsly’s diene (1-methoxy-3-trimethylsiloxy-1,3-butadiene) facilitated cycloaddition under mild conditions to afford a cycloadduct without the alternation of the diastereomeric ratio. Moreover, the desilylation of the cycloadduct furnished multiple functionalized cyclohexanones.
Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Second Millennium)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Selective O-alkylation of Phenol Using Dimethyl Ether
by
, , , , , and
Reactions 2022, 3(4), 602-614; https://doi.org/10.3390/reactions3040040 - 17 Nov 2022
Abstract
►▼
Show Figures
Anisole is a straw-colored aromatic compound mainly used in making solvents, flavoring agents, perfumes, fuel additives, and in the synthesis industries. Anisole, also known as methoxybenzene, is synthesized from sodium phenoxide or phenol using various methylating agents. The use of dimethyl ether (DME)
[...] Read more.
Anisole is a straw-colored aromatic compound mainly used in making solvents, flavoring agents, perfumes, fuel additives, and in the synthesis industries. Anisole, also known as methoxybenzene, is synthesized from sodium phenoxide or phenol using various methylating agents. The use of dimethyl ether (DME) as an alkylating agent is seldom reported in the literature. Herein, we have synthesized anisole through the O-alkylation process of phenol and DME to obtain zero discharge from this process. The thermodynamic equilibrium for the reaction of phenol and DME is simulated by using Aspen HYSYS (Hyprotech and Systems). The O-alkylation of phenol has been investigated using phosphotungstic acid (PTA) over γ-Al2O3 with appropriate acidity. Active metal loadings of various percentages were studied and the conversion was optimized at 46.57% with a selectivity of 88.22% at a temperature of 280 °C. The liquid products from the continuously stirred reactor were analyzed with liquid G.C. and the conversion and selectivity were calculated. A comparison of the O-alkylation and C-alkylation of phenol at different temperatures, reactant ratios, residence times, and recyclability was explored, as well as the impact of these factors on the yield of the desired anisole. The catalyst was characterized by XRD, BET, HR-TEM, FE-SEM, elemental mapping, XPS, and DRIFT studies.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Buildings, Energies, Processes, Sustainability, Thermo, Reactions
Sustainable Thermal Energy Technologies and Processes
Topic Editors: Kian Jon Chua, Xin Cui, Weidong Chen, Yunlin Shao, Yangda WanDeadline: 30 November 2023
Conferences
Special Issues
Special Issue in
Reactions
High Temperature Corrosion
Guest Editor: César Augusto Correia de SequeiraDeadline: 31 May 2023
Special Issue in
Reactions
Traditional and Innovative Catalysts for Reactions of Industrial Interest
Guest Editors: Michela Signoretto, Federica MenegazzoDeadline: 30 June 2023
Special Issue in
Reactions
Hydrogen Production and Storage, 2nd EditionGuest Editors: Valérie Meille, Francesco Frusteri, Sibudjing KawiDeadline: 31 July 2023
Special Issue in
Reactions
Nanoparticles: Synthesis, Properties, and Applications
Guest Editors: Annalisa Volpe, Caterina Gaudiuso, Maria Chiara SportelliDeadline: 31 August 2023


