Evaluating the Efficacy of Thiolating Agents for Biochar Surface Modification
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Instrumentation
2.3. Preparation of Pristine and Thiolated Biochar
2.3.1. Chemical Impregnation with the 3-MPTS Reagent (BX-3M Thiolated Biochar Sample Series)
2.3.2. Ball Milling with the 3-MPTS Reagent (BX-BA Thiolated Biochar Sample Series)
2.3.3. Chemical Impregnation with β-Mercaptoethanol Reagent (BX-BM Thiolated Biochar Sample Series)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Isaac, D.; Labbancz, J.; Knowles, N.R.; Tenic, E.; Horgan, A.; Ghogare, R.; Dhingra, A. Biomass Source of Biochar and Genetic Background of Tomato Influence Plant Growth and Development and Fruit Quality. Horticulturae 2024, 10, 368. [Google Scholar] [CrossRef]
- Khan, S.; Irshad, S.; Mehmood, K.; Hasnain, Z.; Nawaz, M.; Rais, A.; Gul, S.; Wahid, M.A.; Hashem, A.; Abd_Allah, E.F.; et al. Biochar Production and Characteristics, Its Impacts on Soil Health, Crop Production, and Yield Enhancement: A Review. Plants 2024, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.; Saini, I.; Parmar, S.; Pundir, V.; Kumar, V.; Kumar, V.; Naik, B.; Rustagi, S. Biochar Production Methods and Their Transformative Potential for Environmental Remediation. Discov. Appl. Sci. 2024, 6, 408. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, S.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P.; et al. Production and Beneficial Impact of Biochar for Environmental Application: A Comprehensive Review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.-K.; Jung, J.; Hyun, S. Comparison of Biochar Properties from Biomass Residues Produced by Slow Pyrolysis at 500 °C. Bioresour. Technol. 2013, 148, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Kumar, R.; Sahoo, P.K.; Nadda, A.K. Recent Advances in Biochar Amendments for Immobilization of Heavy Metals in an Agricultural Ecosystem: A Systematic Review. Environ. Pollut. 2023, 319, 120937. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Lin, S. Advances in the Study of Heavy Metal Adsorption from Water and Soil by Modified Biochar. Water 2022, 14, 3894. [Google Scholar] [CrossRef]
- Gogoi, L.; Narzari, R.; Chutia, R.S.; Borkotoki, B.; Gogoi, N.; Kataki, R. Chapter Two—Remediation of Heavy Metal Contaminated Soil: Role of Biochar. In Advances in Chemical Pollution, Environmental Management and Protection; Sarmah, A.K., Ed.; Biochar: Fundamentals and Applications in Environmental Science and Remediation Technologies; Elsevier: Amsterdam, The Netherlands, 2021; Volume 7, pp. 39–63. [Google Scholar] [CrossRef]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, T.; Xu, W.; Huang, J.; Jiang, S.; Yan, B. Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review. Molecules 2020, 25, 3167. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, A. Effect of Biochars on Adsorption of Cu(II), Pb(II) and Cd(II) by Three Variable Charge Soils from Southern China. Environ. Sci. Pollut. Res. 2013, 20, 8491–8501. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of Heavy Metal Contaminated Soils by Biochar: Mechanisms, Potential Risks and Applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Nkoh, J.N.; Ajibade, F.O.; Atakpa, E.O.; Baquy, M.A.-A.; Mia, S.; Odii, E.C.; Xu, R. Reduction of Heavy Metal Uptake from Polluted Soils and Associated Health Risks Through Biochar Amendment: A Critical Synthesis. J. Hazard. Mater. Adv. 2022, 6, 100086. [Google Scholar] [CrossRef]
- Liang, J.; Li, X.; Yu, Z.; Zeng, G.; Luo, Y.; Jiang, L.; Yang, Z.; Qian, Y.; Wu, H. Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustain. Chem. Eng. 2017, 5, 5049–5058. [Google Scholar] [CrossRef]
- Chen, M.; Bao, C.; Hu, D.; Jin, X.; Huang, Q. Facile and Low-Cost Fabrication of ZnO/Biochar Nanocomposites from Jute Fibers for Efficient and Stable Photodegradation of Methylene Blue Dye. J. Anal. Appl. Pyrolysis 2019, 139, 319–332. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Meng, Y.; Aihemaiti, A.; Xu, Y.; Xiang, H.; Gao, Y.; Chen, X. Preparation, Environmental Application and Prospect of Biochar-Supported Metal Nanoparticles: A Review. J. Hazard. Mater. 2020, 388, 122026. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, B.; Theng, B.K.G.; Wu, P.; Liu, F.; Wang, S.; Lee, X.; Chen, M.; Li, L.; Zhang, X. Formation and Mechanisms of Nano-Metal Oxide-Biochar Composites for Pollutants Removal: A Review. Sci. Total Environ. 2021, 767, 145305. [Google Scholar] [CrossRef] [PubMed]
- Karpuraranjith, M.; Chen, Y.; Ramadoss, M.; Wang, B.; Yang, H.; Rajaboopathi, S.; Yang, D. Magnetically Recyclable Magnetic Biochar Graphitic Carbon Nitride Nanoarchitectures for Highly Efficient Charge Separation and Stable Photocatalytic Activity Under Visible-Light Irradiation. J. Mol. Liq. 2021, 326, 115315. [Google Scholar] [CrossRef]
- Ahuja, R.; Kalia, A.; Sikka, R.; Chaitra, P. Nano Modifications of Biochar to Enhance Heavy Metal Adsorption from Wastewaters: A Review. ACS Omega 2022, 7, 45825–45836. [Google Scholar] [CrossRef]
- Jin, H.; Capareda, S.; Chang, Z.; Gao, J.; Xu, Y.; Zhang, J. Biochar Pyrolytically Produced from Municipal Solid Wastes for Aqueous As(V) Removal: Adsorption Property and Its Improvement with KOH Activation. Bioresour. Technol. 2014, 169, 622–629. [Google Scholar] [CrossRef]
- Mian, M.M.; Liu, G.; Yousaf, B.; Fu, B.; Ullah, H.; Ali, M.U.; Abbas, Q.; Mujtaba Munir, M.A.; Ruijia, L. Simultaneous Functionalization and Magnetization of Biochar Via NH3 Ambiance Pyrolysis for Efficient Removal of Cr (VI). Chemosphere 2018, 208, 712–721. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen Peroxide Modification Enhances the Ability of Biochar (Hydrochar) Produced from Hydrothermal Carbonization of Peanut Hull to Remove Aqueous Heavy Metals: Batch and Column Tests. Chem. Eng. J. 2012, 200–202, 673–680. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, B.; Zimmerman, A.R.; Fang, J.; Sun, Y.; Cao, X. Sorption of Heavy Metals on Chitosan-Modified Biochars and Its Biological Effects. Chem. Eng. J. 2013, 231, 512–518. [Google Scholar] [CrossRef]
- Fan, J.; Cai, C.; Chi, H.; Reid, B.J.; Coulon, F.; Zhang, Y.; Hou, Y. Remediation of Cadmium and Lead Polluted Soil Using Thiol-Modified Biochar. J. Hazard. Mater. 2020, 388, 122037. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Xu, L.; Buyong, F.; Chay, T.C.; Li, Z.; Cai, Y.; Hu, B.; Zhu, Y.; Wang, X. Modified Biochar: Synthesis and Mechanism for Removal of Environmental Heavy Metals. Carbon Res. 2022, 1, 8. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Fang, L.; Zhao, B.; Zhang, Y.; Zhu, Y.; Wang, Z.; Wang, Q.; Li, F. Interfacial Chemistry of Mercury on Thiol-Modified Biochar and Its Implication for Adsorbent Engineering. Chem. Eng. J. 2023, 454, 140310. [Google Scholar] [CrossRef]
- Ul Hasan, I.M.; Niazi, N.K.; Bibi, I.; Younas, F.; Al-Misned, F.; Shakoor, M.B.; Ali, F.; Ilyas, S.; Hussain, M.M.; Qiao, J.; et al. Enhanced Capacity of Thiol-Functionalized Sugarcane Bagasse and Rice Husk Biochars for Arsenite Sorption in Aqueous Solutions. Environ. Sci. Pollut. Res. 2024, 31, 52293–52305. [Google Scholar] [CrossRef]
- Jiao, Z.-Q.; Ge, S.-J.; Zheng, W.-X.; Liu, J.-H.; Chen, M.; Kong, Y.-K.; Wang, Y.-Y. Stabilization of Cd-contaminated Soil with Thiol-modified Biochar and Response of Soil Microorganisms. Huan Jing Ke Xue 2024, 45, 5570–5577. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, J.; Liu, W.; Huang, S.; Chen, X.; Zhang, N.; Huang, Y. Mercury Speciation Transformation Mediated by Thiolated Biochar in High Salinity Groundwater: Interfacial Processes, Influencing Factors, and Mechanisms. Chem. Eng. J. 2024, 484, 149443. [Google Scholar] [CrossRef]
- Wang, F.; Jin, L.; Guo, C.; Min, L.; Zhang, P.; Sun, H.; Zhu, H.; Zhang, C. Enhanced Heavy Metals Sorption by Modified Biochars Derived from Pig Manure. Sci. Total Environ. 2021, 786, 147595. [Google Scholar] [CrossRef]
- Lyu, H.; Xia, S.; Tang, J.; Zhang, Y.; Gao, B.; Shen, B. Thiol-Modified Biochar Synthesized by a Facile Ball-Milling Method for Enhanced Sorption of Inorganic Hg2+ and Organic CH3Hg+. J. Hazard. Mater. 2020, 384, 121357. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Wang, L.; Lyu, H.; Xia, S.; Tang, J. Effective Removal of Hg(II) and MeHg from Aqueous Environment by Ball Milling Aided Thiol-Modification of Biochars: Effect of Different Pyrolysis Temperatures. Chemosphere 2022, 294, 133820. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Huang, Y.; Tang, J.; Wang, L. Preparation of Various Thiol-Functionalized Carbon-Based Materials for Enhanced Removal of Mercury from Aqueous Solution. Environ. Sci. Pollut. Res. 2019, 26, 8709–8720. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Marroquín, M.C.; Carbonel, D.; Esquivel, S.; Colorado, H. Thiol-Modified Olive-Stone Biochar Preparation for Hg(II) Removal from Aqueous Solutions. J. Environ. Eng. Sci. 2024, 19, 177–188. [Google Scholar] [CrossRef]
- Fairley, N.; Fernandez, V.; Richard-Plouet, M.; Guillot-Deudon, C.; Walton, J.; Smith, E.; Flahaut, D.; Greiner, M.; Biesinger, M.; Tougaard, S.; et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 2021, 5, 100112. [Google Scholar] [CrossRef]
- Huang, Y.; Xia, S.; Lyu, J.; Tang, J. Highly Efficient Removal of Aqueous Hg2+ and CH3Hg+ by Selective Modification of Biochar with 3-Mercaptopropyltrimethoxysilane. Chem. Eng. J. 2019, 360, 1646–1655. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, J.; Gai, L.; Gong, Y.; Guan, H.; He, R.; Lyu, H. Different Approaches for Preparing a Novel Thiol-Functionalized Graphene Oxide/Fe-Mn and Its Application for Aqueous Methylmercury Removal. Chem. Eng. J. 2017, 319, 229–239. [Google Scholar] [CrossRef]
- Krishna Kumar, A.S.; Jiang, S.-J.; Tseng, W.-L. Facile Synthesis and Characterization of Thiol-Functionalized Graphene Oxide as Effective Adsorbent for Hg(II). J. Environ. Chem. Eng. 2016, 4, 2052–2065. [Google Scholar] [CrossRef]
- Kokkinos, E.; Lampou, A.; Kellartzis, I.; Karfaridis, D.; Zouboulis, A. Thiol-Functionalization Carbonaceous Adsorbents for the Removal of Methyl-Mercury from Water in the ppb Levels. Water 2022, 14, 49. [Google Scholar] [CrossRef]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar Surface Functional Groups as Affected by Biomass Feedstock, Biochar Composition and Pyrolysis Temperature. Carbon Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Chai, L.; Li, Q.; Zhu, Y.; Zhang, Z.; Wang, Q.; Wang, Y.; Yang, Z. Synthesis of Thiol-Functionalized Spent Grain as a Novel Adsorbent for Divalent Metal Ions. Bioresour. Technol. 2010, 101, 6269–6272. [Google Scholar] [CrossRef]
- Matuana, L.M.; Balatinecz, J.J.; Sodhi, R.N.S.; Park, C.B. Surface Characterization of Esterified Cellulosic Fibers by XPS and FTIR Spectroscopy. Wood Sci. Technol. 2001, 35, 191–201. [Google Scholar] [CrossRef]
- Özgenç, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. Determination of Chemical Changes in Heat-Treated Wood Using ATR-FTIR and FT Raman Spectrometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 171, 395–400. [Google Scholar] [CrossRef]
- Aldana-Pérez, A.; Lartundo-Rojas, L.; Gómez, R.; Niño-Gómez, M.E. Sulfonic Groups Anchored on Mesoporous Carbon Starbons-300 and Its Use for the Esterification of Oleic Acid. Fuel 2012, 100, 128–138. [Google Scholar] [CrossRef]
- Desroches, M.; Caillol, S.; Auvergne, R.; Boutevin, B.; David, G. Biobased Cross-Linked Polyurethanes Obtained from Ester/Amide Pseudo-Diols of Fatty Acid Derivatives Synthesized by Thiol–Ene Coupling. Polym. Chem. 2012, 3, 450–457. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, Y.; Tang, J.; Xia, S. Effective Removal of Inorganic Mercury and Methylmercury from Aqueous Solution Using Novel Thiol-Functionalized Graphene Oxide/Fe-Mn Composite. J. Hazard. Mater. 2019, 366, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Lei, H.; Wang, L.; Yadavalli, G.; Zhang, X.; Wei, Y.; Liu, Y.; Yan, D.; Chen, S.; Ahring, B. Biochar of Corn Stover: Microwave-Assisted Pyrolysis Condition Induced Changes in Surface Functional Groups and Characteristics. J. Anal. Appl. Pyrolysis 2015, 115, 149–156. [Google Scholar] [CrossRef]
- Song, S.; Zhang, Y. Construction of a 3D Multiple Network Skeleton by the Thiol-Michael Addition Click Reaction to Fabricate Novel Polymer/Graphene Aerogels with Exceptional Thermal Conductivity and Mechanical Properties. J. Mater. Chem. A 2017, 5, 22352–22360. [Google Scholar] [CrossRef]
- Samal, S.; Geckeler, K.E. Unexpected Solute Aggregation in Water on Dilution. Chem. Commun. 2001, 21, 2224–2225. [Google Scholar] [CrossRef]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J. Effects of Ball Milling on the Physicochemical and Sorptive Properties of Biochar: Experimental Observations and Governing Mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef]
- Julien, F.; Baudu, M.; Mazet, M. Relationship Between Chemical and Physical Surface Properties of Activated Carbon. Water Res. 1998, 32, 3414–3424. [Google Scholar] [CrossRef]
- Batista, E.M.C.C.; Shultz, J.; Matos, T.T.S.; Fornari, M.R.; Ferreira, T.M.; Szpoganicz, B.; de Freitas, R.A.; Mangrich, A.S. Effect of Surface and Porosity of Biochar on Water Holding Capacity Aiming Indirectly at Preservation of the Amazon Biome. Sci. Rep. 2018, 8, 10677. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhao, H.; Lyu, H.; Wang, L.; Huang, H.; Nan, Q.; Tang, J. UV Modification of Biochar for Enhanced Hexavalent Chromium Removal from Aqueous Solution. Environ. Sci. Pollut. Res. 2018, 25, 10808–10819. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ling, X.Y.; Guo, B.; Hong, L.; Lee, J.Y. Pt and PtRu Nanoparticles Deposited on Single-Wall Carbon Nanotubes for Methanol Electro-Oxidation. J. Power Sources 2007, 167, 272–280. [Google Scholar] [CrossRef]
- Carriere, B.; Deville, J.P.; Brion, D.; Escard, J. X-Ray Photoelectron Study of Some Silicon-Oxygen Compounds. J. Electron Spectrosc. Relat. Phenom. 1977, 10, 85–91. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, Y.; Gao, B.; Cao, X. N-Doped Biochar Synthesized by a Facile Ball-Milling Method for Enhanced Sorption of CO2 and Reactive Red. Chem. Eng. J. 2019, 368, 564–572. [Google Scholar] [CrossRef]
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | |
---|---|---|---|---|---|---|---|---|---|
Pristine | −26.01 ± 1.19 | −23.37 ± 0.56 | −26.00 ± 4.55 | −48.45 ± 1.92 | −24.48 ± 1.99 | −18.78 ± 1.86 | −31.78 ± 1.59 | −43.03 ± 1.67 | −40.97 ± 1.81 |
BX-3M | −47.7 ± 1.45 | −43.08 ± 2.64 | −33.33 ± 4.06 | −50.45 ± 2.13 | −40.62 ± 2.30 | −51.38 ± 2.80 | −52.37 ± 1.95 | −35.68 ± 2.33 | −49.27 ± 1.67 |
BX-BM | −1.91 ± 1.11 | −4.56 ± 2.25 | −2.21 ± 1.76 | −2.43 ± 2.19 | −3.23 ± 3.24 | −4.78 ± 0.44 | −0.52 ± 1.96 | −0.82 ± 1.17 | 1.72 ± 1.15 |
BX-BA | −43.68 ± 4.59 | −44.78 ± 1.68 | −47.23 ± 2.16 | −45.00 ± 1.61 | −46.13 ± 2.11 | −48.87 ± 1.87 | −38.93 ± 1.18 | −48.55 ± 1.60 | −44.95 ± 2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aduloju, O.; Pandey, A.; Eivazi, F.; Bardhan, S.; Afrasiabi, Z. Evaluating the Efficacy of Thiolating Agents for Biochar Surface Modification. Environments 2025, 12, 84. https://doi.org/10.3390/environments12030084
Aduloju O, Pandey A, Eivazi F, Bardhan S, Afrasiabi Z. Evaluating the Efficacy of Thiolating Agents for Biochar Surface Modification. Environments. 2025; 12(3):84. https://doi.org/10.3390/environments12030084
Chicago/Turabian StyleAduloju, Oluyinka, Arnav Pandey, Frieda Eivazi, Sougata Bardhan, and Zahra Afrasiabi. 2025. "Evaluating the Efficacy of Thiolating Agents for Biochar Surface Modification" Environments 12, no. 3: 84. https://doi.org/10.3390/environments12030084
APA StyleAduloju, O., Pandey, A., Eivazi, F., Bardhan, S., & Afrasiabi, Z. (2025). Evaluating the Efficacy of Thiolating Agents for Biochar Surface Modification. Environments, 12(3), 84. https://doi.org/10.3390/environments12030084