Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,204)

Search Parameters:
Keywords = solid-state formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 21900 KB  
Article
Evolution of the Structural and Phase Composition of Ni–Ti–Cu Alloy Produced via Spark Plasma Sintering After Aging
by Danagul Aubakirova, Elfira Sagymbekova, Yernat Kozhakhmetov, Yerkhat Dauletkhanov, Azamat Urkunbay, Dias Yerbolat, Piotr Kowalewski and Yerkezhan Tabiyeva
Crystals 2025, 15(11), 939; https://doi.org/10.3390/cryst15110939 - 30 Oct 2025
Viewed by 106
Abstract
This study investigates the control of the phase-structural state in Ni–45Ti–xCu (x = 5, 7 at.%) shape memory alloys fabricated via a shortened powder metallurgy route: mechanical activation → spark plasma sintering (SPS) → heat treatment. Compact samples were produced from mechanically alloyed [...] Read more.
This study investigates the control of the phase-structural state in Ni–45Ti–xCu (x = 5, 7 at.%) shape memory alloys fabricated via a shortened powder metallurgy route: mechanical activation → spark plasma sintering (SPS) → heat treatment. Compact samples were produced from mechanically alloyed powders (650–750 rpm, up to 5 h) and sintered at 900 °C. The structure and microstructure were characterized using X-ray diffraction (to identify B2/B19′/Ni4Ti3 phases and assess ordering) and SEM–BSE/EDS (to analyze morphology, porosity, and Ni-rich precipitates). Two post-processing treatments were applied: single-stage annealing (500 °C, 2 h) and a three-stage treatment (900 °C/30 min → water quenching → 300 °C/20 min). Mechanical alloying transformed the initial elemental powder mixture (fcc-Ni, hcp-Ti, fcc-Cu) into a supersaturated fcc-(Ni, Cu, Ti) solid solution with emerging NiTi phases, with a minimum particle size achieved after ~300 min at 750 rpm. SPS compaction yielded a high-density matrix consisting predominantly of the B2 phase. Single-stage annealing preserved B19′ martensite and Ni4Ti3 precipitates, particularly in the 5 at.% Cu alloy. In contrast, the three-stage treatment dissolved the Ni4Ti3 precipitates, suppressed the formation of B19′ and R phases, and stabilized a highly ordered B2 matrix. Increasing the Cu content from 5 to 7 at.% significantly enhanced the B2 phase fraction, reduced secondary nickel-rich phases, and improved structural homogeneity, evidenced by a continuous neck network and closed porosity. The optimized condition—7 at.% Cu combined with the three-stage annealing—produced a microstructure with >95% B2 phase, <1% Ni4Ti3, and ~98% relative density. This forms the prerequisite microstructural state for a narrow transformation hysteresis and high functional cyclic stability. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

21 pages, 1772 KB  
Article
Immobilization and Purification of Heavy-Metal Resistant Lipases of Hypocrea pseudokoningii Produced in Solid-State Fermentation
by Marita Gimenez Pereira, Thiago Machado Pasin and Maria de Lourdes Teixeira Moraes Polizeli
Catalysts 2025, 15(11), 1021; https://doi.org/10.3390/catal15111021 - 30 Oct 2025
Viewed by 194
Abstract
Lipases (EC 3.1.1.3) catalyze the hydrolysis of triacylglycerols into mono- and diacylglycerols and free fatty acids. This study investigated the production of lipase by Hypocrea pseudokoningii under solid-state fermentation (SSF), followed by its immobilization, purification, and biochemical characterization. Maximum activity was achieved using [...] Read more.
Lipases (EC 3.1.1.3) catalyze the hydrolysis of triacylglycerols into mono- and diacylglycerols and free fatty acids. This study investigated the production of lipase by Hypocrea pseudokoningii under solid-state fermentation (SSF), followed by its immobilization, purification, and biochemical characterization. Maximum activity was achieved using wheat fiber after 168 h of cultivation. Supplementation with oils enhanced production, particularly palm oil (315U; 1.58-fold increase) and soybean oil (Glycine max) (298U; 1.49-fold increase). The addition of micronutrients further improved yields, with Khanna (445U) and Vogel (400U) salts promoting more than a two-fold increase in activity. Immobilization on Octyl-Sepharose significantly altered the enzyme’s properties. The free lipase exhibited optimal activity at 45 °C and pH 4.5–5.5, while the immobilized enzyme showed maximum activity at 35–40 °C and pH 5.5. Thermal stability was notable enhanced: the free lipase had a half-life of 10 min at 50 °C, whereas the immobilized enzyme remained stable for 60 min and retained over 30% activity at 70 °C. Both the free and immobilized forms were stable across a broad pH range (4.0–10.0), maintaining more than 70% residual activity. The enzyme was stabilized by Tween 80 but inhibited by SDS. It was activated by Ca2+ and showed resistance to Pb2+, Zn2+, and Cu2+. Hydrolytic assays revealed murumuru (Astrocaryum murumuru), cupuaçu (Theobroma grandiflorum), and soybean oils as preferred substrates. TLC confirmed the formation of mono- and diglycerides, as well as the presence of fatty acids. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

21 pages, 5890 KB  
Article
Quantitative Assessment of Free and Adsorbed Shale Oil in Kerogen Pores Using Molecular Dynamics Simulations and Experiment Characterization
by Yuhao Guo, Liqiang Sima, Liang Wang, Song Tang, Jun Li, Wujun Jin, Bowen Liu and Bojie Li
Energies 2025, 18(21), 5695; https://doi.org/10.3390/en18215695 - 29 Oct 2025
Viewed by 160
Abstract
Understanding the microscopic occurrence states of shale oil—particularly the distribution between adsorbed and free phases—is essential for optimizing the development of unconventional reservoirs. In this study, we propose an integrated methodology that combines experimental techniques with molecular dynamics simulations to investigate shale oil [...] Read more.
Understanding the microscopic occurrence states of shale oil—particularly the distribution between adsorbed and free phases—is essential for optimizing the development of unconventional reservoirs. In this study, we propose an integrated methodology that combines experimental techniques with molecular dynamics simulations to investigate shale oil behavior within kerogen nanopores. Specifically, pyrolysis–gas chromatography–mass spectrometry (PY-GC-MS), solid-state 13C nuclear magnetic resonance (13C NMR), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were performed to construct a representative kerogen molecular model based on shale samples from the Lianggaoshan Formation in the Sichuan Basin. Grand Canonical Monte Carlo (GCMC) simulations and a theoretical occurrence model were applied to quantify the adsorption characteristics of n-dodecane under varying pore sizes, temperatures, and pressure. The results show that temperature exerts a stronger influence than pore diameter on adsorption capacity, with adsorption decreasing by over 50% at higher temperatures, and pressure has a limited effect on the adsorption amount of dodecane molecules. This study offers a robust workflow for evaluating shale oil occurrence states in complex pore systems and provides guidance for thermal stimulation strategies in tight oil reservoirs. Full article
Show Figures

Figure 1

22 pages, 29749 KB  
Article
Phase Formation Study of Solid-State LLZNO and LLZTO via Structural, Thermal, and Morphological Analyses
by Chengjian Li, Frank Kern, Lianmeng Liu, Christopher Parr, Andreas Börger and Chunfeng Liu
Ceramics 2025, 8(4), 132; https://doi.org/10.3390/ceramics8040132 - 28 Oct 2025
Viewed by 213
Abstract
Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte candidate for ASSLBs, owing to its wide electrochemical window and intrinsic safety. Yet phase-pure LLZO remains difficult because secondary phases form, and the transition towards the tetragonal phase, aliovalent [...] Read more.
Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte candidate for ASSLBs, owing to its wide electrochemical window and intrinsic safety. Yet phase-pure LLZO remains difficult because secondary phases form, and the transition towards the tetragonal phase, aliovalent doping, mitigates these issues. Still, the phase formation pathway is not fully understood. Here, we present comparative in situ and ex situ studies of Nb- and Ta-doped LLZO (LLZNO and LLZTO) that were synthesized by a solid-state reaction. In situ/ex situ XRD reveals that the lithium precursor dictates the reaction path: differing decomposition temperatures of the lithium precursor define reaction windows that control cubic-phase purity and particle morphology. In air, limited Li diffusion favors oxycarbonates and pyrochlore, necessitating 950–1050 °C to achieve phase-pure cubic LLZO. Under N2, faster Li availability and diffusion enable uniform nucleation and a route to cubic LLZO without detectable secondary phases. These findings demonstrate the coupled effects of temperature, precursor, dopant, and atmosphere, guiding process optimization and scalable production. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 2925 KB  
Article
Potentiometric Studies of the Complexation Properties of Selected Lanthanide Ions with Schiff Base Ligand
by Julia Barańska, Katarzyna Koroniak-Szejn, Michał Zabiszak, Anita Grześkiewicz, Monika Skrobanska, Martyna Nowak, Renata Jastrzab and Małgorzata T. Kaczmarek
Int. J. Mol. Sci. 2025, 26(21), 10379; https://doi.org/10.3390/ijms262110379 - 25 Oct 2025
Viewed by 439
Abstract
The synthesis, characterization, and equilibrium studies of complexes of selected lanthanide ions Eu(III), Gd(III), and Tb(III) with the ligand 1,3-bis(3-bromo-5-chlorosalicylideneamino)-2-propanol (H3L) are reported. It was found that in the solid state, the complexes with the formulas [Eu(H3L)2(NO [...] Read more.
The synthesis, characterization, and equilibrium studies of complexes of selected lanthanide ions Eu(III), Gd(III), and Tb(III) with the ligand 1,3-bis(3-bromo-5-chlorosalicylideneamino)-2-propanol (H3L) are reported. It was found that in the solid state, the complexes with the formulas [Eu(H3L)2(NO3)3], [Gd(H3L)2(NO3)3], and [Tb(H3L)2(NO3)3] are formed. In solution, complexes with stoichiometries of Ln(III):H3L 1:1 and 1:2 were obtained. The ligand H3L was isolated in crystalline form, and its molecular structure and conformation were determined by single-crystal X-ray diffraction analysis. The compounds were further characterized by elemental analysis, infrared spectroscopy, 1H NMR, 13C NMR techniques, and mass spectrometry (ESI), confirming the formation of the Schiff base group. Stability constants of the complexes in solution were determined using potentiometric titration, providing insights into the metal-ligand binding equilibria. In addition, the spectroscopic properties of the ligand and its lanthanide(III) ion complexes were investigated by UV-Vis spectroscopy, which confirmed ligand-to-metal charge transfer interactions, as well as by luminescence measurements. The luminescence studies revealed inefficient energy transfer in [Eu(H3L)2(NO3)3] complexes, while no transfer was observed in [Tb(H3L)2(NO3)3] systems at any pH value. This behavior is attributed to the large energy gap between the ligand triplet state and the lowest resonant levels of the studied lanthanide ions. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

19 pages, 2547 KB  
Article
Encapsulation of a Highly Acid-Stable Dicyano-Bodipy in Zr-Based Metal–Organic Frameworks with Increased Fluorescence Lifetime and Quantum Yield Within the Solid Solution Concept
by Marcus N. A. Fetzer, Maximilian Vieten, Aysenur Limon and Christoph Janiak
Molecules 2025, 30(21), 4151; https://doi.org/10.3390/molecules30214151 - 22 Oct 2025
Viewed by 325
Abstract
In this work, we have synthesized a more acid-stable variant of the classic chromophore difluoro-Bodipy by substituting the difluoro ligands at boron with cyano groups. This dicyano-Bodipy variant allowed the in situ incorporation during the MOF formation under acidic conditions and was investigated [...] Read more.
In this work, we have synthesized a more acid-stable variant of the classic chromophore difluoro-Bodipy by substituting the difluoro ligands at boron with cyano groups. This dicyano-Bodipy variant allowed the in situ incorporation during the MOF formation under acidic conditions and was investigated for the first time as dye@MOF composites using both post-synthetic and in situ incorporation into the zirconium-based metal–organic frameworks (MOFs) UiO-66, MOF-808, DUT-67, and MIP-206. The successful incorporation of dicyano-Bodipy was confirmed by PXRD, N2 sorption, digestion UV–Vis, and fluorescence spectroscopy. Depending on the incorporation method used, significant lower BET surface areas could be determined. The luminescence properties of the resulting dicyano-Bodipy@MOF composites from the in situ incorporation had up to almost eight-fold extended photoluminescent lifetimes of 9.0 ns, compared to the neat dye in its solid state with 1.2 ns, which suggests the formation of a solid solution in which the incorporated Bodipy is protected from external influences within a well-defined MOF pore. The quantum yield could be enhanced to as high as 77% through post-synthetic incorporation into the MOF DUT-67, compared to the neat dye in its solid state, with 9%. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

25 pages, 8016 KB  
Article
Sustainable Synthesis of Hydro Magnesite Fire Retardants Using Seawater: Characterization, Yield Modeling and Process Optimization
by Mohammad Ghaddaffi Mohd Noh, Nor Yuliana Yuhana and Mohammad Hafizuddin bin Hj Jumali
Fire 2025, 8(10), 409; https://doi.org/10.3390/fire8100409 - 21 Oct 2025
Viewed by 582
Abstract
The Global Cement and Concrete Association (GCCA) estimated that by 2050, 36% industry-wide sustainable value will be created, which includes sequestering CO2 into the cement and concrete industry to produce commercially feasible high-value products. Direct utilization of CO2 in the cement [...] Read more.
The Global Cement and Concrete Association (GCCA) estimated that by 2050, 36% industry-wide sustainable value will be created, which includes sequestering CO2 into the cement and concrete industry to produce commercially feasible high-value products. Direct utilization of CO2 in the cement and concrete industry, which utilizes natural and sustainable materials, is gaining momentum. Naturally occurring mixtures of hydro magnesite and huntite are important industrial minerals which, upon endothermic decomposition over a specific temperature range, will release water and CO2. This unique chemistry has led to such mixtures being successfully utilized as fire retardants, replacing aluminum hydroxide or Alumina Tri-Hydrate (ATH). Despite the developed marketplace for magnesium-based fire-retardant products, there is little mention of CO2 mineral carbonation methods, which attempt to recover and convert magnesium from natural seawater or industrial waste into oxides or carbonates as part of the carbon sequestration initiative. The hypothesis to be proven in this work states that if the process of seawater mineral carbonation is prematurely quenched, Mg2+ ionic species in seawater adsorbed on the calcite lattice formation will be trapped and therefore recovered in various oxidized forms, such as magnesium oxides, magnesium hydro magnesite, and magnesium carbonate precipitates. A novel method to recover magnesium Mg2+ ions from seawater was successfully explored and documented; as such, from an initial concentration of 1250 ppm Mg2+ in raw seawater, the average concentration of spent Mg2+ ions after the reaction was as low as 20 ppm. A very efficient near-total recovery of Mg2+ from the seawater into the solid precipitates was recorded. Subsequently, the process for continuous seawater mineral carbonation for the production of magnesium/brucite/huntite products was successfully proven and optimized to operate with a 30 s reaction time, a dynamic feedstock concentration, [CaO] at 1 gpl in seawater and a room temperature reaction temperature (30 °C), where the average yield of the fire-retardant magnesium-based compounds was 26% of the synthesized precipitates. Approximately 5000 g of the hydro magnesite materials was molded into a fire-retardant brick or concrete wall, which was subjected to an accredited fire performance and durability testing procedure BS476-22:1987. There were encouraging results from the fire resistance testing, where the fire-retardant material passed BS476-22:1987, with performance criteria such as physical integrity failure, the maximum allowable face temperature, and a minimum duration before failure, which was up to 104 min, evaluated. Full article
Show Figures

Figure 1

23 pages, 27389 KB  
Review
Determinants of Chain Selection and Staggering in Heterotrimeric Collagens: A Comprehensive Review of the Structural Data
by Luigi Vitagliano, Nunzianna Doti and Nicole Balasco
Int. J. Mol. Sci. 2025, 26(20), 10134; https://doi.org/10.3390/ijms262010134 - 18 Oct 2025
Viewed by 216
Abstract
Collagen is a family of large, fibrous biomacromolecules common in animals, distinguished by unique molecular, structural, and functional properties. Despite the relatively low complexity of their sequences and the repetitive conformation of the triple helix, which is the defining feature of this family, [...] Read more.
Collagen is a family of large, fibrous biomacromolecules common in animals, distinguished by unique molecular, structural, and functional properties. Despite the relatively low complexity of their sequences and the repetitive conformation of the triple helix, which is the defining feature of this family, unraveling sequence–stability and structure–function relationships in this group of proteins remains a challenging task. Considering the importance of the structural aspects in collagen chain recognition and selection, we reviewed our current knowledge of the heterotrimeric structures of non-collagenous (NC) regions that lack the triple helix sequence motif, Gly-X-Y, and are crucial for the correct folding of the functional states of these proteins. This study was conducted by simultaneously surveying the current literature, mining the structural database, and making predictions of the three-dimensional structure of these domains using highly reliable approaches based on machine learning techniques, such as AlphaFold. The combination of experimental structural data and predictive analyses offers some interesting clues about the structural features of heterotrimers formed by collagen NC regions. Structural studies carried out in the last decade show that for fibrillar collagens (types I, V, XI, and mixed V/XI), key factors include the formation of specific disulfide bridges and electrostatic interaction patterns. In the subgroup of collagens whose heterotrimers create supramolecular networks (types IV and VIII), available structural information provides a solid ground for the definition of the basis of the molecular and supramolecular organization. Very recent AlphaFold predictions and structural analyses of type VI collagen offer strong evidence of the specific domains in the NC region of the protein that are involved in chain selection and their staggering. Insightful crystallographic studies have also revealed some fundamental elements of the chain selection process in type IX collagen. Collectively, the data reported here indicate that, although some aspects (particularly the quantification of the relative contribution of the NC and triple helix regions to correct collagen folding) are yet to be fully understood, the available structural information provides a solid foundation for future studies aimed at precisely defining sequence–structure–function relationships in collagens. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

17 pages, 590 KB  
Review
Recent Advances in Biosurfactant Production in Solid-State Fermentation
by Ma. Guadalupe Bustos-Vázquez, Luis V. Rodríguez-Durán, María Alejandra Pichardo-Sánchez, Nubia R. Rodríguez-Durán, Nadia A. Rodríguez-Durán, Daniel Trujillo-Ramírez and Rodolfo Torres-de los Santos
Fermentation 2025, 11(10), 592; https://doi.org/10.3390/fermentation11100592 - 16 Oct 2025
Viewed by 881
Abstract
Biosurfactants are amphiphilic molecules synthesized by some microorganisms. Biosurfactants have a wide range of applications in fields such as the bioremediation, petroleum, and pharmaceutical industries. Currently, biosurfactant production is carried out mainly by submerged fermentation (SmF). Biosurfactant production by SmF requires the use [...] Read more.
Biosurfactants are amphiphilic molecules synthesized by some microorganisms. Biosurfactants have a wide range of applications in fields such as the bioremediation, petroleum, and pharmaceutical industries. Currently, biosurfactant production is carried out mainly by submerged fermentation (SmF). Biosurfactant production by SmF requires the use of antifoams, which hinder biosurfactant recovery and have a high energy requirement. Biosurfactant production by solid-state fermentation (SSF) has been little explored, but it has some advantages over SmF: it allows the utilization of cheap agro-industrial by-products that function as a support-substrate, does not present foam formation, and allows for improved oxygen and mass exchange. Several research groups have explored different strategies to improve the yields in biosurfactant production by SSF and have demonstrated that it is a viable technology for obtaining these products. Some of the parameters studied are temperature, moisture, substrates, supports, aeration, and, in some cases, agitation. These studies have shown advantages of SSF over SmF for biosurfactant production, such as higher product-substrate yields and higher product concentrations. However, further study of the causes of these results is necessary to implement SSF technology for commercial biosurfactant production. Full article
(This article belongs to the Special Issue Application and Research of Solid State Fermentation, 2nd Edition)
Show Figures

Figure 1

16 pages, 3439 KB  
Article
Study of the Electrochemical Oxidation Process of Vanadium
by Saltanat Jumankulova, Zhaksylyk Alybayev and Gulnara Moldabayeva
Appl. Sci. 2025, 15(20), 10976; https://doi.org/10.3390/app152010976 - 13 Oct 2025
Viewed by 299
Abstract
The article presents experimental data on the electrochemical oxidation of vanadium-bearing ore with the aim of increasing the efficiency of vanadium extraction during subsequent hydrometallurgical processing. Three different charge compositions were studied during the preliminary oxidative roasting stage, differing in the type of [...] Read more.
The article presents experimental data on the electrochemical oxidation of vanadium-bearing ore with the aim of increasing the efficiency of vanadium extraction during subsequent hydrometallurgical processing. Three different charge compositions were studied during the preliminary oxidative roasting stage, differing in the type of oxidizers used: calcined soda, sodium chloride, and their mixture in a mass ratio of 9:1. Electrochemical oxidation was carried out in a sulfuric acid medium using a membrane electrolysis cell equipped with an MK-40 type diaphragm. Experimental studies were conducted by varying key technological parameters: H2SO4 concentration (5–15%), solid-to-liquid phase ratio (1:2–1:5), temperature (25–85 °C), process duration (0.5–3 h), and current density (100–1000 A/m2). It was found that preliminary roasting promotes the conversion of vanadium into higher oxidation states, predominantly V5+, which significantly increases its solubility during subsequent electrochemical treatment. For the first time, the kinetic patterns of electrochemical vanadium leaching were identified, as well as the limiting mechanism of the process, associated with the formation of poorly soluble oxide films on the ore surface. Optimization of the electrochemical oxidation parameters allowed us to achieve vanadium extraction into solution up to 92%. Full article
Show Figures

Figure 1

32 pages, 3615 KB  
Article
Development of a Hybrid Expert Diagnostic System for Power Transformers Based on the Integration of Computational and Measurement Complexes
by Ivan Beloev, Mikhail Evgenievich Alpatov, Marsel Sharifyanovich Garifullin, Ilgiz Fanzilevich Galiev, Shamil Faridovich Rakhmankulov, Iliya Iliev and Ylia Sergeevna Valeeva
Energies 2025, 18(20), 5360; https://doi.org/10.3390/en18205360 - 11 Oct 2025
Viewed by 507
Abstract
The paper presents a hybrid intelligent expert diagnostic system (HIESD) of power transformer (PT) subsystems realized on the basis of integration of measuring and computing hardware and software complexes into a single functional architecture. HIESD performs online diagnostics of four main subsystems of [...] Read more.
The paper presents a hybrid intelligent expert diagnostic system (HIESD) of power transformer (PT) subsystems realized on the basis of integration of measuring and computing hardware and software complexes into a single functional architecture. HIESD performs online diagnostics of four main subsystems of PT: 1—insulating (liquid and solid insulation); 2—electromagnetic (windings, magnetic conductor); 3—voltage regulation; and 4—high-voltage inputs. Computational complexes and modules of the system are connected with the real object of power grids, 110/10 kV substation, which interact with each other and contain a relational database of retrospective offline data of the PT “life cycle” (including test and measurement results), supplemented by online monitoring data of the main subsystems, corrected by high-precision test measurements; analytical complex, in which the work of calculation modules of the operational state of PT subsystems is supplemented by predictive analytics and machine learning modules; and a knowledge base, sections of which are regularly updated and supplemented. The system architecture is tested at industrial facilities in terms of online transformer diagnostics based on dissolved gas analysis (DGA) data. Additionally, a theoretical model of diagnostics based on the electromagnetic characteristics of the transformer, which takes into account distorted and nonlinear modes of its operation, is presented. The scientific significance of the work consists of the presentation of the following new provisions: Methodology and algorithm for diagnostics of electromagnetic parameters of ST, taking into account nonlinearity and non-sinusoidality of winding currents and voltages; formation of optimal client–service architecture of training models of hybrid system based on the processes of data storage and management; and modification of the moth–flame algorithm to optimize the smoothing coefficient in the process of training a probabilistic neural network Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

50 pages, 2762 KB  
Review
Inkjet Printing for Batteries and Supercapacitors: State-of-the-Art Developments and Outlook
by Juan C. Rubio and Martin Bolduc
Energies 2025, 18(20), 5348; https://doi.org/10.3390/en18205348 - 11 Oct 2025
Viewed by 600
Abstract
Inkjet printing enables contactless deposition onto fragile substrates for printed energy-storage devices and supports flexible batteries and supercapacitors with reduced material use. This review examines multilayer and interdigital architectures and analyzes how ink rheology, droplet formation, colloidal interactions, and the printability window govern [...] Read more.
Inkjet printing enables contactless deposition onto fragile substrates for printed energy-storage devices and supports flexible batteries and supercapacitors with reduced material use. This review examines multilayer and interdigital architectures and analyzes how ink rheology, droplet formation, colloidal interactions, and the printability window govern performance. For batteries, reported inkjet-printed electrodes commonly deliver capacities of ~110–150 mAh g−1 for oxide cathodes at C/2–1 C, with coulombic efficiency ≥98% and stability over 102–103 cycles; silicon anodes reach ~1.0–2.0 Ah g−1 with efficiency approaching 99% under stepwise formation. Typical current densities are ~0.5–5 mA cm−2 depending on areal loading, and multilayer designs with optimized drying and parameter tuning can yield rate and discharge behavior comparable to cast films. For supercapacitors, inkjet-printed microdevices report volumetric capacitances in the mid-hundreds of F cm−3, translating to ~9–34 mWh cm−3 and ~0.25–0.41 W cm−3, with 80–95% retention after 10,000 cycles and coulombic efficiency near 99%. In solid-state configurations, stability is enhanced, although often accompanied by reduced areal capacitance. Although solids loading is lower than in screen printing, precise material placement together with thermal or photonic sintering enables competitive capacity, rate capability, and cycle life while minimizing waste. The review consolidates practical guidance on ink formulation, printability, and defect control and outlines opportunities in greener chemistries, oxidation-resistant metallic systems, and scalable high-throughput printing. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

67 pages, 11384 KB  
Review
Powertrain in Battery Electric Vehicles (BEVs): Comprehensive Review of Current Technologies and Future Trends Among Automakers
by Ernest Ozoemela Ezugwu, Indranil Bhattacharya, Adeloye Ifeoluwa Ayomide, Mary Vinolisha Antony Dhason, Babatunde Damilare Soyoye and Trapa Banik
World Electr. Veh. J. 2025, 16(10), 573; https://doi.org/10.3390/wevj16100573 - 10 Oct 2025
Viewed by 1365
Abstract
Battery Electric Vehicles (BEVs) technology is rapidly emerging as the cornerstone of sustainable transportation, driven by advancements in battery technology, power electronics, and modern drivetrains. This paper presents a comprehensive review of current and next-generation BEV powertrain architectures, focusing on five key subsystems: [...] Read more.
Battery Electric Vehicles (BEVs) technology is rapidly emerging as the cornerstone of sustainable transportation, driven by advancements in battery technology, power electronics, and modern drivetrains. This paper presents a comprehensive review of current and next-generation BEV powertrain architectures, focusing on five key subsystems: battery energy storage system, electric propulsion motors, energy management systems, power electronic converters, and charging infrastructure. The review traces the evolution of battery technology from conventional lithium-ion to solid-state chemistries and highlights the critical role of battery management systems in ensuring optimal state of charge, health, and safety. Recent innovations by leading automakers are examined, showcasing advancements in cell formats, motor designs, and thermal management for enhanced range and performance. The role of power electronics and the integration of AI-driven strategies for vehicle control and vehicle-to-grid (V2G) are analyzed. Finally, the paper identifies ongoing research gaps in system integration, standardization, and advanced BMS solutions. This review provides a comprehensive roadmap for innovation, aiming to guide researchers and industry stakeholders in accelerating the adoption and sustainable advancement of BEV technologies. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

13 pages, 1811 KB  
Article
Ochronotic Deposition in Alkaptonuria: Semiquinone-Mediated Oxidative Coupling and Metabolic Drivers of Homogentisic Acid Accumulation
by Daniela Grasso, Valentina Balloni, Maria Camilla Baratto, Adele Mucci, Annalisa Santucci and Andrea Bernini
Int. J. Mol. Sci. 2025, 26(19), 9674; https://doi.org/10.3390/ijms26199674 - 3 Oct 2025
Viewed by 410
Abstract
Alkaptonuria (AKU) is a rare metabolic disorder caused by homogentisate 1,2-dioxygenase (HGD) deficiency, leading to homogentisic acid (HGA) accumulation and ochronotic pigment deposition, which drug therapy cannot reverse. The process of pigment formation and deposition is still unclear. This study offers molecular insights [...] Read more.
Alkaptonuria (AKU) is a rare metabolic disorder caused by homogentisate 1,2-dioxygenase (HGD) deficiency, leading to homogentisic acid (HGA) accumulation and ochronotic pigment deposition, which drug therapy cannot reverse. The process of pigment formation and deposition is still unclear. This study offers molecular insights into the polymeric structure, with the goal of developing future adjuvant strategies that can inhibit or reverse pigment formation, thereby complementing drug therapy in AKU. HGA polymerisation was examined under physiological, acidic, and alkaline conditions using liquid and solid phase nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and polyacrylamide gel electrophoresis. At physiological pH, HGA polymerised slowly, while alkaline catalysis accelerated pigment formation while retaining the HGA aromatic scaffold. During the process, EPR detected a semiquinone radical intermediate, consistent with an oxidative coupling mechanism. Reactivity profiling showed the diphenol ring was essential for polymerisation, while –CH2COOH modifications did not impair reactivity. Pigments displayed a polydisperse molecular weight range (11–50 kDa) and a strong negative charge. Solid-state NMR has revealed the presence of phenolic ether and biphenyl linkages. Collectively, these identified structural motifs can serve as a foundation for future molecular targeting related to pigment formation. Full article
(This article belongs to the Special Issue Advances in Rare Diseases Biomarkers: 2nd Edition)
Show Figures

Figure 1

45 pages, 2145 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Viewed by 762
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

Back to TopTop