Green Emissive Copper(I) Coordination Polymer Supported by the Diethylpyridylphosphine Ligand as a Luminescent Sensor for Overheating Processes
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troyano, J.; Zamora, F.; Delgado, S. Copper(I)–Iodide Cluster Structures as Functional and Processable Platform Materials. Chem. Soc. Rev. 2021, 50, 4606–4628. [Google Scholar] [CrossRef]
- Wenger, O.S. Vapochromism in Organometallic and Coordination Complexes: Chemical Sensors for Volatile Organic Compounds. Chem. Rev. 2013, 113, 3686–3733. [Google Scholar] [CrossRef] [PubMed]
- Czerwieniec, R.; Leitl, M.J.; Homeier, H.H.H.; Yersin, H. Cu(I) Complexes–Thermally Activated Delayed Fluorescence. Photophysical Approach and Material Design. Coord. Chem. Rev. 2016, 325, 2–28. [Google Scholar] [CrossRef]
- Cariati, E.; Lucenti, E.; Botta, C.; Giovanella, U.; Marinotto, D.; Righetto, S. Cu(I) Hybrid Inorganic–Organic Materials with Intriguing Stimuli Responsive and Optoelectronic Properties. Coord. Chem. Rev. 2016, 306, 566–614. [Google Scholar] [CrossRef]
- Hei, X.; Liu, W.; Zhu, K.; Teat, S.J.; Jensen, S.; Li, M.; O’Carroll, D.M.; Wei, K.; Tan, K.; Cotlet, M.; et al. Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures. J. Am. Chem. Soc. 2020, 142, 4242–4253. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Fang, Y.; Li, J. Copper Iodide Based Hybrid Phosphors for Energy-Efficient General Lighting Technologies. Adv. Funct. Mater. 2018, 28, 1705593. [Google Scholar] [CrossRef]
- Tsuge, K.; Chishina, Y.; Hashiguchi, H.; Sasaki, Y.; Kato, M.; Ishizaka, S.; Kitamura, N. Luminescent Copper(I) Complexes with Halogenido-Bridged Dimeric Core. Coord. Chem. Rev. 2016, 306, 636–651. [Google Scholar] [CrossRef]
- Vitale, M.; Ford, P.C. Luminescent Mixed Ligand Copper(I) Clusters (CuI)n(L)m (L=pyridine, Piperidine): Thermodynamic Control of Molecular and Supramolecular Species. Coord. Chem. Rev. 2001, 219–221, 3–16. [Google Scholar] [CrossRef]
- Peng, R.; Li, M.; Li, D. Copper(I) Halides: A Versatile Family in Coordination Chemistry and Crystal Engineering. Coord. Chem. Rev. 2010, 254, 1–18. [Google Scholar] [CrossRef]
- Rong, M.K.; Holtrop, F.; Slootweg, J.C.; Lammertsma, K. Enlightening Developments in 1,3-P,N-Ligand-Stabilized Multinuclear Complexes: A Shift from Catalysis to Photoluminescence. Coord. Chem. Rev. 2019, 382, 57–68. [Google Scholar] [CrossRef]
- Strelnik, I.D.; Dayanova, I.R.; Kolesnikov, I.E.; Fayzullin, R.R.; Litvinov, I.A.; Samigullina, A.I.; Gerasimova, T.P.; Katsyuba, S.A.; Musina, E.I.; Karasik, A.A. The Assembly of Unique Hexanuclear Copper(I) Complexes with Effective White Luminescence. Inorg. Chem. 2019, 58, 1048–1057. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Doronina, E.P.; Rakhmanova, M.I.; Tarasova, O.A.; Bagryanskaya, I.Y.; Nedolya, N.A. Chemoselective Mechanochemical Route toward a Bright TADF-Emitting CuI-Based Coordination Polymer. Inorg. Chem. Front. 2019, 6, 671–679. [Google Scholar] [CrossRef]
- Vinogradova, K.A.; Plyusnin, V.F.; Kupryakov, A.S.; Rakhmanova, M.I.; Pervukhina, N.V.; Naumov, D.Y.; Sheludyakova, L.A.; Nikolaenkova, E.B.; Krivopalov, V.P.; Bushuev, M.B. Halide Impact on Emission of Mononuclear Copper(I) Complexes with Pyrazolylpyrimidine and Triphenylphosphine. Dalton. Trans. 2014, 43, 2953–2960. [Google Scholar] [CrossRef] [PubMed]
- Baranov, A.Y.; Pritchina, E.A.; Berezin, A.S.; Samsonenko, D.G.; Fedin, V.P.; Belogorlova, N.A.; Gritsan, N.P.; Artem’ev, A.V. Beyond Classical Coordination Chemistry: The First Case of a Triply Bridging Phosphine Ligand. Angew. Chem. Int. Ed. 2021, 60, 12577–12584. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-C.; Wang, J.; Guo, J.; Yan, M.-H.; Wang, J.; Srivastava, D.; Kumar, A.; Sakiyama, H.; Muddassir, M.; Pan, Y. A 3D Rare Cubane-like Tetramer Cu(II)-Based MOF with 4-Fold Dia Topology as an Efficient Photocatalyst for Dye Degradation. Colloids Surf. A 2023, 656, 130475. [Google Scholar] [CrossRef]
- Nagaoka, S.; Ozawa, Y.; Toriumi, K.; Abe, M. A Dual-Emission Strategy for a Wide-Range Phosphorescent Color-Tuning of a Crystalline-State Molecular Cluster [Cu4I4(2-Bzpy)4] (2-Bzpy = 2-Benzylpyridine). Chem. Lett. 2018, 47, 1101–1104. [Google Scholar] [CrossRef]
- Neshat, A.; Aghakhanpour, R.B.; Mastrorilli, P.; Todisco, S.; Molani, F.; Wojtczak, A. Dinuclear and Tetranuclear Copper(I) Iodide Complexes with P and P^N Donor Ligands: Structural and Photoluminescence Studies. Polyhedron 2018, 154, 217–228. [Google Scholar] [CrossRef]
- Trivedi, M.; Singh, G.; Kumar, A.; Rath, N.P. Syntheses, Characterization, and Structural Studies of Copper(I) Complexes Containing 1,1′-Bis(Di-Tert-Butylphosphino)Ferrocene (Dtbpf) and Their Application in Palladium-Catalyzed Sonogashira Coupling of Aryl Halides. Dalton Trans. 2014, 43, 13620–13629. [Google Scholar] [CrossRef]
- Perruchas, S. Molecular Copper Iodide Clusters: A Distinguishing Family of Mechanochromic Luminescent Compounds. Dalton Trans. 2021, 50, 12031–12044. [Google Scholar] [CrossRef]
- Kirakci, K.; Fejfarová, K.; Martinčík, J.; Nikl, M.; Lang, K. Tetranuclear Copper(I) Iodide Complexes: A New Class of X-ray Phosphors. Inorg. Chem. 2017, 56, 4609–4614. [Google Scholar] [CrossRef]
- De Angelis, F.; Fantacci, S.; Sgamellotti, A.; Cariati, E.; Ugo, R.; Ford, P.C. Electronic Transitions Involved in the Absorption Spectrum and Dual Luminescence of Tetranuclear Cubane [Cu4I4(Pyridine)4] Cluster: A Density Functional Theory/Time-Dependent Density Functional Theory Investigation. Inorg. Chem. 2006, 45, 10576–10584. [Google Scholar] [CrossRef] [PubMed]
- Galimova, M.F.; Zueva, E.M.; Dobrynin, A.B.; Samigullina, A.I.; Musin, R.R.; Musina, E.I.; Karasik, A.A. Cu4I4-Cubane Clusters Based on 10-(Aryl)Phenoxarsines and Their Luminescence. Dalton Trans. 2020, 49, 482–491. [Google Scholar] [CrossRef]
- Galimova, M.F.; Zueva, E.M.; Dobrynin, A.B.; Kolesnikov, I.E.; Musin, R.R.; Musina, E.I.; Karasik, A.A. Luminescent Cu4I4-Cubane Clusters Based on N-Methyl-5,10-Dihydrophenarsazines. Dalton Trans. 2021, 50, 13421–13429. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Mague, J.T.; Balakrishna, M.S. Short-Bite PNP Ligand-Supported Rare Tetranuclear [Cu4I4] Clusters: Structural and Photoluminescence Studies. Inorg. Chem. 2014, 53, 3864–3873. [Google Scholar] [CrossRef]
- Liu, Z.; Djurovich, P.I.; Whited, M.T.; Thompson, M.E. Cu4I4 Clusters Supported by P^N-Type Ligands: New Structures with Tunable Emission Colors. Inorg. Chem. 2012, 51, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Morgan, E.E.; Panuganti, S.; Mao, L.; Vishnoi, P.; Wu, G.; Liu, Q.; Kanatzidis, M.G.; Schaller, R.D.; Seshadri, R. Ligand Control of Structural Diversity in Luminescent Hybrid Copper(I) Iodides. Chem. Mater. 2022, 34, 3206–3216. [Google Scholar] [CrossRef]
- Yadav, D.; Kumar Siwatch, R.; Sinhababu, S.; Karwasara, S.; Singh, D.; Rajaraman, G.; Nagendran, S.; Siwatch, R.K.; Sinhababu, S.; Karwasara, S.; et al. Digermylene Oxide Stabilized Group 11 Metal Iodide Complexes. Inorg. Chem. 2015, 54, 11067–11076. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Shearer, J.; Catalano, V.J. Subtle Modulation of Cu4X4L2 Phosphine Cluster Cores Leads to Changes in Luminescence. Inorg. Chem. 2015, 54, 6245–6256. [Google Scholar] [CrossRef] [PubMed]
- Shamsieva, A.V.; Kolesnikov, I.E.; Strelnik, I.D.; Gerasimova, T.P.; Kalinichev, A.A.; Katsyuba, S.A.; Musina, E.I.; Lähderanta, E.; Karasik, A.; Sinyashin, O.G. Fresh Look on the Nature of Dual-Band Emission of Octahedral Copper-Iodide Clusters-Promising Ratiometric Luminescent Thermometers. J. Phys. Chem. C 2019, 123, 25863–25870. [Google Scholar] [CrossRef]
- Emerson, E.W.; Cain, M.F.; Sanderson, M.D.; Knarr, C.B.; Glueck, D.S.; Ahern, J.C.; Patterson, H.E.; Rheingold, A.L. Synthesis, Structure, and Luminescence of the “Octahedral” Cluster Cu4I4(Rac-IsMePCH2PMeIs)2 (Is = 2,4,6-(i-Pr)3C6H2). Inorg. Chim. Acta. 2015, 427, 168–172. [Google Scholar] [CrossRef]
- Boden, P.; Di Martino-Fumo, P.; Busch, J.M.; Rehak, F.R.; Steiger, S.; Fuhr, O.; Nieger, M.; Volz, D.; Klopper, W.; Bräse, S.; et al. Investigation of Luminescent Triplet States in Tetranuclear CuI Complexes: Thermochromism and Structural Characterization. Chem.-A Eur. J. 2021, 27, 5439–5452. [Google Scholar] [CrossRef] [PubMed]
- Artem’ev, A.V.; Baranov, A.Y.; Rakhmanova, M.I.; Malysheva, S.F.; Samsonenko, D.G. Copper(I) Halide Polymers Derived from Tris[2-(Pyridin-2-Yl)Ethyl]Phosphine: Halogen-Tunable Colorful Luminescence Spanning from Deep Blue to Green. New J. Chem. 2020, 44, 6916–6922. [Google Scholar] [CrossRef]
- Song, R.F.; Xie, Y.B.; Li, J.R.; Bu, X.H. Syntheses and Crystal Structures of the Copper(I) Complexes with Quinoline-Based Monothioether Ligands. CrystEngComm 2005, 7, 249–254. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, S.S.; Sun, D. Two Isomeric [Cu4I4] Luminophores: Solvothermal/Mechanochemical Syntheses, Structures and Thermochromic Luminescence Properties. CrystEngComm 2014, 16, 1927–1933. [Google Scholar] [CrossRef]
- Bai, S.Q.; Jiang, L.; Young, D.J.; Hor, T.S.A. Luminescent [Cu4I4] Aggregates and [Cu3I3]-Cyclic Coordination Polymers Supported by Quinolyl-Triazoles. Dalton Trans. 2015, 44, 6075–6081. [Google Scholar] [CrossRef]
- Cho, S.; Jeon, Y.; Lee, S.; Kim, J.; Kim, T.H. Reversible Transformation between Cubane and Stairstep Cu4I4 Clusters Using Heat or Solvent Vapor. Chem.—A Eur. J. 2015, 21, 1439–1443. [Google Scholar] [CrossRef]
- Vinogradova, K.A.; Shekhovtsov, N.A.; Berezin, A.S.; Sukhikh, T.S.; Rogovoy, M.I.; Artem’ev, A.V.; Bushuev, M.B. Coordination-Induced Emission Enhancement in Copper(I) Iodide Coordination Polymers Supported by 2-(Alkylsulfanyl)Pyrimidines. Dalton Trans. 2021, 50, 9317–9330. [Google Scholar] [CrossRef]
- Fang, Y.; Sojdak, C.A.; Dey, G.; Teat, S.J.; Li, M.; Cotlet, M.; Zhu, K.; Liu, W.; Wang, L.; O’Carroll, D.M.; et al. Highly Efficient and Very Robust Blue-Excitable Yellow Phosphors Built on Multiple-Stranded One-Dimensional Inorganic–Organic Hybrid Chains. Chem. Sci. 2019, 10, 5363–5372. [Google Scholar] [CrossRef] [Green Version]
- Vitale, M.; Ryu, C.K.; Palke, W.E.; Ford, P.C. Studies of the Copper(1) Tetramers Cu4X4L4 (X = I, Br, Cl). Effects of Cluster Structure and of Halide on Photophysical Properties. Inorg. Chem. 1994, 33, 561–566. [Google Scholar] [CrossRef]
- Musina, E.I.; Shamsieva, A.V.; Strelnik, I.D.; Gerasimova, T.P.; Krivolapov, D.B.; Kolesnikov, I.E.; Grachova, E.V.; Tunik, S.P.; Bannwarth, C.; Grimme, S.; et al. Synthesis of Novel Pyridyl Containing Phospholanes and Their Polynuclear Luminescent Copper(I) Complexes. Dalton Trans. 2016, 45, 2250–2260. [Google Scholar] [CrossRef]
- Yu, Y.D.; Meng, L.B.; Chen, Q.C.; Chen, G.H.; Huang, X.C. Substituent Regulated Photoluminescent Thermochromism in a Rare Type of Octahedral Cu4I4 Clusters. New J. Chem. 2018, 42, 8426–8437. [Google Scholar] [CrossRef]
- Strelnik, I.; Shamsieva, A.; Akhmadgaleev, K.; Gerasimova, T.; Dayanova, I.; Kolesnikov, I.; Fayzullin, R.; Islamov, D.; Musina, E.; Karasik, A.; et al. Emission and Luminescent Vapochromism Control of Octahedral Cu4I4 Complexes by Conformationally Restricted P,N Ligands. Chem.–A Eur. J. 2023; in press. [Google Scholar] [CrossRef]
- Enikeeva, K.R.; Shamsieva, A.V.; Kasimov, A.I.; Litvinov, I.A.; Lyubina, A.P.; Voloshina, A.D.; Musina, E.I.; Karasik, A.A. Pyridyl-Containing Dialkylphosphine Oxides and Their Chelate Copper(II) Complexes. Inorg. Chim. Acta. 2023, 545, 121286. [Google Scholar] [CrossRef]
- Price, W.S. Pulsed-field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion: Part 1. Basic Theory. Concepts Magn. Reson. 1997, 9, 299–336. [Google Scholar] [CrossRef]
- Price, W.S. Pulsed-Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion: Part II. Experimental Aspects. Concepts Magn. Reson. 1998, 10, 197–237. [Google Scholar] [CrossRef]
- Kharlamov, S.V.; Latypov, S.K. Modern Diffusion-Ordered NMR Spectroscopy in Chemistry of Supramolecular Systems: The Scope and Limitations. Russ. Chem. Rev. 2010, 79, 635–653. [Google Scholar] [CrossRef]
- Johnson, C.S. Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications. Prog. Nucl. Magn. Reson. Spec. 1999, 34, 203–256. [Google Scholar] [CrossRef]
- Liu, J.Q.; Luo, Z.D.; Pan, Y.; Kumar Singh, A.; Trivedi, M.; Kumar, A. Recent Developments in Luminescent Coordination Polymers: Designing Strategies, Sensing Application and Theoretical Evidences. Coord. Chem. Rev. 2020, 406, 213145. [Google Scholar] [CrossRef]
- Dutta, A.; Pan, Y.; Liu, J.Q.; Kumar, A. Multicomponent Isoreticular Metal-Organic Frameworks: Principles, Current Status and Challenges. Coord. Chem. Rev. 2021, 445, 214074. [Google Scholar] [CrossRef]
- Redmore, D. Phosphorus Detivatives of Nitrogen Heterocycles. 2. Pyridinephosphonic Acid Derivatives. J. Org. Chem. 1970, 35, 4114–4117. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. A Found Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.R.; Becke, A.D. A Post-Hartree-Fock Model of Intermolecular Interactions: Inclusion of Higher-Order Corrections. J. Chem. Phys. 2006, 124, 174104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A Density-Functional Model of the Dispersion Interaction. J. Chem. Phys. 2005, 123, 154101. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.; Handy, N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
Compound | Self-Diffusion Coefficient 1 (10−9 m2/s) | Hydrodynamic Radii rH (Å) |
---|---|---|
Ligand 1 | 0.90 | 3.22 |
Complex 2 | 0.45 | 6.44 |
L2Cu4I4 | 0.41 | 7.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enikeeva, K.R.; Shamsieva, A.V.; Strelnik, A.G.; Fayzullin, R.R.; Zakharychev, D.V.; Kolesnikov, I.E.; Dayanova, I.R.; Gerasimova, T.P.; Strelnik, I.D.; Musina, E.I.; et al. Green Emissive Copper(I) Coordination Polymer Supported by the Diethylpyridylphosphine Ligand as a Luminescent Sensor for Overheating Processes. Molecules 2023, 28, 706. https://doi.org/10.3390/molecules28020706
Enikeeva KR, Shamsieva AV, Strelnik AG, Fayzullin RR, Zakharychev DV, Kolesnikov IE, Dayanova IR, Gerasimova TP, Strelnik ID, Musina EI, et al. Green Emissive Copper(I) Coordination Polymer Supported by the Diethylpyridylphosphine Ligand as a Luminescent Sensor for Overheating Processes. Molecules. 2023; 28(2):706. https://doi.org/10.3390/molecules28020706
Chicago/Turabian StyleEnikeeva, Kamila R., Aliia V. Shamsieva, Anna G. Strelnik, Robert R. Fayzullin, Dmitry V. Zakharychev, Ilya E. Kolesnikov, Irina R. Dayanova, Tatiana P. Gerasimova, Igor D. Strelnik, Elvira I. Musina, and et al. 2023. "Green Emissive Copper(I) Coordination Polymer Supported by the Diethylpyridylphosphine Ligand as a Luminescent Sensor for Overheating Processes" Molecules 28, no. 2: 706. https://doi.org/10.3390/molecules28020706
APA StyleEnikeeva, K. R., Shamsieva, A. V., Strelnik, A. G., Fayzullin, R. R., Zakharychev, D. V., Kolesnikov, I. E., Dayanova, I. R., Gerasimova, T. P., Strelnik, I. D., Musina, E. I., Karasik, A. A., & Sinyashin, O. G. (2023). Green Emissive Copper(I) Coordination Polymer Supported by the Diethylpyridylphosphine Ligand as a Luminescent Sensor for Overheating Processes. Molecules, 28(2), 706. https://doi.org/10.3390/molecules28020706