Journal Description
Electrochem
Electrochem
is an international, peer-reviewed, open access journal on electrochemistry published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 24 days after submission; acceptance to publication is undertaken in 7.8 days (median values for papers published in this journal in the first half of 2024).
- Journal Rank: CiteScore - Q2 (Materials Chemistry)
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Enhanced Performance with Nano-Porous Silicon in TiFeSi2/C Composite Anode for Lithium-Ion Batteries
Electrochem 2024, 5(4), 560-573; https://doi.org/10.3390/electrochem5040036 - 5 Dec 2024
Abstract
►
Show Figures
The innovative design of the microstructure of silicon-based composite anodes in Li-ion batteries holds great potential for overcoming inherent limitations, such as the significant volume change experienced by silicon particles. In this study, TiFeSi2/C composites prepared using micro, nano, and porous
[...] Read more.
The innovative design of the microstructure of silicon-based composite anodes in Li-ion batteries holds great potential for overcoming inherent limitations, such as the significant volume change experienced by silicon particles. In this study, TiFeSi2/C composites prepared using micro, nano, and porous silicon showed reversible capacities of 990.45 mAh.g−1, 1137.69 mAh.g−1, and 1045.43 mAh.g−1 at C/10. The results obtained from the electrochemical characterization show that the porous structure of the composite anode material created via acid etching reduced silicon expansion during the lithiation/delithiation processes. The void spaces formed in the inner structure of the porous silicon and the presence of carbon increased the electronic conductivity between the silicon particles and, on the other hand, lowered the overall diffusion distance of Li+. This study confirms that TiFeSi2/C prepared with porous silicon dispersed in a transition metal matrix delivers better electrochemical performance compared to micro and nano silicon with a retention of 80.16%.
Full article
Open AccessArticle
Full Tailored Metal Content NCM Regeneration from Spent Lithium-Ion Battery Mixture Under Mild Condition
by
Alpha Chi Him Tsang, Shaobo Ouyang, Yang Lv, Chi Chung Lee, Chi-Wing Tsang and Xiao-Ying Lu
Electrochem 2024, 5(4), 546-559; https://doi.org/10.3390/electrochem5040035 - 2 Dec 2024
Abstract
Mild conditioned, second-life ternary nickel–cobalt–manganese (NCM) black powder regeneration from spent lithium-ion batteries’ (LIBs) black powder mixture was demonstrated after mild conditioned p-toluenesulphuric acid (PTA)-assisted wet leaching. The NCM ratio was tailored to several combinations (333, 523, 532, and 622) by adding a
[...] Read more.
Mild conditioned, second-life ternary nickel–cobalt–manganese (NCM) black powder regeneration from spent lithium-ion batteries’ (LIBs) black powder mixture was demonstrated after mild conditioned p-toluenesulphuric acid (PTA)-assisted wet leaching. The NCM ratio was tailored to several combinations (333, 523, 532, and 622) by adding a suitable amount of metal (Ni, Co, Mn)-sulphate salt to the leachate. Regenerated NCM was obtained by co-precipitation with sodium hydroxide pellets and ammonia pH buffering solution, followed by lithium (Li) sintering under ambient air and size sieving. The obtained regenerated NCM powder was used for the energy storage materials (ESM) in coin cell (Li half-cell, CR2032) evaluation. Systematic characterization of regenerated NCM showed that the NCM ratio was close to the target value as assigned in the tailored process, and regenerated 622 (R622) exhibited strong activity in CR2032 coin cell testing among all four ratios with a maximum discharge capacity of 196.6 mAh/g.
Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Bacterial Consortium Biofilm-Based Electrochemical Biosensor for Measurement of Antioxidant Polyphenolic Compounds
by
Rani Melati Sukma, Dyah Iswantini, Novik Nurhidayat and Mohamad Rafi
Electrochem 2024, 5(4), 530-545; https://doi.org/10.3390/electrochem5040034 - 18 Nov 2024
Abstract
►▼
Show Figures
This work describes the development of an electrochemical biosensor method based on bacterial consortia to determine antioxidant capacity. The bacterial consortium used is a combination of bacteria from the genera Bacillus and Pseudomonas which can produce the enzymes tyrosinase and laccase. The consortium
[...] Read more.
This work describes the development of an electrochemical biosensor method based on bacterial consortia to determine antioxidant capacity. The bacterial consortium used is a combination of bacteria from the genera Bacillus and Pseudomonas which can produce the enzymes tyrosinase and laccase. The consortium bacteria were immobilized on the surface of the screen-printed carbon electrode (SPCE) to form a biofilm. Biofilms were selected based on the highest current response evaluated electrochemically using cyclic voltammetry analysis techniques. Optimum consortium biofilm conditions were obtained in a phosphate buffer solution of pH 7, and biofilm formation occurred on day 7. This work produces analytical performance with a coefficient of determination (R2) of 0.9924. The limit of detection (LOD) and limit of quantification (LOQ) values are 0.5 µM and 10 µM, respectively. The biosensor showed a stable response until the 10th week. This biosensor was used to measure the antioxidant capacity of five extracts, and the results were confirmed using a standard method, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The highest antioxidant capacity is guava extract and the lowest is tempuyung extract. Thus, the development of this biosensor method can be used as an alternative for measuring antioxidant capacity.
Full article
Graphical abstract
Open AccessArticle
A Carbon-Particle-Supported Palladium-Based Cobalt Composite Electrocatalyst for Ethanol Oxidation Reaction (EOR)
by
Keqiang Ding, Weijia Li, Mengjiao Li, Ying Bai, Xiaoxuan Liang and Hui Wang
Electrochem 2024, 5(4), 506-529; https://doi.org/10.3390/electrochem5040033 - 15 Nov 2024
Abstract
For the first time, carbon-particle-supported palladium-based cobalt composite electrocatalysts (abbreviated as PdxCoy/CPs) were prepared using a calcination–hydrothermal process–hydrothermal process (denoted as CHH). The catalysts of PdxCoy/CPs prepared using CoC2O4·2H2O,
[...] Read more.
For the first time, carbon-particle-supported palladium-based cobalt composite electrocatalysts (abbreviated as PdxCoy/CPs) were prepared using a calcination–hydrothermal process–hydrothermal process (denoted as CHH). The catalysts of PdxCoy/CPs prepared using CoC2O4·2H2O, (CH3COO)2Co·4H2O, and metallic cobalt were named catalyst c1, c2, and c3, respectively. For comparison, the catalyst prepared in the absence of a Co source (denoted as Pd/CP) was identified as catalyst c0. All fabricated catalysts were thoroughly characterized by XRD, EDS, XPS, and FTIR, indicating that PdO, metallic Pd, carbon particles, and a very small amount of cobalt oxide were the main components of all produced catalysts. As demonstrated by the traditional electrochemical techniques of CV and CA, the electrocatalytic performances of PdxCoy/CP towards the ethanol oxidation reaction (EOR) were significantly superior to that of Pd/CP. In particular, c1 showed an unexpected electrocatalytic activity for EOR; for instance, in the CV test, the peak f current density of EOR on catalyst c1 was 129.3 mA cm−2, being about 10.7 times larger than that measured on Pd/CP, and in the CA test, the polarized current density of EOR recorded for c1 after 7200 s was still about 2.1 mA cm−2, which was larger than that recorded for Pd/CP (0.6 mA cm−2). In the catalyst preparation process, except for the elements of C, O, Co, and Pd, no other elements were involved, which was thought to be the main contribution of this preliminary work, being very meaningful to the further exploration of Pd-based composite EOR catalysts.
Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
A Nitrogen- and Carbon-Present Tin Dioxide-Supported Palladium Composite Catalyst (Pd/N-C-SnO2)
by
Keqiang Ding, Weijia Li, Mengjiao Li, Mengyao Di, Ying Bai, Xiaoxuan Liang and Hui Wang
Electrochem 2024, 5(4), 482-505; https://doi.org/10.3390/electrochem5040032 - 13 Nov 2024
Abstract
►▼
Show Figures
For the first time, nitrogen- and carbon-present tin dioxide-supported palladium composite catalysts (denoted as Pd/N-C-SnO2) were prepared via an HCH method (HCH is the abbreviation for the hydrothermal process–calcination–hydrothermal process preparation process). In this work, firstly, three catalyst carriers (denoted as
[...] Read more.
For the first time, nitrogen- and carbon-present tin dioxide-supported palladium composite catalysts (denoted as Pd/N-C-SnO2) were prepared via an HCH method (HCH is the abbreviation for the hydrothermal process–calcination–hydrothermal process preparation process). In this work, firstly, three catalyst carriers (denoted as cc) were prepared using a hydrothermal-process-aided calcination method, and catalyst carriers prepared using ammonia monohydrate (NH3∙H2O), N,N-dimethylformamide (C3H7NO) and triethanolamine (C6H15NO3) as the nitrogen sources were nominated as cc1, cc2 and cc3, respectively. Secondly, these catalyst carriers were reacted with palladium oxide monohydrate (PdO·H2O) hydrothermally to generate catalysts c1, c2 and c3. As testified by XRD and XPS, besides carbon materials and the N-containing substances, the main substances of all prepared catalysts were SnO2 and metallic palladium (Pd). Above all things, all resultant catalysts, especially c2, showed a prominent electrocatalytic activity towards the ethanol oxidation reaction (EOR). As indicated by the CV (cyclic voltammetry) results, all fabricated catalysts presented a clear electrocatalytic activity towards the EOR. In the CA (chronoamperometry) measurement, the faradaic current density of EOR measured on c2 at −0.27 V vs. an SCE (saturated calomel electrode) after 7200 s was still maintained at about 5.6 mA cm−2. Preparing a novel catalyst carrier, N-C-SnO2, and preparing a new EOR catalyst, Pd/N-C-SnO2, were the principal dedications of this preliminary work, which was very beneficial to the development of Pd-based EOR catalysts.
Full article
Figure 1
Open AccessArticle
Preparation of Vanadium (3.5+) Electrolyte by Hydrothermal Reduction Process Using Citric Acid for Vanadium Redox Flow Battery
by
Ung-Il Kang
Electrochem 2024, 5(4), 470-481; https://doi.org/10.3390/electrochem5040031 - 8 Nov 2024
Abstract
►▼
Show Figures
In this study, vanadium (3.5+) electrolyte was prepared for vanadium redox flow batteries (VRFBs) through a reduction reaction using a batch-type hydrothermal reactor, differing from conventional production methods that utilize VOSO4 and V2O5. The starting material, V
[...] Read more.
In this study, vanadium (3.5+) electrolyte was prepared for vanadium redox flow batteries (VRFBs) through a reduction reaction using a batch-type hydrothermal reactor, differing from conventional production methods that utilize VOSO4 and V2O5. The starting material, V2O5, was mixed with various concentrations (0.8 M, 1.2 M, 1.6 M, 2.0 M) of citric acid (CA) as the reducing agent and stirred for 60 min at 90 °C using a hot plate to ensure complete dispersion in the solution. The resulting solution was subsequently subjected to a hydrothermal reduction reaction (HRR) furnace at 150 °C for 24 h to generate vanadium (3.5+). The mixed states of the produced vanadium (3+) and vanadium (4+) were confirmed using UV-vis spectroscopy. The electrochemical properties of the electrolyte were investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), revealing that the optimal concentration of the CA was 1.6 M. The current efficiency, energy efficiency, and voltage efficiency of the electrolyte produced via the HRR process was compared with that prepared using VOSO4 in charge and discharge experiments. The results demonstrate that the HRR process yields an enhanced electrolyte across all efficiency metrics produced through the given improved performance in all efficiencies. These findings indicate that the HRR process using citric acid can facilitate the straightforward preparation of vanadium (3.5+) electrolyte, making it suitable for large-scale production.
Full article
Figure 1
Open AccessArticle
Electrochemical Sensing of Hydrogen Peroxide Using Composite Bismuth Oxide/Bismuth Oxyselenide Nanostructures: Antagonistic Influence of Tungsten Doping
by
Pooja D. Walimbe, Rajeev Kumar, Amit Kumar Shringi, Obed Keelson, Hazel Achieng Ouma and Fei Yan
Electrochem 2024, 5(4), 455-469; https://doi.org/10.3390/electrochem5040030 - 24 Oct 2024
Abstract
This study investigates the underlying mechanisms of hydrogen peroxide (H₂O₂) sensing using a composite material of bismuth oxide and bismuth oxyselenide (Bi2OxSey). The antagonistic effect of tungsten (W)-doping on the electrochemical behavior was also examined. Undoped, 2
[...] Read more.
This study investigates the underlying mechanisms of hydrogen peroxide (H₂O₂) sensing using a composite material of bismuth oxide and bismuth oxyselenide (Bi2OxSey). The antagonistic effect of tungsten (W)-doping on the electrochemical behavior was also examined. Undoped, 2 mol%, 4 mol%, and 6 mol% W-doped Bi2OxSey nanostructures were synthesized using a one-pot solution phase method involving selenium powder and hydrazine hydrate. W-doping induced a morphological transformation from nanosheets to spherical nanoparticles and amorphization of the bismuth oxyselenide phase. Electrochemical sensing measurements were conducted using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). H₂O₂ detection was achieved over a wide concentration range of 0.02 to 410 µM. In-depth CV analysis revealed the complex interplay of oxidation-reduction processes within the bismuth oxide and Bi2O2Se components of the composite material. W-doping exhibited an antagonistic effect, significantly reducing sensitivity. Among the studied samples, undoped Bi2OxSeγ demonstrated a high sensitivity of 83 μA μM⁻1 cm⁻2 for the CV oxidation peak at 0 V, while 6 mol% W-Bi2OxSey became completely insensitive to H2O2. Interestingly, DPV analysis showed a reversal of sensitivity trends with 2 and 4 mol% W-doping. The applicability of these samples for real-world analysis, including rainwater and urine, was also demonstrated.
Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
Enhanced Performance of Sodium-Ion Battery Cathodes with Ti and V Co-Doped P2-Type Na0.67Fe0.5Mn0.5O2 Materials
by
Trapa Banik, Indranil Bhattacharya, Kirankumar Venkatesan Savunthari, Sanjeev Mukerjee, Webster Adepoju and Abiodun Olatunji
Electrochem 2024, 5(4), 437-454; https://doi.org/10.3390/electrochem5040029 - 18 Oct 2024
Abstract
►▼
Show Figures
Manganese- and iron-rich P2-type has garnered significant interest as a promising cathode candidate due to the natural abundance of Fe and Mn along with a high
[...] Read more.
Manganese- and iron-rich P2-type has garnered significant interest as a promising cathode candidate due to the natural abundance of Fe and Mn along with a high redox couple of Fe3+/Fe4+ and Mn3+/Mn4+. Despite all these merits, NFM suffers from structural instability during cycling, arising from the destructive Jahn-Teller (JT) distortion effect of Mn3+/Mn4+ during charging and Fe4+/Fe3+ during discharging. In this research, a novel P2-type transition metal-oxide cathode Na0.67Fe0.5−2xMn0.5TixVxO2 was synthesized by doping a tiny fraction of two electrochemically inactive elements, Titanium (Ti) and Vanadium (V), into Mn-rich Na0.67Fe0.5Mn0.5O2 (NFM) that mitigated the JT effect substantially and ameliorated the stability of the SIB during cycling. These exhaustive structural and morphological comparisons provided insights into the effects of V and Ti doping on stabilizing surface structures, reducing Jahn Teller distortion, enhancing stability and capacity retention, and promoting the Na+ carrier transport mechanism. Moreover, the electrochemical analysis, such as the galvanostatic charge/discharge profile, validates the capacity improvement via Ti and V co-doping into NFM cathode. The initial discharge capacity of the 2% Ti/V-doped was found to be 187.12 mAh g−1 at a rate of 0.1 C, which was greater than the discharge capacity of 175.15 mAh g−1 observed for pure NFM In contrast, 2NFMTV exhibited a noteworthy capacity retention of 46.1% when evaluated for its original capacity after undergoing 150 cycles at a rate of 0.1 C. This research also established a structural doping approach as a feasible technique for advancing the progress of next-generation Sodium-ion Batteries.
Full article
Figure 1
Open AccessArticle
The Influence of Thick Cathode Fabrication Processing on Battery Cell Performance
by
Dewen Kong, Haijing Liu, Si Chen and Meiyuan Wu
Electrochem 2024, 5(4), 421-436; https://doi.org/10.3390/electrochem5040028 - 16 Oct 2024
Cited by 1
Abstract
►▼
Show Figures
The lithium-ion battery (LIB) is the key energy storage device for electric transportation. The thick electrode (single-sided areal capacity >4.0 mAh/cm2) design is a straightforward and effective strategy for improving cell energy density by improving the mass proportion of electroactive materials
[...] Read more.
The lithium-ion battery (LIB) is the key energy storage device for electric transportation. The thick electrode (single-sided areal capacity >4.0 mAh/cm2) design is a straightforward and effective strategy for improving cell energy density by improving the mass proportion of electroactive materials in whole cell components and for reducing cost of the battery cell without involving new chemistries of uncertainties. Thus, selecting a low-cost and environmentally friendly fabrication process to achieve a thick cathode electrode with good electrochemical performance is of strong interest. This study investigated the impact of fabrication processes on the performance of thick LiNi0.75Mn0.25O2 (NM75) cathode electrodes in pouch cells. Two fabrication methods were compared: the conventional polyvinylidene fluoride (PVDF)-based slurry casting method (C-NM75) and the polytetrafluoroethylene (PTFE)-based powder fibrillating process (F-NM75). The pouch cells with F-NM75 electrodes exhibited significantly improved discharge and charge rate capabilities, with a discharge capacity ratio (3 C vs. C/3) > 62% and a charge capacity ratio (2 C vs. C/3) > 81%. Furthermore, F-NM75 cells demonstrated outstanding C/3 cycling performance, retaining 86% of discharge capacity after 2200 cycles. These results strongly indicated that the PTFE-based powder fibrillating process is a promising solution to construct high-performance thick cathode electrodes for electric vehicles (EVs) applications.
Full article
Figure 1
Open AccessArticle
Pseudospherical Bismuth Oxychloride-Modified Carbon Paste Electrode for the Determination of Quinine in Beverages
by
Tijana Mutić, Vesna Stanković, Miloš Ognjanović, Vladimir B. Nikolić, Guanyue Gao, Neso Sojic and Dalibor Stanković
Electrochem 2024, 5(4), 407-420; https://doi.org/10.3390/electrochem5040027 - 15 Oct 2024
Abstract
The extensive use of the alkaloid quinine (QN) in the cosmetic and food industries has induced major concerns relating to its impact on human health, considering its potential toxicity. Therefore, developing sensitive and selective electrochemical sensors is crucial for monitoring QN in environmental,
[...] Read more.
The extensive use of the alkaloid quinine (QN) in the cosmetic and food industries has induced major concerns relating to its impact on human health, considering its potential toxicity. Therefore, developing sensitive and selective electrochemical sensors is crucial for monitoring QN in environmental, food, and pharmaceutical samples. To respond to this need, a surfactant-supported green synthesis approach, based on a straightforward, organic solvent-free hydrothermal method was employed to synthesize highly crystalline pseudospherical bismuth oxychloride (BiOCl) nanoparticles. This material was used for the enrichment of carbon paste electrodes and its further utilization for the detection and quantification of quinine. They have superior electrocatalytic performance, due to their size and morphology, and facilitate the interactions of the target with the electrode surface. Under optimal operating conditions, differential pulse voltammetry demonstrated a remarkable feature: a broad linear working range of 10 to 140 μM, a detection limit of 0.14 μM, and a high sensitivity of 1.995 μA μM−1 cm−2. The suggested method’s satisfactory sensitivity, along with its good stability, repeatability, and reproducibility, strongly point to a possible use for identifying quinine in real samples.
Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Specific Permselectivity and Electrochemical Properties of Homogeneous Bilayer Membranes with a Selective Layer Made of DADMAC and EMA Copolymer
by
Aslan Achoh, Denis Bondarev, Stanislav Melnikov and Victor Zabolotsky
Electrochem 2024, 5(4), 393-406; https://doi.org/10.3390/electrochem5040026 - 26 Sep 2024
Abstract
►▼
Show Figures
New homogeneous bilayer membranes with a thin anion-exchange layer have been developed based on the copolymer of N,N-diallyl-N,N-dimethylammonium chloride (DADMAC) and ethyl methacrylate (EMA) on the surface of a membrane substrate made from polyfluorosulfonic acid (PFSA). The overall and partial current–voltage characteristics, as
[...] Read more.
New homogeneous bilayer membranes with a thin anion-exchange layer have been developed based on the copolymer of N,N-diallyl-N,N-dimethylammonium chloride (DADMAC) and ethyl methacrylate (EMA) on the surface of a membrane substrate made from polyfluorosulfonic acid (PFSA). The overall and partial current–voltage characteristics, as well as external and internal diffusion-limiting currents, were theoretically and experimentally investigated. Parameters such as specific conductivity, sorption, and diffusion permeability of individual membrane layers were determined, along with effective transport numbers and specific permselectivity of the bilayer homogeneous membranes in mixed solutions of calcium chloride and sodium chloride. It was found that applying a thin anion-exchange layer of DADMAC and EMA to the homogeneous membrane allows for the creation of a charge-selective bilayer membrane with enhanced selectivity toward monovalent metal cations. The specific selectivity of the bilayer membrane for sodium cations increases more than 6-fold (from 0.8 to 4.8). Verification of the obtained experimental data was performed within a four-layer mathematical model with quasi-equilibrium boundary conditions for the diffusion layer (I)/modifying layer (II)/membrane substrate (III)/diffusion layer (IV) in ternary NaCl+CaCl2 solutions.
Full article
Graphical abstract
Open AccessArticle
Conductive Coatings on PDMS, PMMA, and Glass: Comparative Study of Graphene, Graphene Oxide, and Silver Nanoparticle Composites
by
Jing Sun, Qiang Guo, Wanqing Dai, Jian Lin Chen, Guozhu Mao and Yung-Kang Peng
Electrochem 2024, 5(3), 380-392; https://doi.org/10.3390/electrochem5030025 - 20 Sep 2024
Abstract
►▼
Show Figures
The development of conductive coatings has significant implications for microelectronics and electrochemistry. However, conductive coatings may exhibit different electrochemical properties when prepared on different substrate materials. This research explores the comparative performance of graphene, graphene oxide (GO), and silver nanoparticle (Ag NP) composites
[...] Read more.
The development of conductive coatings has significant implications for microelectronics and electrochemistry. However, conductive coatings may exhibit different electrochemical properties when prepared on different substrate materials. This research explores the comparative performance of graphene, graphene oxide (GO), and silver nanoparticle (Ag NP) composites as conductive coatings on diverse substrate materials, including polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), and glass. The study employed various preparation methods, such as mixing conductive materials with substrate materials and preparing copolymer composite materials. The conductive coating approach was found to be the most straightforward and convenient, with broader development prospects and fewer restrictive conditions. The results indicate that the distinct surface characteristics of the substrate materials influence the conductive properties of coating materials. Consequently, results show that graphene exhibits the highest conductivity on all three substrates, while GO is more conductive than Ag NPs on PMMA and PDMS but less conductive than Ag NPs on glass. That offers valuable insights into the selection of substrate materials and coating materials for the preparation of conductive materials.
Full article
Graphical abstract
Open AccessArticle
Rotating Droplet Hydrodynamic Electrochemistry for Water Toxicity Bioassay Based on Electron-Transfer Mediator
by
Kazuto Sazawa, Yeasna Shanjana, Kazuharu Sugawara and Hideki Kuramitz
Electrochem 2024, 5(3), 370-379; https://doi.org/10.3390/electrochem5030024 - 19 Sep 2024
Abstract
►▼
Show Figures
An electrochemical bioassay based on rotating droplet electrochemistry by using an electron-transfer mediator was developed for the evaluation of a wide variety of pollutants such as antibiotics, heavy metals, and pesticides in the water environment. Ferricyanide was used as an electron-transfer mediator for
[...] Read more.
An electrochemical bioassay based on rotating droplet electrochemistry by using an electron-transfer mediator was developed for the evaluation of a wide variety of pollutants such as antibiotics, heavy metals, and pesticides in the water environment. Ferricyanide was used as an electron-transfer mediator for obtaining the catalytic response of Escherichia coli. The electrochemical response of E. coli was measured via hydrodynamic chronoamperometry in a microdroplet on a screen-printed carbon electrode (SPCE). The constructed electrode system successfully evaluates the catalytic response of E. coli solution in the presence of ferricyanide. An assay for antibiotic toxicity on E. coli was carried out. The EC50 for ampicillin, sulfamonomethoxine, chlorotetracycline, tetracycline, and oxytetracycline evaluated by the pre-incubation method were 0.26, 0.77, 5.25, 18.5, and 19.0 µM, respectively. The toxicity order was ampicillin > sulfamonomethoxine > chlorotetracycline > tetracycline > oxytetracycline. The proposed method can be used to evaluate the antibiotic toxicities in different real samples, such as pond water, powder, and raw milk. Recoveries were found in the range of 90 and 99%. The developed methods do not require additional incubation time to evaluate toxicity.
Full article
Figure 1
Open AccessArticle
Introducing a Dilute Single Bath for the Electrodeposition of Cu2(ZnSn)(S)4 for Smooth Layers
by
Mahfouz Saeed and Omar I. González Peña
Electrochem 2024, 5(3), 354-369; https://doi.org/10.3390/electrochem5030023 - 29 Aug 2024
Abstract
►▼
Show Figures
Cu2(ZnSn)(S)4 (copper, zinc, tin, and sulfide (CZTS)) provides possible advantages over CuInGaSe2 for thin-film photovoltaic devices because it has a higher band gap. Preparing CZTS by electrodeposition because of its high productivity and lower processing costs, electroplating is appealing. Recently
[...] Read more.
Cu2(ZnSn)(S)4 (copper, zinc, tin, and sulfide (CZTS)) provides possible advantages over CuInGaSe2 for thin-film photovoltaic devices because it has a higher band gap. Preparing CZTS by electrodeposition because of its high productivity and lower processing costs, electroplating is appealing. Recently published studies reported that the electrodeposition process of CZTS still faces significant obstacles, such as the sulfur atomic ratio (about half of the whole alloy), deposits’ adhesion, film quality, and optical properties. This work introduces an improved bath that facilitates the direct electroplating of CZTS from one processing step. The precursors used were significantly more diluted than the typical baths mentioned in the last few years. An extensive analysis of the electrochemical behavior at various rotation speeds is presented at room temperature (~22 °C). The deposited alloy’s composition and adherence to the molybdenum back contact are examined with agitation. The annealing process was carried out in an environment containing sulfur, and the metal was not added at this stage. The ultimate sulfur composition was adjusted to 50.2%, about the desired atomic ratio. The compound’s final composition was investigated using the Energy-Dispersive X-ray Spectroscopy technique. Finally, X-ray diffraction analysis was applied to analyze CZTS crystallography and to measure thickness.
Full article
Figure 1
Open AccessArticle
Low-Volume Electrochemical Sensor Platform for Direct Detection of Paraquat in Drinking Water
by
Durgasha C. Poudyal, Manish Samson, Vikram Narayanan Dhamu, Sera Mohammed, Claudia N. Tanchez, Advaita Puri, Diya Baby, Sriram Muthukumar and Shalini Prasad
Electrochem 2024, 5(3), 341-353; https://doi.org/10.3390/electrochem5030022 - 22 Aug 2024
Abstract
Direct testing of pesticide contaminants in drinking water is a challenge. Portable and sensitive sensor platforms are desirable to test water contaminants directly at farm and consumer levels. In this study, we have demonstrated the feasibility of an electrochemical sensor for the direct
[...] Read more.
Direct testing of pesticide contaminants in drinking water is a challenge. Portable and sensitive sensor platforms are desirable to test water contaminants directly at farm and consumer levels. In this study, we have demonstrated the feasibility of an electrochemical sensor for the direct detection of paraquat (PQ) in drinking water samples. An immunoassay-based sensing platform was fabricated using PQ-specific antibody immobilized on the surface of the electrochemically reduced graphene oxide (rGO) modified screen-printed carbon electrode (rGO-SPCE). Using non-faradaic electrochemical impedance spectroscopy (EIS) as a detection tool, the sensor platform demonstrated a dynamic response for PQ concentration in drinking water ranging from 0.05 ng/mL to 72.9 ng/mL (0.19 to 243.8 nM), with a coefficient of determination (r2) of 0.997 and a limit of detection of 0.05 ng/mL (0.19 nM). Percentage recovery within ±20% error was obtained, and the sensor cross-reactivity test showed a selective response against glyphosate antigen. With the flexibility to use single-frequency EIS and low sample volume, the developed sensor demonstrated testing in water samples directly without any sample pre-processing. This low-volume electroanalytical sensor platforms can be translated into portable testing tools for the detection of various water contaminants.
Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
Nanowire Electrode Structures Enhanced Direct Extracellular Electron Transport via Cell-Surface Multi-Heme Cytochromes in Desulfovibrio ferrophilus IS5
by
Xiao Deng, Wipakorn Jevasuwan, Naoki Fukata and Akihiro Okamoto
Electrochem 2024, 5(3), 330-340; https://doi.org/10.3390/electrochem5030021 - 13 Aug 2024
Abstract
Extracellular electron transfer (EET) by sulfate-reducing bacteria (SRB), such as Desulfovibrio ferrophilus IS5, enables bacterial interactions with minerals, which are vital for biogeochemical cycling and environmental chemistry. Here, we explore the direct EET mechanisms through outer-membrane cytochromes (OMCs) using IS5 as a model
[...] Read more.
Extracellular electron transfer (EET) by sulfate-reducing bacteria (SRB), such as Desulfovibrio ferrophilus IS5, enables bacterial interactions with minerals, which are vital for biogeochemical cycling and environmental chemistry. Here, we explore the direct EET mechanisms through outer-membrane cytochromes (OMCs) using IS5 as a model SRB. We employed nanostructured electrodes arrayed with 0, 50, 200, and 500 nm long nanowires (NWs) coated with indium–tin–doped oxide to examine the impact of electrode morphology on the direct EET efficacy. Compared to flat electrodes, NW electrodes significantly enhanced current production in IS5 with OMCs. However, this enhancement was diminished when OMC expression was reduced. Differential pulse voltammetry revealed that NW electrodes specifically augmented redox peaks associated with OMCs without affecting those related to redox mediators, suggesting that NWs foster direct EET through OMCs. Scanning electron microscopy observations following electrochemical analyses revealed a novel vertical cell attachment and aggregation on NW electrodes, contrasting with the horizontal monolayer cell attachment on flat electrodes. This study presents the first evidence of the critical role of electrode nanoscale topography in modulating SRB cell orientation and aggregation behavior. The findings underscore the significant influence of electrode morphology on the direct EET kinetics, highlighting the potential impact of mineral morphology on mineral reduction and biogeochemical processes.
Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
►▼
Show Figures
Figure 1
Open AccessReview
Advanced Electrochemical Detection of Tetrabromobisphenol A and Hexabromocyclododecane via Modified Carbon Electrodes with Inorganic Nanoparticles: A Short Review
by
Gururaj Kudur Jayaprakash and Kaustubha Mohanty
Electrochem 2024, 5(3), 314-329; https://doi.org/10.3390/electrochem5030020 - 30 Jul 2024
Cited by 1
Abstract
►▼
Show Figures
The escalating concern over environmental pollutants, particularly brominated flame retardants (BFRs), demands sophisticated detection methodologies for compounds like Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecane (HBCD). Amidst these challenges, advancements in electrochemical detection have notably focused on the integration of inorganic modifiers within carbon electrodes.
[...] Read more.
The escalating concern over environmental pollutants, particularly brominated flame retardants (BFRs), demands sophisticated detection methodologies for compounds like Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecane (HBCD). Amidst these challenges, advancements in electrochemical detection have notably focused on the integration of inorganic modifiers within carbon electrodes. Inorganic nanoparticles, known for their catalytic and surface-enhancing properties, play a pivotal role in augmenting the sensitivity and selectivity of electrode-based detection systems. These modifiers, encompassing materials such as graphene, CeO2 nanocubes, and metal-organic frameworks, among others, have revolutionized the capabilities of carbon-based electrodes in accurately identifying specific BFRs.
Full article
Figure 1
Open AccessArticle
Hierarchical Two-Dimensional Layered Nickel Disulfide (NiS2)@PEDOT:PSS Nanocomposites as Battery-Type Electrodes for Battery-Type Supercapacitors with High Energy Density
by
Susmi Anna Thomas, Jayesh Cherusseri and Deepthi N. Rajendran
Electrochem 2024, 5(3), 298-313; https://doi.org/10.3390/electrochem5030019 - 17 Jul 2024
Cited by 3
Abstract
Battery-type hybrid supercapacitors (HSCs) (otherwise known as supercapatteries) are novel electrochemical energy storage devices bridge the gap between rechargeable batteries and traditional SCs. Herein, we report the synthesis of layered two-dimensional (2D) nickel disulfide (NiS2) nanosheets (NSNs) modified with poly(3,4-ethylenedioxythiophene:polystyrene sulfonate
[...] Read more.
Battery-type hybrid supercapacitors (HSCs) (otherwise known as supercapatteries) are novel electrochemical energy storage devices bridge the gap between rechargeable batteries and traditional SCs. Herein, we report the synthesis of layered two-dimensional (2D) nickel disulfide (NiS2) nanosheets (NSNs) modified with poly(3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) and their successful implementation in battery-type SCs. Initially, a layered 2D NSN is synthesized via a microwave-assisted hydrothermal method and further used as a template to coat PEDOT:PSS in order to prepare NiS2@PEDOT:PSS nanocomposite electrodes by a facile drop-casting method. This is the first-time report on the synthesis of a hierarchical NiS2@PEDOT:PSS nanocomposite electrode for battery-type HSC applications. An asymmetric battery-type HSC fabricated with NSN@PEDOT:PSS nanocomposite as positrode and activated carbon as negatrode delivers a maximum energy density of 52.1 Wh/kg at a current density of 1.6 A/g with a corresponding power density of 2500 W/kg.
Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
Influence of Pulsed Reverse Electrodeposition on Mechanical Properties of Ni–W Alloys
by
Zeyu Gu, Jhen-Yang Wu, Yiming Jiang, Tomoyuki Kurioka, Chun-Yi Chen, Hwai-En Lin, Xun Luo, Daisuke Yamane, Masato Sone and Tso-Fu Mark Chang
Electrochem 2024, 5(3), 287-297; https://doi.org/10.3390/electrochem5030018 - 16 Jul 2024
Abstract
►▼
Show Figures
Ni–W alloys have received considerable interest as a promising structural material for microelectromechanical systems (MEMS) due to their exceptional properties, including hardness, ductility, corrosion resistance, and thermal stability. However, the electrodeposition of Ni–W alloys in the MEMS fabrication process to achieve intact structures
[...] Read more.
Ni–W alloys have received considerable interest as a promising structural material for microelectromechanical systems (MEMS) due to their exceptional properties, including hardness, ductility, corrosion resistance, and thermal stability. However, the electrodeposition of Ni–W alloys in the MEMS fabrication process to achieve intact structures with a thickness of several tens of micrometers is challenging due to the occurrence of cracking caused by side reactions and internal stresses during the electrodeposition process. To address this issue, our focus was on pulsed reverse electrodeposition (PRE) as a potential solution. The utilization of the PRE technique allows for a high concentration of reactive species on the electrode surface, thereby mitigating side reactions such as hydrogen generation. In this study, we examined the effects of the PRE method on the morphological characteristics, average crystal grain size, Vickers hardness, and micro-mechanical properties of Ni–W alloys.
Full article
Figure 1
Open AccessArticle
Reduced Graphene Oxide Decorated Titanium Nitride Nanorod Array Electrodes for Electrochemical Applications
by
Md Shafiul Islam, Alan Branigan, Dexian Ye and Maryanne M. Collinson
Electrochem 2024, 5(3), 274-286; https://doi.org/10.3390/electrochem5030017 - 3 Jul 2024
Cited by 1
Abstract
This work describes the fabrication and characterization of a new high surface area nanocomposite electrode containing reduced graphene oxide (rGO) and titanium nitride (TiN) for electrochemical applications. This approach involves electrochemically depositing rGO on a high surface area TiN nanorod array electrode to
[...] Read more.
This work describes the fabrication and characterization of a new high surface area nanocomposite electrode containing reduced graphene oxide (rGO) and titanium nitride (TiN) for electrochemical applications. This approach involves electrochemically depositing rGO on a high surface area TiN nanorod array electrode to form a new nanocomposite electrode. The TiN nanorod array was first formed by the glancing angle deposition technique in a DC (Direct Current) sputtering system. GO flakes of ~1.5 μm in diameter, as confirmed by Dynamic Light Scattering (DLS), were electrodeposited on the nanostructured TiN electrode via the application of a fixed potential for one hour. The surface morphology of the as-prepared rGO/TiN electrode was evaluated by scanning electron microscopy (SEM) and the presence of rGO on TiN was confirmed by Raman Microscopy. The CV shows an increase in the capacitive current at rGO/TiN as compared to TiN. The rGO decorated TiN electrode was then used for analyzing the electrocatalytic oxidation of ascorbic acid and dopamine, and the reduction of nitrate by CV and linear sweep voltammetry (LSV), respectively. CV or LSV show that the electrochemical kinetics of these three analytes are significantly faster on rGO/TiN than TiN itself. Overall, the rGO/TiN electrode showed better electrochemical behavior for biomolecules like ascorbic acid and dopamine as well as another target analyte, nitrate ions, compared to TiN by itself.
Full article
(This article belongs to the Collection Feature Papers in Electrochemistry)
►▼
Show Figures
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Electrochem, IJMS, Molecules, Polymers, Separations
Advances in Chemistry and Chemical Engineering, 2nd Edition
Topic Editors: Cristina Orbeci, Cristian Pirvu, Ileana Rau, Stefania Stoleriu, Maria-Cristina Todasca, Elena Iuliana BîruDeadline: 31 July 2025
Topic in
Catalysts, Electrochem, Materials, Molecules, Nanomaterials, Electronic Materials
Electrocatalytic Advances for Sustainable Energy
Topic Editors: Yang Liu, Bangwei DengDeadline: 31 December 2026
Conferences
Special Issues
Special Issue in
Electrochem
Fuel Cells: Performance and Durability
Guest Editors: Fatemeh Gholami, Martin TomasDeadline: 31 December 2024
Special Issue in
Electrochem
Emerging Trends of Electrochemical Sensors in Food Analysis
Guest Editor: Ítala MarxDeadline: 31 December 2024
Special Issue in
Electrochem
Silicon Electrochemistry: Fundamentals and Modern Applications
Guest Editor: Andrey SuzdaltsevDeadline: 7 July 2025