Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = macroorganisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7231 KB  
Article
Underwater Performance of Eco-Friendly Choline-Based Ionic Liquid Coatings Applied on Stone Surfaces
by Marika Luci, Filomena De Leo, Mirko Mutalipassi, Teresa Romeo, Silvestro Greco, Chiara Giommi, Lorenzo Evola, Mauro Francesco La Russa, Michela Ricca, Donatella de Pascale, Clara Enza Urzì, Sandra Lo Schiavo, Christian Galasso, Nadia Ruocco and Silvestro Antonio Ruffolo
Coatings 2026, 16(1), 136; https://doi.org/10.3390/coatings16010136 - 20 Jan 2026
Viewed by 143
Abstract
In the marine environment, numerous factors endanger the preservation of underwater rock surfaces as well as submerged archeological artifacts, including physical, chemical, and biological processes. Limestone and marble are common materials used in artifacts due to their availability and long-term durability. However, such [...] Read more.
In the marine environment, numerous factors endanger the preservation of underwater rock surfaces as well as submerged archeological artifacts, including physical, chemical, and biological processes. Limestone and marble are common materials used in artifacts due to their availability and long-term durability. However, such surfaces provide a suitable substrate for the settlement of micro- and macro-organisms, causing so-called biofouling, which significantly contributes to stone deterioration. Previous studies have demonstrated the applicability of antifouling coatings containing ionic liquids (ILs) on marble surfaces and assessed their durability for up to 15 days under submerged environments. To further corroborate these results, additional physical studies (colorimetric, contact angles, capillarity water absorption measurements, and UV aging) were carried out on treated limestone. Washout tests were also performed on both lithotypes to verify the coatings’ stability under medium-term underwater exposures. The results of these investigations are reported here. Our data confirm that the application of IL-based coatings had no effect on the intrinsic properties of the limestone surfaces, as previously reported for marble, including resistance to daily UV irradiation. In addition, laboratory tests demonstrated good coating durability against seawater erosive action for up to 6 months. Full article
Show Figures

Figure 1

17 pages, 834 KB  
Article
Enhancing Sustainable English Writing Instruction Through a Generative AI-Based Virtual Teacher Within a Co-Regulated Learning Framework
by Yongkang Yang, Lingyun Huang, Weiyi Lin, Yilin Li, Yaopeng Xu and Liying Cheng
Sustainability 2025, 17(19), 8770; https://doi.org/10.3390/su17198770 - 30 Sep 2025
Viewed by 1383
Abstract
English writing proficiency is pivotal to sustainable academic success and employability. In Chinese higher education, however, conventional instruction often constrains students’ self-regulation and access to individualized feedback. Drawing on self-regulated learning (SRL) and co-regulated learning (CoRL), this study investigates whether a CoRL-guided generative [...] Read more.
English writing proficiency is pivotal to sustainable academic success and employability. In Chinese higher education, however, conventional instruction often constrains students’ self-regulation and access to individualized feedback. Drawing on self-regulated learning (SRL) and co-regulated learning (CoRL), this study investigates whether a CoRL-guided generative AI virtual teacher (CoRL-VT), designed as a “more capable other,” is associated with enhanced undergraduate writing outcomes relative to standard AI support. Using a 12-week quasi-experimental design with two intact classes (N = 61) in Anhui, China, we compared a control condition (standard AI) with an intervention (CoRL-VT). Writing proficiency was assessed via IELTS Writing Task 2 at pre- and post-test; three certified examiners scored all scripts with strong agreement (ICC = 0.87). Analyses adjusting for baseline yielded an estimated group difference favoring CoRL-VT. Teacher interview testimony aligned with the quantitative pattern, noting clearer macro-organization, richer lexical choices, and more teacherly formative feedback among CoRL-VT students. Taken together, these findings offer exploratory, descriptive evidence consistent with the potential of structured, CoRL-informed AI scaffolding in sustainable writing pedagogy and outline design principles for replicable CoRL-VT implementations in resource-conscious contexts. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

9 pages, 1172 KB  
Opinion
Does the Environment “Filter” or “Select” Species? Bridging the Ecologies of Microbes and Macro-Organisms for a Common Niche Assembly Theory
by Rutger De Wit
Environments 2025, 12(10), 350; https://doi.org/10.3390/environments12100350 - 28 Sep 2025
Cited by 1 | Viewed by 1565
Abstract
More than five decades before the introduction of “environmental filtering” in plant and vegetation sciences, Baas Becking proposed that the “environment selects” for studies in microbial ecology. He coupled this with the ubiquity law that he proposed for microbes to obtain the tenet [...] Read more.
More than five decades before the introduction of “environmental filtering” in plant and vegetation sciences, Baas Becking proposed that the “environment selects” for studies in microbial ecology. He coupled this with the ubiquity law that he proposed for microbes to obtain the tenet “everything is everywhere, but, the environment selects”. Nowadays, while this tenet is mostly used as a null hypothesis for studies of microbial biogeography, the latter part has large implications for niche assembly theories. In this respect, it is very similar to the idea of “environmental filtering”, although some minor differences exist regarding how both concepts have been applied in macrobial and microbial ecologies. During the second decade of the 21st century, the usefulness of the latter has been questioned due to difficulties in disentangling the roles of environmental (abiotic) filtering and ecological interaction in community assembly. A new vision has emerged in the literature that considers the environmental filter as dynamic and continuously influenced by biotic communities. With a small modification, this scheme provides a solution that can accommodate the ecologies of both microbes and macro-organisms for a common niche assembly theory. Full article
Show Figures

Figure 1

12 pages, 2123 KB  
Article
Assessing the Modulatory Effects of Biochar on Soil Health Status in Response to Pesticide Application
by Giovanna B. Melas, Oriol Ortiz, Amira M. Roshdy, Mohamed Y. Hendawi, Dimitrios Triantakonstantis and Sameh Shaddad
Earth 2025, 6(2), 27; https://doi.org/10.3390/earth6020027 - 11 Apr 2025
Viewed by 1454
Abstract
Considering the global competition to increase food productivity due to the increasing population growth, the use of chemical pesticides has become the quick solution, but by increasing awareness about the serious dangers of wasteful chemicals in various areas of life, it has become [...] Read more.
Considering the global competition to increase food productivity due to the increasing population growth, the use of chemical pesticides has become the quick solution, but by increasing awareness about the serious dangers of wasteful chemicals in various areas of life, it has become necessary to move immediately, albeit gradually, towards safe biological treatments. From this point of view, the use of biochar is one of the trends in reducing soil pollution with chemical pesticides. Therefore, the main objectives of this work are (i) to assess if the application of three pesticides based on imidacloprid, methyl thiophanate, and glyphosate has detectable adverse consequences on soil organisms’ activity and (ii) to evaluate if the addition of biochar modifies the effects of these chemicals. An agricultural soil was amended with different doses of biochar. The treated soil received realistic amounts of currently used pesticides. Samples were stored at 21 °C and 50% WHC (water holding capacity) for a period of 28 days under dark conditions. Oxygen consumption was measured for 12 consecutive hours after the addition of 2.5 g glucose kg−1 as a stimulant for soil organisms. Biomass C was estimated from the difference between the amount of C in 0.5 M K2SO4 extracts of CHCl3 fumigated soil and the extractable C in non-fumigated samples. Specific respiration was computed as the amount of O2 consumed per unit of Biomass Carbon. The results of this work proved that the tested biochar could modulate the effects produced by the agrochemicals on soil biomass. Full article
Show Figures

Figure 1

34 pages, 866 KB  
Review
Anticancer Nanoparticle Carriers of the Proapoptotic Protein Cytochrome c
by Alexandar M. Zhivkov, Svetlana H. Hristova and Trifon T. Popov
Pharmaceutics 2025, 17(3), 305; https://doi.org/10.3390/pharmaceutics17030305 - 26 Feb 2025
Cited by 3 | Viewed by 1488
Abstract
This review discusses the literature data on the synthesis, physicochemical properties, and cytotoxicity of composite nanoparticles bearing the mitochondrial protein cytochrome c (cytC), which can act as a proapoptotic mediator in addition to its main function as an electron carrier in the electron [...] Read more.
This review discusses the literature data on the synthesis, physicochemical properties, and cytotoxicity of composite nanoparticles bearing the mitochondrial protein cytochrome c (cytC), which can act as a proapoptotic mediator in addition to its main function as an electron carrier in the electron transport chain. The introduction of exogenous cytC via absorption of carrier particles, the phagocytosis of colloid particles of submicrometric size, or the receptor-mediated endocytosis of nanoparticles in cancer cells, initiates the process of apoptosis—a multistage cascade of biochemical reactions leading to complete destruction of the cells. CytC–carrier composite particles have the potential for use in the treatment of neoplasms with superficial localization: skin, mouth, stomach, colon, etc. This approach can solve the two main problems of anticancer therapy: selectivity and non-toxicity. Selectivity is based on the incapability of the normal cell to absorb (nano)particles, except for the cells of the immune system. The use of cytC as a protein that normally functions in mitochondria is harmless for the macroorganism. In this review, the factors limiting cytotoxicity and the ways to increase it are discussed from the point of view of the physicochemical properties of the cytC–carrier particles. The different techniques used for the preparation of cytC-bearing colloids and nanoparticles are discussed. Articles reporting the achievement of high cytotoxicity with each of the techniques are critically analyzed. Full article
Show Figures

Figure 1

65 pages, 7602 KB  
Review
Advanced Technologies for Large Scale Supply of Marine Drugs
by Henar Martínez, Mercedes Santos, Lucía Pedraza and Ana M. Testera
Mar. Drugs 2025, 23(2), 69; https://doi.org/10.3390/md23020069 - 7 Feb 2025
Cited by 12 | Viewed by 6281
Abstract
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From [...] Read more.
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From a structural point of view and with few exceptions, MNPs of pharmaceutical importance derive from the so-called secondary metabolism of marine organisms. When production strategies rely on marine macroorganisms, harvesting or culturing coupled with extraction procedures frequently remain the only alternative to producing these compounds on an industrial scale. Their supply can often be implemented with laboratory scale cultures for bacterial, fungal, or microalgal sources. However, a diverse approach, combining traditional methods with modern synthetic biology and biosynthesis strategies, must be considered for invertebrate MNPs, as they are usually naturally accumulated in only very small quantities. This review offers a comprehensive examination of various production strategies for MNPs, addressing the challenges related to supply, synthesis, and scalability. It also underscores recent biotechnological advancements that are likely to transform the current industrial-scale manufacturing methods for pharmaceuticals derived from marine sources. Full article
Show Figures

Figure 1

17 pages, 785 KB  
Review
A Review of Biological Control One Decade After the Sorghum Aphid (Melanaphis sorghi) Outbreak
by Erubiel Toledo-Hernández, Guadalupe Peña-Chora, Ilse Mancilla-Dorantes, Francisco Israel Torres-Rojas, Yanet Romero-Ramírez, Francisco Palemón-Alberto, Santo Ángel Ortega-Acosta, Edgar Jesús Delgado-Núñez, David Osvaldo Salinas-Sánchez, Luz Janet Tagle-Emigdio and César Sotelo-Leyva
Plants 2024, 13(20), 2873; https://doi.org/10.3390/plants13202873 - 14 Oct 2024
Cited by 4 | Viewed by 2502
Abstract
Melanaphis sorghi is a pest that is native to Africa but is now distributed worldwide. In 2013, its destructive capacity was demonstrated when it devastated sorghum crops in the United States and Mexico, making it a new pest of economic importance in North [...] Read more.
Melanaphis sorghi is a pest that is native to Africa but is now distributed worldwide. In 2013, its destructive capacity was demonstrated when it devastated sorghum crops in the United States and Mexico, making it a new pest of economic importance in North America. At the time, the phytosanitary authorities of both countries recommended the use of pesticides to control the outbreak, and biological control products for the management of this pest were not known. In response to the outbreak of M. sorghi in North America, several field studies have been performed in the last decade on sorghum crops in the USA and Mexico. Works have focused on assessing resistant sorghum hybrids, pesticide use, and recruitment of associated aphid predators and entomopathogens for natural control of M. sorghi populations. The objective of this review is to compile the information that has been generated in the past decade about indigenous enemies affecting M. sorghi naturally in the field, as well as the search for biological control alternatives and evaluations of interactive effects of resistant sorghum hybrids, pesticides, and natural enemies. To date, different predators, parasitoids, fungi, and bacteria have been evaluated and in many cases found to affect M. sorghi populations in sorghum agroecosystems or laboratory bioassays, and the use of resistant sorghum varieties and pesticides did not have clear toxic effects on natural enemy populations. Many of the macroorganisms and microorganisms that have been evaluated as potential biological controls have shown potential as alternatives to synthetic pesticides for keeping M. sorghi population densities below economic damage thresholds and are compatible with integrated management of sorghum aphids. While most tests of these biological alternatives have shown that they have aphidicidal potential against sorghum aphids, it is crucial to take into account that their effectiveness in the field depends on a number of abiotic and biotic factors, including soil texture, temperature, humidity, and natural enemies. Full article
(This article belongs to the Special Issue Biopesticides for Plant Protection)
Show Figures

Figure 1

15 pages, 7850 KB  
Article
Metabolites from Marine Macroorganisms of the Red Sea Acting as Promoters or Inhibitors of Amylin Aggregation
by Mawadda Alghrably, Mohamed A. Tammam, Aikaterini Koutsaviti, Vassilios Roussis, Xabier Lopez, Giulia Bennici, Abeer Sharfalddin, Hanan Almahasheer, Carlos M. Duarte, Abdul-Hamid Emwas, Efstathia Ioannou and Mariusz Jaremko
Biomolecules 2024, 14(8), 951; https://doi.org/10.3390/biom14080951 - 6 Aug 2024
Cited by 3 | Viewed by 1685
Abstract
Amylin is part of the endocrine pancreatic system that contributes to glycemic control, regulating blood glucose levels. However, human amylin has a high tendency to aggregate, forming isolated amylin deposits that are observed in patients with type 2 diabetes mellitus. In search of [...] Read more.
Amylin is part of the endocrine pancreatic system that contributes to glycemic control, regulating blood glucose levels. However, human amylin has a high tendency to aggregate, forming isolated amylin deposits that are observed in patients with type 2 diabetes mellitus. In search of new inhibitors of amylin aggregation, we undertook the chemical analyses of five marine macroorganisms encountered in high populations in the Red Sea and selected a panel of 10 metabolites belonging to different chemical classes to evaluate their ability to inhibit the formation of amyloid deposits in the human amylin peptide. The thioflavin T assay was used to examine the kinetics of amyloid aggregation, and atomic force microscopy was employed to conduct a thorough morphological examination of the formed fibrils. The potential ability of these compounds to interact with the backbone of peptides and compete with β-sheet formation was analyzed by quantum calculations, and the interactions with the amylin peptide were computationally examined using molecular docking. Despite their structural similarity, it could be observed that the hydrophobic and hydrogen bond interactions of pyrrolidinones 9 and 10 with the protein sheets result in one case in a stable aggregation, while in the other, they cause distortion from aggregation. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

22 pages, 2518 KB  
Review
Anti-Biofilm Extracts and Molecules from the Marine Environment
by Flore Caudal, Catherine Roullier, Sophie Rodrigues, Alain Dufour, Sébastien Artigaud, Gwenaelle Le Blay, Alexis Bazire and Sylvain Petek
Mar. Drugs 2024, 22(7), 313; https://doi.org/10.3390/md22070313 - 10 Jul 2024
Cited by 4 | Viewed by 6652
Abstract
Pathogenic bacteria and their biofilms are involved in many diseases and represent a major public health problem, including the development of antibiotic resistance. These biofilms are known to cause chronic infections for which conventional antibiotic treatments are often ineffective. The search for new [...] Read more.
Pathogenic bacteria and their biofilms are involved in many diseases and represent a major public health problem, including the development of antibiotic resistance. These biofilms are known to cause chronic infections for which conventional antibiotic treatments are often ineffective. The search for new molecules and innovative solutions to combat these pathogens and their biofilms has therefore become an urgent need. The use of molecules with anti-biofilm activity would be a potential solution to these problems. The marine world is rich in micro- and macro-organisms capable of producing secondary metabolites with original skeletons. An interest in the chemical strategies used by some of these organisms to regulate and/or protect themselves against pathogenic bacteria and their biofilms could lead to the development of bioinspired, eco-responsible solutions. Through this original review, we listed and sorted the various molecules and extracts from marine organisms that have been described in the literature as having strictly anti-biofilm activity, without bactericidal activity. Full article
(This article belongs to the Special Issue Marine Anti-Biofilm Compounds from Natural to Synthetic Compounds)
Show Figures

Graphical abstract

25 pages, 1555 KB  
Review
Proof of Concept of Natural and Synthetic Antifouling Agents in Coatings
by Daniela Pereira, Joana R. Almeida, Honorina Cidade and Marta Correia-da-Silva
Mar. Drugs 2024, 22(7), 291; https://doi.org/10.3390/md22070291 - 24 Jun 2024
Cited by 13 | Viewed by 3781
Abstract
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of [...] Read more.
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests. Full article
(This article belongs to the Special Issue Marine Anti-Biofilm Compounds from Natural to Synthetic Compounds)
Show Figures

Figure 1

19 pages, 3963 KB  
Article
The Effect of Orally Administered Multi-Strain Probiotic Formulation (Lactobacillus, Bifidobacterium) on the Phagocytic Activity and Oxidative Metabolism of Peripheral Blood Granulocytes and Monocytes in Lambs
by Roman Wójcik, Joanna Małaczewska, Dawid Tobolski, Jan Miciński, Edyta Kaczorek-Łukowska and Grzegorz Zwierzchowski
Int. J. Mol. Sci. 2024, 25(10), 5068; https://doi.org/10.3390/ijms25105068 - 7 May 2024
Cited by 6 | Viewed by 3301
Abstract
Probiotic feed additives have attracted considerable research interest in recent years because the effectiveness of probiotics can differ across microbial strains and the supplemented macroorganisms. The present study was conducted on 16 lambs divided equally into two groups (C—control and E—experimental). The examined [...] Read more.
Probiotic feed additives have attracted considerable research interest in recent years because the effectiveness of probiotics can differ across microbial strains and the supplemented macroorganisms. The present study was conducted on 16 lambs divided equally into two groups (C—control and E—experimental). The examined lambs were aged 11 days at the beginning of the experiment and 40 days at the end of the experiment. The diet of group E lambs was supplemented with a multi-strain probiotic formulation (Lactobacillus plantarum AMT14, Lactobacillus plantarum AMT4, Lactobacillus rhamnosus AMT15, and Bifidobacterium animalis AMT30), whereas group C lambs did not receive the probiotic additive. At the beginning of the experiment (day 0) and on experimental days 15 and 30, blood was sampled from the jugular vein to determine and compare: phagocytic activity (Phagotest) and oxidative metabolism (Phagoburst) of peripheral blood granulocytes and monocytes by flow cytometry. An analysis of the phagocytic activity of granulocytes and monocytes revealed significantly higher levels of phagocytic activity (expressed as the percentage of phagocytic cells and mean fluorescence intensity) in lambs that were administered the multi-strain probiotic formulation compared with lambs in the control group. The probiotic feed additive also exerted a positive effect on the oxidative metabolism of both granulocytes and monocytes (expressed as the percentage of oxidative metabolism and mean fluorescence intensity) after stimulation with Escherichia coli bacteria and with PMA (4-phorbol-12-β-myristate-13-acetate). These findings suggest that the tested probiotic formulation may have a positive effect on the immune status of lambs. Full article
Show Figures

Figure 1

42 pages, 6144 KB  
Review
New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents
by Radwa N. Morgan, Amer Al Ali, Mohammad Y. Alshahrani and Khaled M. Aboshanab
Microorganisms 2023, 11(10), 2444; https://doi.org/10.3390/microorganisms11102444 - 29 Sep 2023
Cited by 16 | Viewed by 4454
Abstract
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic [...] Read more.
Biofouling is the assemblage of undesirable biological materials and macro-organisms (barnacles, mussels, etc.) on submerged surfaces, which has unfavorable impacts on the economy and maritime environments. Recently, research efforts have focused on isolating natural, eco-friendly antifouling agents to counteract the toxicities of synthetic antifouling agents. Marine actinomycetes produce a multitude of active metabolites, some of which acquire antifouling properties. These antifouling compounds have chemical structures that fall under the terpenoids, polyketides, furanones, and alkaloids chemical groups. These compounds demonstrate eminent antimicrobial vigor associated with antiquorum sensing and antibiofilm potentialities against both Gram-positive and -negative bacteria. They have also constrained larval settlements and the acetylcholinesterase enzyme, suggesting a strong anti-macrofouling activity. Despite their promising in vitro and in vivo biological activities, scaled-up production of natural antifouling agents retrieved from marine actinomycetes remains inapplicable and challenging. This might be attributed to their relatively low yield, the unreliability of in vitro tests, and the need for optimization before scaled-up manufacturing. This review will focus on some of the most recent marine actinomycete-derived antifouling agents, featuring their biological activities and chemical varieties after providing a quick overview of the disadvantages of fouling and commercially available synthetic antifouling agents. It will also offer different prospects of optimizations and analysis to scale up their industrial manufacturing for potential usage as antifouling coatings and antimicrobial and therapeutic agents. Full article
Show Figures

Figure 1

82 pages, 7151 KB  
Review
Peptides from Marine-Derived Fungi: Chemistry and Biological Activities
by Salar Hafez Ghoran, Fatemeh Taktaz, Emília Sousa, Carla Fernandes and Anake Kijjoa
Mar. Drugs 2023, 21(10), 510; https://doi.org/10.3390/md21100510 - 26 Sep 2023
Cited by 30 | Viewed by 5520
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides [...] Read more.
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

13 pages, 2613 KB  
Article
Butanolides and Butenolides from a Marine-Derived Streptomyces sp. Exert Neuroprotective Activity through Activation of the TrkB Neurotrophin Receptor
by Paolo Giaccio, Despoina Charou, Dafni-Ioanna Diakaki, Anna Chita, Achille Gravanis, Ioannis Charalampopoulos, Vassilios Roussis and Efstathia Ioannou
Mar. Drugs 2023, 21(9), 465; https://doi.org/10.3390/md21090465 - 25 Aug 2023
Cited by 2 | Viewed by 3780
Abstract
Neurodegenerative diseases are incurable and debilitating conditions, characterized by progressive loss and degeneration of vulnerable neuronal populations. Currently, there are no effective therapies available for the treatment of most neurodegenerative disorders. A panel of extracts exhibiting interesting chemical profiles among a high number [...] Read more.
Neurodegenerative diseases are incurable and debilitating conditions, characterized by progressive loss and degeneration of vulnerable neuronal populations. Currently, there are no effective therapies available for the treatment of most neurodegenerative disorders. A panel of extracts exhibiting interesting chemical profiles among a high number of bacterial strains isolated from East Mediterranean marine sediments and macroorganisms were evaluated for their activity on TrkB-expressing cells. Among them, the actinobacterial strain Streptomyces sp. BI0788, exhibiting neuroprotective activity in vitro, was selected and cultivated in large-scale. The chemical analysis of its organic extract resulted in the isolation of four new butanolides (1, 46), along with two previously reported butanolides (2 and 3) and eight previously reported butenolides (714). Compounds 24 and 714 were evaluated for their neuroprotective effects on TrkB-expressing NIH-3T3 cells. Among them, metabolites 3, 4, 7, 10, 11, 13 and 14 exhibited significant protective activity on the aforementioned cells through the activation of TrkB, the high-affinity receptor for the Brain-Derived Neurotrophic Factor (BDNF), which is well known to play a crucial role in neuronal cell survival and maintenance. Full article
Show Figures

Graphical abstract

17 pages, 1919 KB  
Systematic Review
Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review
by Janique Koller, Louis Sutter, Jérémy Gonthier, Jana Collatz and Lindsey Norgrove
Pathogens 2023, 12(7), 957; https://doi.org/10.3390/pathogens12070957 - 20 Jul 2023
Cited by 30 | Viewed by 5964
Abstract
Biological pest control is an environmentally friendly alternative to synthetic pesticides, using organisms such as viruses, bacteria, fungi, and parasitoids. However, efficacy is variable and combining different biocontrol agents could improve success rates. We conducted a systematic review of studies combining a parasitoid [...] Read more.
Biological pest control is an environmentally friendly alternative to synthetic pesticides, using organisms such as viruses, bacteria, fungi, and parasitoids. However, efficacy is variable and combining different biocontrol agents could improve success rates. We conducted a systematic review of studies combining a parasitoid with an entomopathogenic microorganism, the first of its kind. We searched in Web of Science and extracted data from 49 publications matching the pre-defined inclusion criteria. Combinations of 36 hymenopteran parasitoids with 17 entomopathogenic microorganisms used to control 31 target pests were found. Trichogramma pretiosum and Encarsia formosa were the most frequently studied parasitoids, while Beauveria bassiana, Metarhizium anisopliae, Lecanicillium muscarium, Bacillus thuringiensis var. kurstaki, the Spodoptera exigua multiple nucleopolyhedrovirus, and the Spodoptera frugiperda multiple nucleopolyhedrovirus were the main microbial agents assessed. Out of 49 parasitoid–microorganism combinations assessed in the laboratory experiments, thirty-eight were reported as compatible and six as incompatible. Timing and dosage of biopesticides played a crucial role, with later application and appropriate dosage minimizing adverse effects on parasitoid development. More research is needed to assess compatibility and efficacy under real-world conditions. Our review provides valuable insights for researchers and practitioners to optimize the combined use of micro- and macroorganisms for effective pest control. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

Back to TopTop