-
Cryptic Diversity of Black Band Disease Cyanobacteria in Siderastrea siderea Corals Revealed by Chemical Ecology and Comparative Genome-Resolved Metagenomics -
Secondary Metabolites with Anti-Inflammatory Activity from Laurencia majuscula Collected in the Red Sea -
New Nostocyclophanes from Nostoc linckia -
Molecular Networking Revealed Unique UV-Absorbing Phospholipids: Favilipids from the Marine Sponge Clathria faviformis -
Enhanced Molecular Networking Shows Microbacterium sp. V1 as a Factory of Antioxidant Proline-Rich Peptides
Journal Description
Marine Drugs
Marine Drugs
is the leading, peer-reviewed, open access journal on the research, development, and production of biologically and therapeutically active compounds from the sea. Marine Drugs is published monthly online by MDPI. Australia New Zealand Marine Biotechnology Society (ANZMBS) is affiliated with Marine Drugs and its members receive a discount on article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, PubAg, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q1 (Chemistry, Medicinal) / CiteScore - Q1 (Pharmacology, Toxicology and Pharmaceutics (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 13.6 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
6.085 (2021);
5-Year Impact Factor:
6.044 (2021)
Latest Articles
Exploring Bioactive Compounds in Brown Seaweeds Using Subcritical Water: A Comprehensive Analysis
Mar. Drugs 2023, 21(6), 328; https://doi.org/10.3390/md21060328 (registering DOI) - 26 May 2023
Abstract
►
Show Figures
In this study, we characterized the bioactive properties of three important brown seaweed species, Sargassum thunbergii, Undaria pinnatifida, and Saccharina japonica, by subcritical water extraction (SWE), as these species are well known for their beneficial health effects. Their physiochemical properties, including potential
[...] Read more.
In this study, we characterized the bioactive properties of three important brown seaweed species, Sargassum thunbergii, Undaria pinnatifida, and Saccharina japonica, by subcritical water extraction (SWE), as these species are well known for their beneficial health effects. Their physiochemical properties, including potential antioxidant, antihypertensive, and α-glucosidase inhibitory activity, and the antibacterial activity of the hydroysates were also analyzed. The highest total phlorotannin, total sugar content, and reducing sugar content in the S. thunbergii hydrolysates were 38.82 ± 0.17 mg PGE/g, 116.66 ± 0.19 mg glucose/g dry sample, and 53.27 ± 1.57 mg glucose/g dry sample, respectively. The highest ABTS+ and DPPH antioxidant activities were obtained in the S. japonica hydrolysates (124.77 ± 2.47 and 46.35 ± 0.01 mg Trolox equivalent/g, respectively) and the highest FRAP activity was obtained in the S. thunbergii hydrolysates (34.47 ± 0.49 mg Trolox equivalent/g seaweed). In addition, the seaweed extracts showed antihypertensive (≤59.77 ± 0.14%) and α-glucosidase inhibitory activity (≤68.05 ± 1.15%), as well as activity against foodborne pathogens. The present findings provide evidence of the biological activity of brown seaweed extracts for potential application in the food, pharmaceutical, and cosmetic sectors.
Full article
Open AccessArticle
Bioactive Polyketides and Benzene Derivatives from Two Mangrove Sediment-Derived Fungi in the Beibu Gulf
by
, , , , , , , , , and
Mar. Drugs 2023, 21(6), 327; https://doi.org/10.3390/md21060327 (registering DOI) - 26 May 2023
Abstract
To discover bioactive natural products from mangrove sediment-derived microbes, a chemical investigation of the two Beibu Gulf-derived fungi strains, Talaromyces sp. SCSIO 41050 and Penicillium sp. SCSIO 41411, led to the isolation of 23 natural products. Five of them were identified as new
[...] Read more.
To discover bioactive natural products from mangrove sediment-derived microbes, a chemical investigation of the two Beibu Gulf-derived fungi strains, Talaromyces sp. SCSIO 41050 and Penicillium sp. SCSIO 41411, led to the isolation of 23 natural products. Five of them were identified as new ones, including two polyketide derivatives with unusual acid anhydride moieties named cordyanhydride A ethyl ester (1) and maleicanhydridane (4), and three hydroxyphenylacetic acid derivatives named stachylines H−J (10−12). Their structures were determined by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analyses, while the absolute configurations were established by theoretical electronic circular dichroism (ECD) calculation. A variety of bioactive screens revealed three polyketide derivatives (1−3) with obvious antifungal activities, and 4 displayed moderate cytotoxicity against cell lines A549 and WPMY-1. Compounds 1 and 6 at 10 μM exhibited obvious inhibition against phosphodiesterase 4 (PDE4) with inhibitory ratios of 49.7% and 39.6%, respectively, while 5, 10, and 11 showed the potential of inhibiting acetylcholinesterase (AChE) by an enzyme activity test, as well as in silico docking analysis.
Full article
(This article belongs to the Special Issue A Theme Issue Honoring Professor Peter Proksch's 70th Birthday: Bioactive Compounds from the Ocean)
Open AccessArticle
Substitution of D-Arginine at Position 11 of α-RgIA Potently Inhibits α7 Nicotinic Acetylcholine Receptor
Mar. Drugs 2023, 21(6), 326; https://doi.org/10.3390/md21060326 (registering DOI) - 26 May 2023
Abstract
Conotoxins are a class of disulfide-rich peptides found in the venom of cone snails, which have attracted considerable attention in recent years due to their potent activity on ion channels and potential for therapeutics. Among them, α-conotoxin RgIA, a 13-residue peptide, has shown
[...] Read more.
Conotoxins are a class of disulfide-rich peptides found in the venom of cone snails, which have attracted considerable attention in recent years due to their potent activity on ion channels and potential for therapeutics. Among them, α-conotoxin RgIA, a 13-residue peptide, has shown great promise as a potent inhibitor of α9α10 nAChRs for pain management. In this study, we investigated the effect of substituting the naturally occurring L-type arginine at position 11 of the RgIA sequence with its D-type amino acid. Our results indicate that this substitution abrogated the ability of RgIA to block α9α10 nAChRs, but instead endowed the peptide with the ability to block α7 nAChR activity. Structural analyses revealed that this substitution induced significant alteration of the secondary structure of RgIA[11r], which consequently affected its activity. Our findings underscore the potential of D-type amino acid substitution as a promising strategy for designing novel conotoxin-based ligands targeting different types of nAChRs.
Full article
(This article belongs to the Special Issue Conotoxin and Conotoxin Analogues: A Pharmacy Cabinet under the Sea)
►▼
Show Figures

Figure 1
Open AccessArticle
Design, Synthesis, and Anticancer Activity of Novel 3,6-Diunsaturated 2,5-Diketopiperazines
by
, , , , , , , , , and
Mar. Drugs 2023, 21(6), 325; https://doi.org/10.3390/md21060325 (registering DOI) - 26 May 2023
Abstract
Based on the marine natural products piperafizine B, XR334, and our previously reported compound 4m, fourteen novel 3,6-diunsaturated 2,5-diketopiperazine (2,5-DKP) derivatives (1, 2, 4–6, 8–16), together with two known ones (3 and
[...] Read more.
Based on the marine natural products piperafizine B, XR334, and our previously reported compound 4m, fourteen novel 3,6-diunsaturated 2,5-diketopiperazine (2,5-DKP) derivatives (1, 2, 4–6, 8–16), together with two known ones (3 and 7), were designed and synthesized as anticancer agents against the A549 and Hela cell lines. The MTT assay results showed that the derivatives 6, 8–12, and 14 had moderate to good anticancer capacities, with IC50 values ranging from 0.7 to 8.9 μM. Among them, compound 11, with naphthalen-1-ylmethylene and 2-methoxybenzylidene functions at the 3 and 6 positions of 2,5-DKP ring, respectively, displayed good inhibitory activities toward both A549 (IC50 = 1.2 μM) and Hela (IC50 = 0.7 μM) cancer cells. It could also induce apoptosis and obviously block cell cycle progression in the G2/M phases in both cells at 1.0 μM. The electron-withdrawing functions might not be favorable for the derivatives with high anticancer activities. Additionally, compared to piperafizine B and XR334, these semi-N-alkylated derivatives have high liposolubilities (>1.0 mg mL−1). Compound 11 can be further developed, aiming at the discovery of a novel anticancer candidate.
Full article
(This article belongs to the Special Issue Natural Products from the Beibu Gulf of the South China Sea)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Influence of Intestinal Barrier on Alleviating an Increase in Blood Pressure by Sodium Alginate Intake in 2-Kidney, 1-Clip Renovascular Hypertensive Rats
by
, , , , , and
Mar. Drugs 2023, 21(6), 324; https://doi.org/10.3390/md21060324 (registering DOI) - 26 May 2023
Abstract
Sodium alginate (SALG) is a substance derived from brown seaweed that has been shown to reduce blood pressure (BP). However, its effects on renovascular hypertension caused by 2-kidney, 1-clip (2K1C) are not yet clear. Previous research suggests that hypertensive rats have increased intestinal
[...] Read more.
Sodium alginate (SALG) is a substance derived from brown seaweed that has been shown to reduce blood pressure (BP). However, its effects on renovascular hypertension caused by 2-kidney, 1-clip (2K1C) are not yet clear. Previous research suggests that hypertensive rats have increased intestinal permeability, and that SALG improves the gut barrier in inflammatory bowel disease mouse models. Therefore, the goal of this study was to determine whether the antihypertensive effects of SALG involve the intestinal barrier in 2K1C rats. Rats were fed either a 1.0% SALG diet or a control diet for six weeks after being subjected to 2K1C surgery or a sham operation. The systolic BP was measured weekly, and the mean arterial BP was measured at the end of the study. Intestinal samples were taken for analysis, and plasma lipopolysaccharide (LPS) levels were measured. The results showed that BP in 2K1C rats was significantly higher than in SHAM rats when fed CTL, but not when fed SALG. The gut barrier in 2K1C rats was improved by SALG intake. Plasma LPS levels also differed depending on the animal model and diet. In conclusion, dietary SALG may alleviate 2K1C renovascular hypertension by altering the gut barrier.
Full article
(This article belongs to the Special Issue Seaweed Bioactive Metabolites: Health Benefits and Potential Applications 2.0)
►▼
Show Figures

Figure 1
Open AccessReview
Therapeutic Potential of Polyphenols and Other Micronutrients of Marine Origin
by
and
Mar. Drugs 2023, 21(6), 323; https://doi.org/10.3390/md21060323 (registering DOI) - 26 May 2023
Abstract
►▼
Show Figures
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique
[...] Read more.
Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.
Full article

Figure 1
Open AccessPerspective
Marine Puupehenone and Puupehedione: Synthesis and Future Perspectives
Mar. Drugs 2023, 21(6), 322; https://doi.org/10.3390/md21060322 (registering DOI) - 26 May 2023
Abstract
Puupehenone and puupehedione are natural products isolated from marine organisms. These compounds display a broad spectrum of biological activities, the in vitro antitubercular activity of puupehenone being a stand out, and are equipped with an interesting structural complexity. These products have served to
[...] Read more.
Puupehenone and puupehedione are natural products isolated from marine organisms. These compounds display a broad spectrum of biological activities, the in vitro antitubercular activity of puupehenone being a stand out, and are equipped with an interesting structural complexity. These products have served to stimulate the continual interest of the synthetic community. The first part of this article is a review of their total synthesis, using natural compounds which have the potential to be transformed into these marine compounds as starting materials; the synthetic routes employed to generate the basic skeleton; and the advances made to synthesize the pyran C ring with the required diastereoselectivity to obtain the natural products. Finally, this perspective shows a personal reflection of the authors on a possible unified and efficient retrosynthetic route that could allow easy access to these natural products, as well as their epimers at the C8 carbon and which could be used to address future biological issues in the production of pharmacologically active compounds.
Full article
(This article belongs to the Special Issue Total Synthesis of Marine Bioactive Natural Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Simulation and Economic Analysis of the Biotechnological Potential of Biomass Production from a Microalgal Consortium
by
, , , , and
Mar. Drugs 2023, 21(6), 321; https://doi.org/10.3390/md21060321 (registering DOI) - 26 May 2023
Abstract
The biomass of microalgae and the compounds that can be obtained from their processing are of great interest for various economic sectors. Chlorophyll from green microalgae has biotechnological applications of great potential in different industrial areas such as food, animal feed, pharmaceuticals, cosmetics,
[...] Read more.
The biomass of microalgae and the compounds that can be obtained from their processing are of great interest for various economic sectors. Chlorophyll from green microalgae has biotechnological applications of great potential in different industrial areas such as food, animal feed, pharmaceuticals, cosmetics, and agriculture. In this paper, the experimental, technical and economic performance of biomass production from a microalgal consortium (Scenedesmus sp., Chlorella sp., Schroderia sp., Spirulina sp., Pediastrum sp., and Chlamydomonas sp.) was investigated in three cultivation systems (phototrophic, heterotrophic and mixotrophic) in combination with the extraction of chlorophyll (a and b) on a large scale using simulation; 1 ha was established as the area for cultivation. In the laboratory-scale experimental stage, biomass and chlorophyll concentrations were determined for 12 days. In the simulation stage, two retention times in the photobioreactor were considered, which generated six case studies for the culture stage. Subsequently, a simulation proposal for the chlorophyll extraction process was evaluated. The highest microalgae biomass concentration was 2.06 g/L in heterotrophic culture, followed by mixotrophic (1.98 g/L). Phototrophic and mixotrophic cultures showed the highest chlorophyll concentrations of 20.5 µg/mL and 13.5 µg/mL, respectively. The simulation shows that higher biomass and chlorophyll production is attained when using the mixotrophic culture with 72 h of retention that we considered to evaluate chlorophyll production (a and b). The operating cost of the entire process is very high; the cultivation stage has the highest operating cost (78%), mainly due to the high energy consumption of the photobioreactors.
Full article
(This article belongs to the Topic Microalgal Biotechnology for Bioproducts and Food Applications, 2nd Volume)
►▼
Show Figures

Figure 1
Open AccessArticle
New Vectors of TTX Analogues in the North Atlantic Coast: The Edible Crabs Afruca tangeri and Carcinus maenas
Mar. Drugs 2023, 21(6), 320; https://doi.org/10.3390/md21060320 - 25 May 2023
Abstract
Tetrodotoxin (TTX) and its analogues are naturally occurring toxins historically responsible for human poisoning fatalities in Eastern Asia. It is typically linked to the consumption of pufferfish and, to a lesser extent, marine gastropods and crabs. In the scope of a comprehensive project
[...] Read more.
Tetrodotoxin (TTX) and its analogues are naturally occurring toxins historically responsible for human poisoning fatalities in Eastern Asia. It is typically linked to the consumption of pufferfish and, to a lesser extent, marine gastropods and crabs. In the scope of a comprehensive project to understand the prevalence of emergent toxins in edible marine organisms, we report, for the first time, the detection of TTX analogues in the soft tissues of edible crabs, the European fiddler crab (Afruca tangeri) and green crab (Carcinus maenas), harvested in southern Portugal. No TTX was detected in the analyzed samples. However, three TTX analogues were detected—an unknown TTX epimer, deoxyTTX, and trideoxyTTX. These three analogues were found in the European fiddler crab while only trideoxyTTX was found in the green crab, suggesting that the accumulation of TTX analogues might be influenced by the crabs’ different feeding ecology. These results highlight the need to widely monitor TTX and its analogues in edible marine species in order to provide adequate information to the European Food Safety Authority and to protect consumers.
Full article
(This article belongs to the Section Marine Toxins)
►▼
Show Figures

Figure 1
Open AccessArticle
Microwave-Assisted Hydrothermal Processing of Rugulopteryx okamurae
by
, , , and
Mar. Drugs 2023, 21(6), 319; https://doi.org/10.3390/md21060319 - 25 May 2023
Abstract
One possible scheme of Rugulopteryx okamurae biomass valorization based on a green, rapid and efficient fractionation technique was proposed. Microwave-assisted pressurized hot water extraction was the technology selected as the initial stage for the solubilization of different seaweed components. Operation at 180 °C
[...] Read more.
One possible scheme of Rugulopteryx okamurae biomass valorization based on a green, rapid and efficient fractionation technique was proposed. Microwave-assisted pressurized hot water extraction was the technology selected as the initial stage for the solubilization of different seaweed components. Operation at 180 °C for 10 min with a 30 liquid-to-solid ratio solubilized more than 40% of the initial material. Both the alginate recovery yield (3.2%) and the phenolic content of the water-soluble extracts (2.3%) were slightly higher when distilled water was used as solvent. However, the carbohydrate content in the extract (60%) was similar for both solvents, but the sulfate content was higher for samples processed with salt water collected from the same coast as the seaweeds. The antiradical capacity of the extracts was related to the phenolic content in the extracts, but the cytotoxicity towards HeLa229 cancer cells was highest (EC50 = 48 µg/mL) for the extract obtained with distilled water at the lowest temperature evaluated. Operation time showed a relevant enhancement of the extraction performance and bioactive properties of the soluble extracts. The further fractionation and study of this extract would be recommended to extend its potential applications. However, due to the low extraction yield, emphasis was given to the solid residue, which showed a heating value in the range 16,102–18,413 kJ/kg and could be useful for the preparation of biomaterials according to its rheological properties.
Full article
(This article belongs to the Special Issue Bioactive Polysaccharides from Seaweeds)
►▼
Show Figures

Figure 1
Open AccessArticle
In Vitro and In Silico Evaluation of Red Algae Laurencia obtusa Anticancer Activity
by
, , , , , and
Mar. Drugs 2023, 21(6), 318; https://doi.org/10.3390/md21060318 - 24 May 2023
Abstract
Studies estimate that nearly 2 million new cases of gastric cancer will occur worldwide during the next two decades, which will increase mortality associated with cancer and the demand for new treatments. Marine algae of the Laurencia genus have secondary metabolites known for
[...] Read more.
Studies estimate that nearly 2 million new cases of gastric cancer will occur worldwide during the next two decades, which will increase mortality associated with cancer and the demand for new treatments. Marine algae of the Laurencia genus have secondary metabolites known for their cytotoxic action, such as terpenes and acetogenins. The species Laurencia obtusa has demonstrated cytotoxicity against many types of tumors in previous analyses. In this study, we determined the structure of terpenes, acetogenins, and one fatty acid of Laurencia using mass spectrometry (ESI-FT-ICR/MS). In vitro cytotoxicity assays were performed with adenocarcinoma gastric cells (AGS) to select the most cytotoxic fraction of the crude extract of L. obtusa. The Hex:AcOEt fraction was the most cytotoxic, with IC50 9.23 µg/mL. The selectivity index of 15.56 shows that the Hex:AcOEt fraction is selective to cancer cells. Compounds obtained from L. obtusa were tested by the analysis of crystallographic complexes. Molecular docking calculations on the active site of the HIF-2α protein showed the highest affinity for sesquiterpene chermesiterpenoid B, identified from HEX:AcOEt fraction, reaching a score of 65.9. The results indicate that L. obtusa presents potential compounds to be used in the treatment of neoplasms, such as gastric adenocarcinoma.
Full article
(This article belongs to the Special Issue Discovery of Marine-Derived Anticancer Agents)
►▼
Show Figures

Figure 1
Open AccessArticle
Synthesis and Antimalarial Evaluation of Halogenated Analogues of Thiaplakortone A
Mar. Drugs 2023, 21(5), 317; https://doi.org/10.3390/md21050317 - 22 May 2023
Abstract
The incorporation of bromine, iodine or fluorine into the tricyclic core structure of thiaplakortone A (1), a potent antimalarial marine natural product, is reported. Although yields were low, it was possible to synthesise a small nine-membered library using the previously synthesised
[...] Read more.
The incorporation of bromine, iodine or fluorine into the tricyclic core structure of thiaplakortone A (1), a potent antimalarial marine natural product, is reported. Although yields were low, it was possible to synthesise a small nine-membered library using the previously synthesised Boc-protected thiaplakortone A (2) as a scaffold for late-stage functionalisation. The new thiaplakortone A analogues (3–11) were generated using N-bromosuccinimide, N-iodosuccinimide or a Diversinate™ reagent. The chemical structures of all new analogues were fully characterised by 1D/2D NMR, UV, IR and MS data analyses. All compounds were evaluated for their antimalarial activity against Plasmodium falciparum 3D7 (drug-sensitive) and Dd2 (drug-resistant) strains. Incorporation of halogens at positions 2 and 7 of the thiaplakortone A scaffold was shown to reduce antimalarial activity compared to the natural product. Of the new compounds, the mono-brominated analogue (compound 5) displayed the best antimalarial activity with IC50 values of 0.559 and 0.058 μM against P. falciparum 3D7 and Dd2, respectively, with minimal toxicity against a human cell line (HEK293) observed at 80 μM. Of note, the majority of the halogenated compounds showed greater efficacy against the P. falciparum drug-resistant strain.
Full article
(This article belongs to the Special Issue Marine Antiparasitic Agents)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Efficacy and Security of Tetrodotoxin in the Treatment of Cancer-Related Pain: Systematic Review and Meta-Analysis
Mar. Drugs 2023, 21(5), 316; https://doi.org/10.3390/md21050316 - 21 May 2023
Abstract
The pharmacological treatment of cancer-related pain is unsatisfactory. Tetrodotoxin (TTX) has shown analgesia in preclinical models and clinical trials, but its clinical efficacy and safety have not been quantified. For this reason, our aim was to perform a systematic review and meta-analysis of
[...] Read more.
The pharmacological treatment of cancer-related pain is unsatisfactory. Tetrodotoxin (TTX) has shown analgesia in preclinical models and clinical trials, but its clinical efficacy and safety have not been quantified. For this reason, our aim was to perform a systematic review and meta-analysis of the clinical evidence that was available. A systematic literature search was conducted in four electronic databases (Medline, Web of Science, Scopus, and ClinicalTrials.gov) up to 1 March 2023 in order to identify published clinical studies evaluating the efficacy and security of TTX in patients with cancer-related pain, including chemotherapy-induced neuropathic pain. Five articles were selected, three of which were randomized controlled trials (RCTs). The number of responders to the primary outcome (≥30% improvement in the mean pain intensity) and those suffering adverse events in the intervention and placebo groups were used to calculate effect sizes using the log odds ratio. The meta-analysis showed that TTX significantly increased the number of responders (mean = 0.68; 95% CI: 0.19–1.16, p = 0.0065) and the number of patients suffering non-severe adverse events (mean = 1.13; 95% CI: 0.31–1.95, p = 0.0068). However, TTX did not increase the risk of suffering serious adverse events (mean = 0.75; 95% CI: −0.43–1.93, p = 0.2154). In conclusion, TTX showed robust analgesic efficacy but also increased the risk of suffering non-severe adverse events. These results should be confirmed in further clinical trials with higher numbers of patients.
Full article
(This article belongs to the Special Issue Tetrodotoxins: Detection, Biosynthesis and Biological Effects)
►▼
Show Figures

Figure 1
Open AccessArticle
Purification and Molecular Characterization of Fucoidan Isolated from Ascophyllum nodosum Brown Seaweed Grown in Ireland
by
, , , , and
Mar. Drugs 2023, 21(5), 315; https://doi.org/10.3390/md21050315 - 21 May 2023
Abstract
►▼
Show Figures
The present study investigates the molecular characteristics of fucoidan obtained from the brown Irish seaweed Ascophyllum nodosum, employing hydrothermal-assisted extraction (HAE) followed by a three-step purification protocol. The dried seaweed biomass contained 100.9 mg/g of fucoidan, whereas optimised HAE conditions (solvent, 0.1N
[...] Read more.
The present study investigates the molecular characteristics of fucoidan obtained from the brown Irish seaweed Ascophyllum nodosum, employing hydrothermal-assisted extraction (HAE) followed by a three-step purification protocol. The dried seaweed biomass contained 100.9 mg/g of fucoidan, whereas optimised HAE conditions (solvent, 0.1N HCl; time, 62 min; temperature, 120 °C; and solid to liquid ratio, 1:30 (w/v)) yielded 417.6 mg/g of fucoidan in the crude extract. A three-step purification of the crude extract, involving solvents (ethanol, water, and calcium chloride), molecular weight cut-off filter (MWCO; 10 kDa), and solid-phase extraction (SPE), resulted in 517.1 mg/g, 562.3 mg/g, and 633.2 mg/g of fucoidan (p < 0.05), respectively. In vitro antioxidant activity, as determined by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays, revealed that the crude extract exhibited the highest antioxidant activity compared to the purified fractions, commercial fucoidan, and ascorbic acid standard (p < 0.05). The molecular attributes of biologically active fucoidan-rich MWCO fraction was characterised by quadruple time of flight mass spectrometry and Fourier-transform infrared (FTIR) spectroscopy. The electrospray ionisation mass spectra of purified fucoidan revealed quadruply ([M+4H]4+) and triply ([M+3H]3+) charged fucoidan moieties at m/z 1376 and m/z 1824, respectively, and confirmed the molecular mass 5444 Da (~5.4 kDa) from multiply charged species. The FTIR analysis of both purified fucoidan and commercial fucoidan standard exhibited O-H, C-H, and S=O stretching which are represented by bands at 3400 cm−1, 2920 cm−1, and 1220–1230 cm−1, respectively. In conclusion, the fucoidan recovered from HAE followed by a three-step purification process was highly purified; however, purification reduced the antioxidant activity compared to the crude extract.
Full article

Figure 1
Open AccessArticle
Design, Synthesis, and Biological Evaluation of Marine Lissodendrins B Analogues as Modulators of ABCB1-Mediated Multidrug Resistance
by
, , , , , , and
Mar. Drugs 2023, 21(5), 314; https://doi.org/10.3390/md21050314 - 20 May 2023
Abstract
Multidrug resistance (MDR) caused by ATP-Binding Cassette Subfamily B Member 1 (ABCB1, P-glycoprotein, P-gp) is a major barrier for the success of chemotherapy in clinics. In this study, we designed and synthesized a total of 19 Lissodendrins B analogues and tested their ABCB1-mediated
[...] Read more.
Multidrug resistance (MDR) caused by ATP-Binding Cassette Subfamily B Member 1 (ABCB1, P-glycoprotein, P-gp) is a major barrier for the success of chemotherapy in clinics. In this study, we designed and synthesized a total of 19 Lissodendrins B analogues and tested their ABCB1-mediated MDR reversal activity in doxorubicin (DOX)-resistant K562/ADR and MCF-7/ADR cells. Among all derivatives, compounds D1, D2, and D4 with a dimethoxy-substituted tetrahydroisoquinoline fragment possessed potent synergistic effects with DOX and reversed ABCB1-mediated drug resistance. Notably, the most potent compound D1 merits multiple activities, including low cytotoxicity, the strongest synergistic effect, and effectively reversing ABCB1-mediated drug resistance of K562/ADR (RF = 1845.76) and MCF-7/ADR cells (RF = 207.86) to DOX. As a reference substance, compound D1 allows for additional mechanistic studies on ABCB1 inhibition. The synergistic mechanisms were mainly related to the increased intracellular accumulation of DOX via inhibiting the efflux function of ABCB1 rather than from affecting the expression level of ABCB1. These studies suggest that compound D1 and its derivatives might be potential MDR reversal agents acting as ABCB1 inhibitors in clinical therapeutics and provide insight into a design strategy for the development of ABCB1 inhibitors.
Full article
(This article belongs to the Section Marine Pharmacology)
►▼
Show Figures

Figure 1
Open AccessArticle
Anti-Bacterial Adhesion on Abiotic and Biotic Surfaces of the Exopolysaccharide from the Marine Bacillus licheniformis B3-15
by
, , , , , , , , and
Mar. Drugs 2023, 21(5), 313; https://doi.org/10.3390/md21050313 - 20 May 2023
Abstract
The eradication of bacterial biofilm represents a crucial strategy to prevent a clinical problem associated with microbial persistent infection. In this study we evaluated the ability of the exopolysaccharide (EPS) B3-15, produced by the marine Bacillus licheniformis B3-15, to prevent the adhesion and
[...] Read more.
The eradication of bacterial biofilm represents a crucial strategy to prevent a clinical problem associated with microbial persistent infection. In this study we evaluated the ability of the exopolysaccharide (EPS) B3-15, produced by the marine Bacillus licheniformis B3-15, to prevent the adhesion and biofilm formation of Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213 on polystyrene and polyvinyl chloride surfaces. The EPS was added at different times (0, 2, 4 and 8 h), corresponding to the initial, reversible and irreversible attachment, and after the biofilm development (24 or 48 h). The EPS (300 µg/mL) impaired the initial phase, preventing bacterial adhesion even when added after 2 h of incubation, but had no effects on mature biofilms. Without exerting any antibiotic activity, the antibiofilm mechanisms of the EPS were related to the modification of the (i) abiotic surface properties, (ii) cell-surface charges and hydrophobicity, and iii) cell-to-cell aggregation. The addition of EPS downregulated the expression of genes (lecA and pslA of P. aeruginosa and clfA of S. aureus) involved in the bacterial adhesion. Moreover, the EPS reduced the adhesion of P. aeruginosa (five logs-scale) and S. aureus (one log) on human nasal epithelial cells. The EPS could represent a promising tool for the prevention of biofilm-related infections.
Full article
(This article belongs to the Special Issue Marine Extremophiles)
►▼
Show Figures

Figure 1
Open AccessArticle
Removal of the Basic and Diazo Dyes from Aqueous Solution by the Frustules of Halamphora cf. salinicola (Bacillariophyta)
by
, , , , , , , , , , , and
Mar. Drugs 2023, 21(5), 312; https://doi.org/10.3390/md21050312 - 19 May 2023
Abstract
Industrial wastes with hazardous dyes serve as a major source of water pollution, which is considered to have an enormous impact on public health. In this study, an eco-friendly adsorbent, the porous siliceous frustules extracted from the diatom species Halamphora cf. salinicola,
[...] Read more.
Industrial wastes with hazardous dyes serve as a major source of water pollution, which is considered to have an enormous impact on public health. In this study, an eco-friendly adsorbent, the porous siliceous frustules extracted from the diatom species Halamphora cf. salinicola, grown under laboratory conditions, has been identified. The porous architecture and negative surface charge under a pH of 7, provided by the various functional groups via Si–O, N–H, and O–H on these surfaces, revealed by SEM, the N2 adsorption/desorption isotherm, Zeta-potential measurement, and ATR-FTIR, respectively, made the frustules an efficient mean of removal of the diazo and basic dyes from the aqueous solutions, 74.9%, 94.02%, and 99.81% against Congo Red (CR), Crystal Violet (CV), and Malachite Green (MG), respectively. The maximum adsorption capacities were calculated from isotherms, as follows: 13.04 mg g−1, 41.97 mg g−1, and 33.19 mg g−1 against CR, CV, and MG, respectively. Kinetic and isotherm models showed a higher correlation to Pore diffusion and Sips models for CR, and Pseudo-Second Order and Freundlich models for CV and MG. Therefore, the cleaned frustules of the thermal spring-originated diatom strain Halamphora cf. salinicola could be used as a novel adsorbent of a biological origin against anionic and basic dyes.
Full article
(This article belongs to the Special Issue Ecology, Diversity and Evolution of Diatoms)
►▼
Show Figures

Figure 1
Open AccessArticle
Oxidative Cyclization at ortho-Position of Phenol: Improved Total Synthesis of 3-(Phenethylamino)demethyl(oxy)aaptamine
Mar. Drugs 2023, 21(5), 311; https://doi.org/10.3390/md21050311 - 19 May 2023
Abstract
A shorter synthesis of the demethyl(oxy)aaptamine skeleton was developed via oxidative intramolecular cyclization of 1-(2-azidoethyl)-6-methoxyisoquinolin-7-ol followed by dehydrogenation with a hypervalent iodine reagent. This is the first example of oxidative cyclization at the ortho-position of phenol that does not involve spiro-cyclization, resulting
[...] Read more.
A shorter synthesis of the demethyl(oxy)aaptamine skeleton was developed via oxidative intramolecular cyclization of 1-(2-azidoethyl)-6-methoxyisoquinolin-7-ol followed by dehydrogenation with a hypervalent iodine reagent. This is the first example of oxidative cyclization at the ortho-position of phenol that does not involve spiro-cyclization, resulting in the improved total synthesis of 3-(phenethylamino)demethyl(oxy)aaptamine, a potent anti-dormant mycobacterial agent.
Full article
(This article belongs to the Special Issue Total Synthesis of Marine Bioactive Natural Products)
►▼
Show Figures

Graphical abstract
Open AccessReview
Microbial Interactions between Marine Microalgae and Fungi: From Chemical Ecology to Biotechnological Possible Applications
Mar. Drugs 2023, 21(5), 310; https://doi.org/10.3390/md21050310 - 19 May 2023
Abstract
Chemical interactions have been shown to regulate several marine life processes, including selection of food sources, defense, behavior, predation, and mate recognition. These chemical communication signals have effects not only at the individual scale, but also at population and community levels. This review
[...] Read more.
Chemical interactions have been shown to regulate several marine life processes, including selection of food sources, defense, behavior, predation, and mate recognition. These chemical communication signals have effects not only at the individual scale, but also at population and community levels. This review focuses on chemical interactions between marine fungi and microalgae, summarizing studies on compounds synthetized when they are cultured together. In the current study, we also highlight possible biotechnological outcomes of the synthetized metabolites, mainly for human health applications. In addition, we discuss applications for bio-flocculation and bioremediation. Finally, we point out the necessity of further investigating microalgae-fungi chemical interactions because it is a field still less explored compared to microalga–bacteria communication and, considering the promising results obtained until now, it is worthy of further research for scientific advancement in both ecology and biotechnology fields.
Full article
(This article belongs to the Special Issue Chemical Defense in Marine Organisms III)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Genomic Analysis of Cold-Water Coral-Derived Sulfitobacter faviae: Insights into Their Habitat Adaptation and Metabolism
Mar. Drugs 2023, 21(5), 309; https://doi.org/10.3390/md21050309 - 19 May 2023
Abstract
Sulfitobacter is one of the major sulfite-oxidizing alphaproteobacterial groups and is often associated with marine algae and corals. Their association with the eukaryotic host cell may have important ecological contexts due to their complex lifestyle and metabolism. However, the role of Sulfitobacter in
[...] Read more.
Sulfitobacter is one of the major sulfite-oxidizing alphaproteobacterial groups and is often associated with marine algae and corals. Their association with the eukaryotic host cell may have important ecological contexts due to their complex lifestyle and metabolism. However, the role of Sulfitobacter in cold-water corals remains largely unexplored. In this study, we explored the metabolism and mobile genetic elements (MGEs) in two closely related Sulfitobacter faviae strains isolated from cold-water black corals at a depth of ~1000 m by comparative genomic analysis. The two strains shared high sequence similarity in chromosomes, including two megaplasmids and two prophages, while both contained several distinct MGEs, including prophages and megaplasmids. Additionally, several toxin-antitoxin systems and other types of antiphage elements were also identified in both strains, potentially helping Sulfitobacter faviae overcome the threat of diverse lytic phages. Furthermore, the two strains shared similar secondary metabolite biosynthetic gene clusters and genes involved in dimethylsulfoniopropionate (DMSP) degradation pathways. Our results provide insight into the adaptive strategy of Sulfitobacter strains to thrive in ecological niches such as cold-water corals at the genomic level.
Full article
(This article belongs to the Special Issue Genomic Studies on Marine Extreme Microbes)
►▼
Show Figures

Figure 1
Journal Menu
► ▼ Journal Menu-
- Marine Drugs Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
- 20th Anniversary of Marine Drugs
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 21 (2023)
- Vol. 20 (2022)
- Vol. 19 (2021)
- Vol. 18 (2020)
- Vol. 17 (2019)
- Vol. 16 (2018)
- Vol. 15 (2017)
- Vol. 14 (2016)
- Vol. 13 (2015)
- Vol. 12 (2014)
- Vol. 11 (2013)
- Vol. 10 (2012)
- Vol. 9 (2011)
- Vol. 8 (2010)
- Vol. 7 (2009)
- Vol. 6 (2008)
- Vol. 5 (2007)
- Vol. 4 (2006)
- Vol. 3 (2005)
- Vol. 2 (2004)
- Vol. 1 (2003)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Bioengineering, Biomass, Biomolecules, Cells, Marine Drugs, Molecules
Microalgal Biotechnology for Bioproducts and Food Applications, 2nd Volume
Topic Editors: Giorgos Markou, Leonel PereiraDeadline: 31 May 2023
Topic in
Antioxidants, BioChem, Biomolecules, IJMS, Marine Drugs, Molecules
Antioxidant Activity of Natural Products
Topic Editors: José Virgílio Santulhão Pinela, Maria Inês Moreira Figueiredo Dias, Carla Susana Correia Pereira, Alexandra PlácidoDeadline: 30 June 2023
Topic in
Biomolecules, IJMS, Molecules, Sci. Pharm., Cancers, Marine Drugs
Antitumor Activity of Natural Products and Related Compounds
Topic Editors: Barbara De Filippis, Alessandra Ammazzalorso, Marialuigia FantacuzziDeadline: 31 August 2023
Topic in
Antibiotics, Biomolecules, IJMS, Marine Drugs, Pharmaceuticals
Compounds with Medicinal Value (2nd Volume)
Topic Editor: Maria Stefania SinicropiDeadline: 30 September 2023
Conferences
Special Issues
Special Issue in
Marine Drugs
Carbohydrate-Containing Marine Compounds of Mixed Biogenesis II
Guest Editors: Valentin A. Stonik, Natalia V. IvanchinaDeadline: 31 May 2023
Special Issue in
Marine Drugs
Natural Product Genomics and Metabolomics of Marine Microorganisms
Guest Editors: Sylvia Soldatou, RuAngelie Edrada-EbelDeadline: 15 June 2023
Special Issue in
Marine Drugs
Green Chemistry in Marine Natural Product Research
Guest Editor: Igor JerkovićDeadline: 30 June 2023
Special Issue in
Marine Drugs
Functional Biomaterials from Marine Diatoms
Guest Editors: Uluvangada Thammaiah Uthappa, Ilaria ReaDeadline: 15 July 2023
Topical Collections
Topical Collection in
Marine Drugs
Ocean4Biotech
Collection Editors: Marlen I. Vasquez, Ana Rotter, Susana P Gaudencio, Katja Klun
Topical Collection in
Marine Drugs
Microalgal Active Biomolecules
Collection Editor: Cédric Delattre
Topical Collection in
Marine Drugs
Marine Compounds and Cancer
Collection Editors: Friedemann Honecker, Sergey A. Dyshlovoy




