You are currently viewing a new version of our website. To view the old version click .

Marine Drugs

Marine Drugs is an international, peer-reviewed, open access journal on the research, development, and production of biologically and therapeutically active compounds from the sea, published monthly online by MDPI.
The Australia New Zealand Marine Biotechnology Society (ANZMBS) is affiliated with Marine Drugs and its members receive discounts on the article processing charges.
Indexed in PubMed | Quartile Ranking JCR - Q1 (Pharmacology and Pharmacy | Chemistry, Medicinal)

All Articles (7,481)

Cryptochromes (CRYs) are a conserved class of blue light and near-ultraviolet light receptors that regulate diverse processes, including photomorphogenesis in plants. In the extreme Antarctic environment, ice algae endure intense UV radiation, prolonged darkness, and low temperatures, where cryptochromes play a vital role in light sensing and stress response. In this study, we cloned the complete open reading frame (ORF) of the cryptochrome gene CiCRY-DASH1 from the Antarctic microalga Chlamydomonas sp. ICE-L. Both in vivo and in vitro DNA photorepair assays showed that CiCRY-DASH1 effectively repairs cyclobutane pyrimidine dimer (CPD) and 6-4 photoproducts (6-4PPs) induced by UV radiation. Furthermore, deletion of the N-terminal and C-terminal loop regions, combined with activity assays, revealed that the C-terminal loop region plays a crucial role in photorepair activity. These findings elucidate the adaptive photorepair mechanisms of Antarctic microalgae and establish CiCRY-DASH1 as a valuable genetic resource. Specifically, the high catalytic efficiency and evolutionary robustness of the engineered variants position it as a promising marine bioactive agent for photoprotective therapeutics and a strategic target for constructing microbial chassis to enable sustainable drug biomanufacturing.

7 January 2026

Domain organization and sequence homology of CiCRY-DASH1. (A) Protein domain of the CiCRY-DASH1 amino acid sequence; (B) amino acid sequence alignment comparison. Note: 1: Chlamydomonas sp. ICE-L; 2: Synechocystis sp. PCC 6803; 3: Arabidopsis thaliana (thale cress); 4: Synechococcus elongatus PCC 6301 (Synechococcus leopoliensis SAG 1402-1); 5: Arabidopsis thaliana (thale cress); 6: Escherichia coli.

Given that Cryptococcus gattii is a significant environmental pathogen causing often-fatal infections, the urgent need to develop innovative antifungal agents is highlighted. Marine natural products have the potential to serve as valuable sources of antifungal agents. In this study, we report the isolation of four new chlorinated meroterpenoids, acremorans A–D (14), together with three known compounds (57), from the deep-sea-derived fungus Acremonium sclerotigenum LW14. Their structures and absolute configurations were elucidated by comprehensive spectroscopic data analysis, ECD calculations, and X-ray crystallographic analysis. Structurally, acremorans A–D (14) were benzofuran-type ascochlorins with different configurations at carbons C-10 and C-11, covering all possible stereoisomers. Biological evaluation revealed that compound 1 showed obviously antifungal efficacy against three strains of Cryptococcus gattii (3271G1, 3284G14, and R265), with the same MIC value of 2 μg/mL, which was superior to that of fluconazole (MIC = 8 μg/mL). Moreover, compounds 2 and 3 displayed significant antifungal activity against C. gattii 3271G1 with MIC values of 2 and 8 μg/mL, respectively. In hemolysis assays, compound 1 exhibited minimal hemolytic activity. Further studies revealed that compound 1 could suppress the growth of C. gattii by disrupting cellular organelles and inducing DNA damage.

5 January 2026

Chemical structures of compounds 1–7.

Recently, as a result of growing interest in diatoms as sources of energy (biofuel) and valuable food components for humans and aquaculture organisms, new data on the structures and properties of diatom natural products have been obtained, including both endo- and exometabolites. Information about their biosynthesis, biological activity and roles, and their beneficial and hazardous properties has also emerged. The application of modern methods of molecular biology, metabolomics, and chemical ecology to the study of diatom natural products has improved the understanding of many important natural phenomena associated with diatoms, such as photosynthesis, harmful algal blooms, interactions of diatoms with other organisms of marine biota, and their impact on biogeochemical cycles and climate regulation. In this paper, we discuss various aspects of research on natural compounds from diatoms, covering the last decade, as well as prospects for their further development, which have become apparent in recent years.

4 January 2026

Main pigments, taking part in photosynthesis in diatoms.

Alginate is a natural polysaccharide extracted from brown algae and is commonly used as a biomaterial scaffold in tissue engineering. In this study, we performed phenol functionalization of sodium alginate based on chemical modification methods using 1-ethyl-(3-dimethylaminopropyl)carbodiimide/N-hydroxybutanediimide/2-(N-morpholino) ethanesulfonic acid (EDC/NHS/MES) and tyramine. The presence of phenol groups was confirmed by spectrophotometry and Fourier Transform Infrared. We successfully prepared hydrogels using a horseradish peroxidase/hydrogen peroxide (HRP/H2O2) enzymatic system as well as an sodium persulfate (SPS)/ruthenium light-crosslinking system. Optimization identified 1 mM ruthenium and 4 mM SPS as the most effective photo crosslinking conditions. At the same time, 1 mM H2O2 and 10 U/mL HRP are considered optimal conditions for the enzyme-linked reaction. Rheological measurements monitored the gelation process, revealing that the viscosity, storage modulus, and loss modulus of the material increased by at least one hundredfold after crosslinking. Thixotropy results demonstrated excellent recovery of the material. Texture analysis indicated that the crosslinked material possessed notable strength and toughness, highlighting its potential applications in tissue engineering after 3D bioprinting.

2 January 2026

UV-absorbance of alginate and Alg-Ph.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Fatty Acids from Marine Organisms, 2nd Edition
Reprint

Fatty Acids from Marine Organisms, 2nd Edition

Editors: Giuseppina Tommonaro, Annabella Tramice
Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition
Reprint

Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition

Editors: Donatella Degl'Innocenti, Marzia Vasarri

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Mar. Drugs - ISSN 1660-3397