-
Pathophysiological Responses to Conotoxin Modulation of Voltage-Gated Ion Currents
-
Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications
-
Identification of Volatiles of the Dinoflagellate Prorocentrum cordatum
-
Updated Trends on the Biodiscovery of New Marine Natural Products from Invertebrates
-
Insights into the Antimicrobial Activities and Metabolomes of Aquimarina (Flavobacteriaceae, Bacteroidetes) Species from the Rare Marine Biosphere
Journal Description
Marine Drugs
Marine Drugs
is the leading, peer-reviewed, open access journal on the research, development, and production of biologically and therapeutically active compounds from the sea. Marine Drugs is published monthly online by MDPI. Australia New Zealand Marine Biotechnology Society (ANZMBS) is affiliated with Marine Drugs and its members receive a discount on article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, PubAg, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q1 (Chemistry, Medicinal) / CiteScore - Q1 (Pharmacology, Toxicology and Pharmaceutics (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 12.6 days after submission; acceptance to publication is undertaken in 2.5 days (median values for papers published in this journal in the first half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
6.085 (2021)
;
5-Year Impact Factor:
6.044 (2021)
Latest Articles
High-Purity Fucoxanthin Can Be Efficiently Prepared from Isochrysis zhangjiangensis by Ethanol-Based Green Method Coupled with Octadecylsilyl (ODS) Column Chromatography
Mar. Drugs 2022, 20(8), 510; https://doi.org/10.3390/md20080510 (registering DOI) - 11 Aug 2022
Abstract
The exploitation of new economically valuable microalgae as a sustainable source of minor high-value products can effectively promote the full utilization of microalgae. The efficient preparation of minor products from microalgae remains the challenge, owing to the coexistence of various components with a
[...] Read more.
The exploitation of new economically valuable microalgae as a sustainable source of minor high-value products can effectively promote the full utilization of microalgae. The efficient preparation of minor products from microalgae remains the challenge, owing to the coexistence of various components with a similar polarity in the microalgae biomass. In this study, a novel approach based on the sustainable-oriented strategy for fucoxanthin (FX) production was proposed, which consisted of four steps, including the culture of microalga, ethanol extraction, ODS column chromatography, and ethanol precipitation. The high-purity FX (around 95%) was efficiently obtained in a total recovery efficiency of 84.28 ± 2.56%. This study reveals that I. zhangjiangensis is a potentially promising feedstock for FX production and firstly provides a potentially eco-friendly method for the scale-up preparation of FX from the microalga I. zhangjiangensis.
Full article
(This article belongs to the Special Issue Microalgal Carotenoids)
►
Show Figures
Open AccessArticle
Formulation, Characterization, and In Vitro/In Vivo Efficacy Studies of a Novel Liposomal Drug Delivery System of Amphiphilic Jaspine B for Treatment of Synovial Sarcoma
Mar. Drugs 2022, 20(8), 509; https://doi.org/10.3390/md20080509 - 10 Aug 2022
Abstract
Sphingomyelin is a cell membrane sphingolipid that is upregulated in synovial sarcoma (SS). Jaspine B has been shown to inhibit sphingomyelin synthase, which synthesizes sphingomyelin from ceramide, a critical signal transducer; however, jaspine B’s low bioavailability limits its application as a promising treatment
[...] Read more.
Sphingomyelin is a cell membrane sphingolipid that is upregulated in synovial sarcoma (SS). Jaspine B has been shown to inhibit sphingomyelin synthase, which synthesizes sphingomyelin from ceramide, a critical signal transducer; however, jaspine B’s low bioavailability limits its application as a promising treatment option. To address this shortcoming, we used microfluidics to develop a liposomal delivery system with increased anticancer efficacy. The nano-liposome size was determined by transmission electron microscopy. The jaspine B liposome was tested for its tumor inhibitory efficacy compared to plain jaspine B in in vitro and in vivo studies. The human SS cell line was tested for cell viability using varying jaspine B concentrations. In a mouse model of SS, tumor growth suppression was evaluated during four weeks of treatment (3 times/week). The results show that jaspine B was successfully formulated in the liposomes with a size ranging from 127.5 ± 61.2 nm. The MTT assay and animal study results indicate that jaspine B liposomes dose-dependently lowers cell viability in the SS cell line and effectively suppresses tumor cell growth in the SS animal model. The novel liposome drug delivery system addresses jaspine B’s low bioavailability issues and improves its therapeutic efficacy.
Full article
(This article belongs to the Topic Marine Microorganisms: Diversity, Bioactivity and Applications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Mechanisms of Sodium-Acetate-Induced DHA Accumulation in a DHA-Producing Microalga, Crypthecodinium sp. SUN
Mar. Drugs 2022, 20(8), 508; https://doi.org/10.3390/md20080508 - 09 Aug 2022
Abstract
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that is critical for the intelligence and visual development of infants. Crypthecodinium is the first microalga approved by the Food and Drug Administration for DHA production, but its relatively high intracellular starch content
[...] Read more.
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that is critical for the intelligence and visual development of infants. Crypthecodinium is the first microalga approved by the Food and Drug Administration for DHA production, but its relatively high intracellular starch content restricts fatty acid accumulation. In this study, different carbon sources, including glucose (G), sodium acetate (S) and mixed carbon (M), were used to investigate the regulatory mechanisms of intracellular organic carbon distribution in Crypthecodinium sp. SUN. Results show that glucose favored cell growth and starch accumulation. Sodium acetate limited glucose utilization and starch accumulation but caused a significant increase in total fatty acid (TFA) accumulation and the DHA percentage. Thus, the DHA content in the S group was highest among three groups and reached a maximum (10.65% of DW) at 96 h that was 2.92-fold and 2.24-fold of that in the G and M groups, respectively. Comparative transcriptome analysis showed that rather than the expression of key genes in fatty acids biosynthesis, increased intracellular acetyl-CoA content appeared to be the key regulatory factor for TFA accumulation. Additionally, metabolome analysis showed that the accumulated DHA-rich metabolites of lipid biosynthesis might be the reason for the higher TFA content and DHA percentage of the S group. The present study provides valuable insights to guide further research in DHA production.
Full article
(This article belongs to the Section Marine-Derived Ingredients for Drugs, Cosmeceuticals and Nutraceuticals)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Antifouling Marine Coatings with a Potentially Safer and Sustainable Synthetic Polyphenolic Derivative
by
, , , , , , , , , , and
Mar. Drugs 2022, 20(8), 507; https://doi.org/10.3390/md20080507 - 05 Aug 2022
Abstract
The development of harmless substances to replace biocide-based coatings used to prevent or manage marine biofouling and its unwanted consequences is urgent. The formation of biofilms on submerged marine surfaces is one of the first steps in the marine biofouling process, which facilitates
[...] Read more.
The development of harmless substances to replace biocide-based coatings used to prevent or manage marine biofouling and its unwanted consequences is urgent. The formation of biofilms on submerged marine surfaces is one of the first steps in the marine biofouling process, which facilitates the further settlement of macrofoulers. Anti-biofilm properties of a synthetic polyphenolic compound, with previously described anti-settlement activity against macrofoulers, were explored in this work. In solution this new compound was able to prevent biofilm formation and reduce a pre-formed biofilm produced by the marine bacterium, Pseudoalteromonas tunicata. Then, this compound was applied to a marine coating and the formation of P. tunicata biofilms was assessed under hydrodynamic conditions to mimic the marine environment. For this purpose, polyurethane (PU)-based coating formulations containing 1 and 2 wt.% of the compound were prepared based on a prior developed methodology. The most effective formulation in reducing the biofilm cell number, biovolume, and thickness was the PU-based coating containing an aziridine-based crosslinker and 2 wt.% of the compound. To assess the marine ecotoxicity impact of this compound, its potential to disrupt endocrine processes was evaluated through the modulation of two nuclear receptors (NRs), peroxisome proliferator-activated receptor γ (PPARγ), and pregnane X receptor (PXR). Transcriptional activation of the selected NRs upon exposure to the polyphenolic compound (10 µM) was not observed, thus highlighting the eco-friendliness towards the addressed NRs of this new dual-acting anti-macro- and anti-microfouling agent towards the addressed NRs.
Full article
(This article belongs to the Special Issue Marine Natural Products with Antifouling Activity, 2nd Edition)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Biochemical Characterization and Elucidation of the Hybrid Action Mode of a New Psychrophilic and Cold-Tolerant Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides
Mar. Drugs 2022, 20(8), 506; https://doi.org/10.3390/md20080506 - 05 Aug 2022
Abstract
Alginate lyases with unique biochemical properties have irreplaceable value in food and biotechnology industries. Herein, the first new hybrid action mode Thalassotalea algicola-derived alginate lyase gene (TAPL7A) with both psychrophilic and cold-tolerance was cloned and expressed heterologously in E. coli. With
[...] Read more.
Alginate lyases with unique biochemical properties have irreplaceable value in food and biotechnology industries. Herein, the first new hybrid action mode Thalassotalea algicola-derived alginate lyase gene (TAPL7A) with both psychrophilic and cold-tolerance was cloned and expressed heterologously in E. coli. With the highest sequence identity (43%) to the exolytic alginate lyase AlyA5 obtained from Zobellia galactanivorans, TAPL7A was identified as a new polysaccharide lyases family 7 (PL7) alginate lyase. TAPL7A has broad substrate tolerance with specific activities of 4186.1 U/mg, 2494.8 U/mg, 2314.9 U/mg for polyM, polyG, and sodium alginate, respectively. Biochemical characterization of TAPL7A showed optimal activity at 15 °C, pH 8.0. Interestingly, TAPL7A exhibits both extreme psychrophilic and cold tolerance, which other cold-adapted alginate lyase do not possess. In a wide range of 5–30 °C, the activity can reach 80–100%, and the residual activity of more than 70% can still be maintained after 1 h of incubation. Product analysis showed that TAPL7A adopts a hybrid endo/exo-mode on all three substrates. FPLC and ESI-MS confirmed that the final products of TAPL7A are oligosaccharides with degrees of polymerization (Dps) of 1–2. This study provides excellent alginate lyase candidates for low-temperature environmental applications in food, agriculture, medicine and other industries.
Full article
(This article belongs to the Special Issue Advances in Oligosaccharides and Polysaccharide Modifications in Marine Bioresources)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural and Functional Characterization of Orcokinin B-like Neuropeptides in the Cuttlefish (Sepia officinalis)
by
, , , , , , , , , , , and
Mar. Drugs 2022, 20(8), 505; https://doi.org/10.3390/md20080505 - 04 Aug 2022
Abstract
The cuttlefish (Sepia officinalis) is a Cephalopod mollusk that lives in the English Channel and breeds in coastal spawning grounds in spring. A previous work showed that the control of egg-laying is monitored by different types of regulators, among which neuropeptides
[...] Read more.
The cuttlefish (Sepia officinalis) is a Cephalopod mollusk that lives in the English Channel and breeds in coastal spawning grounds in spring. A previous work showed that the control of egg-laying is monitored by different types of regulators, among which neuropeptides play a major role. They are involved in the integration of environmental cues, and participate in the transport of oocytes in the genital tract and in the secretion of capsular products. This study addresses a family of neuropeptides recently identified and suspected to be involved in the control of the reproduction processes. Detected by mass spectrometry and immunocytochemistry in the nerve endings of the accessory sex glands of the females and ovary, these neuropeptides are also identified in the hemolymph of egg-laying females demonstrating that they also have a hormone-like role. Released in the hemolymph by the sub-esophageal mass, a region that innervates the genital tract and the neurohemal area of the vena cava, in in vitro conditions these neuropeptides modulated oocyte transport and capsular secretion. Finally, in silico analyses indicated that these neuropeptides, initially called FLGamide, had extensive structural homology with orcokinin B, which motivated their name change.
Full article
(This article belongs to the Special Issue Marine Proteomics in Exploring Bioactive Peptides and Proteins)
►▼
Show Figures

Figure 1
Open AccessArticle
Genome-Wide Identification, Evolutionary Analysis, and Expression Patterns of Cathepsin Superfamily in Black Rockfish (Sebastes schlegelii) following Aeromonas salmonicida Infection
Mar. Drugs 2022, 20(8), 504; https://doi.org/10.3390/md20080504 - 03 Aug 2022
Abstract
Cathepsins are lysosomal cysteine proteases belonging to the papain family and play crucial roles in intracellular protein degradation/turnover, hormone maturation, antigen processing, and immune responses. In the present study, 18 cathepsins were systematically identified from the fish S. schlegelii genome. Phylogenetic analysis indicated
[...] Read more.
Cathepsins are lysosomal cysteine proteases belonging to the papain family and play crucial roles in intracellular protein degradation/turnover, hormone maturation, antigen processing, and immune responses. In the present study, 18 cathepsins were systematically identified from the fish S. schlegelii genome. Phylogenetic analysis indicated that cathepsin superfamilies are categorized into eleven major clusters. Synteny and genome organization analysis revealed that whole-genome duplication led to the expansion of S. schlegelii cathepsins. Evolutionary rate analyses indicated that the lowest Ka/Ks ratios were observed in CTSBa (0.13) and CTSBb (0.14), and the highest Ka/Ks ratios were observed in CTSZa (1.97) and CTSZb (1.75). In addition, cathepsins were ubiquitously expressed in all examined tissues, with high expression levels observed in the gill, intestine, head kidney, and spleen. Additionally, most cathepsins were differentially expressed in the head kidney, gill, spleen, and liver following Aeromonas salmonicida infection, and their expression signatures showed tissue-specific and time-dependent patterns. Finally, protein–protein interaction network (PPI) analyses revealed that cathepsins are closely related to a few immune-related genes, such as interleukins, chemokines, and TLR genes. These results are expected to be valuable for comparative immunological studies and provide insights for further functional characterization of cathepsins in fish species.
Full article
(This article belongs to the Special Issue Marine Linear Peptides: Isolation, Structure, Biological Properties, Synthesis, Biosynthesis, and Current Advances in Therapeutics)
►▼
Show Figures

Figure 1
Open AccessArticle
New Three-Finger Protein from Starfish Asteria rubens Shares Structure and Pharmacology with Human Brain Neuromodulator Lynx2
by
, , , , , , , , , and
Mar. Drugs 2022, 20(8), 503; https://doi.org/10.3390/md20080503 - 03 Aug 2022
Abstract
Three-finger proteins (TFPs) are small proteins with characteristic three-finger β-structural fold stabilized by the system of conserved disulfide bonds. These proteins have been found in organisms from different taxonomic groups and perform various important regulatory functions or act as components of snake venoms.
[...] Read more.
Three-finger proteins (TFPs) are small proteins with characteristic three-finger β-structural fold stabilized by the system of conserved disulfide bonds. These proteins have been found in organisms from different taxonomic groups and perform various important regulatory functions or act as components of snake venoms. Recently, four TFPs (Lystars 1–4) with unknown function were identified in the coelomic fluid proteome of starfish A. rubens. Here we analyzed the genomes of A. rubens and A. planci starfishes and predicted additional five and six proteins containing three-finger domains, respectively. One of them, named Lystar5, is expressed in A. rubens coelomocytes and has sequence homology to the human brain neuromodulator Lynx2. The three-finger structure of Lystar5 close to the structure of Lynx2 was confirmed by NMR. Similar to Lynx2, Lystar5 negatively modulated α4β2 nicotinic acetylcholine receptors (nAChRs) expressed in X. laevis oocytes. Incubation with Lystar5 decreased the expression of acetylcholine esterase and α4 and α7 nAChR subunits in the hippocampal neurons. In summary, for the first time we reported modulator of the cholinergic system in starfish.
Full article
(This article belongs to the Section Marine Pharmacology)
►▼
Show Figures

Figure 1
Open AccessArticle
In Vitro Toxicity Evaluation of Carrageenan on Cells and Tissues of the Oral Cavity
Mar. Drugs 2022, 20(8), 502; https://doi.org/10.3390/md20080502 - 03 Aug 2022
Abstract
Carrageenan is a highly potent anti-human papillomavirus (HPV) agent with the potential for formulation as a mouthwash against oral HPV infection. However, its toxic effect on tissues of the oral cavity is currently unknown. This study aims to evaluate the safety of carrageenan
[...] Read more.
Carrageenan is a highly potent anti-human papillomavirus (HPV) agent with the potential for formulation as a mouthwash against oral HPV infection. However, its toxic effect on tissues of the oral cavity is currently unknown. This study aims to evaluate the safety of carrageenan on human cells and tissues of the oral cavity. Human salivary gland cells and reconstructed human oral epithelium (RHOE) were used for this in vitro study. The cells were subjected to 0.005–100 µg/mL of carrageenan for 4, 12, and 24 h in quadruplicate. RHOE were exposed to 100 µg/mL of carrageenan for 24 h in triplicate and stained with hematoxylin/eosin for histological analyses. All experiments had saline and 1% sodium dodecyl sulphate (SDS) as negative and positive controls, respectively. Carrageenan tissue toxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to quantify cell viability. Tissue toxicity was further evaluated histologically by an oral pathologist to assess morphological changes. Our data showed that carrageenan did not significantly decrease cell and tissue viability when compared to the positive control. The histological evaluation of the RHOE also showed no loss of viability of the carrageenan-treated sample compared to untreated tissue. In contrast, 1% SDS-treated RHOE showed extensive tissue destruction. Our experiments suggest that carrageenan is safe for use in the oral cavity.
Full article
(This article belongs to the Topic Safety and Toxicological Risks of Medicinal Plants and Natural Products: Mechanistic Insights)
►▼
Show Figures

Figure 1
Open AccessReview
Marine Arthropods as a Source of Antimicrobial Peptides
by
, , , , , , and
Mar. Drugs 2022, 20(8), 501; https://doi.org/10.3390/md20080501 - 02 Aug 2022
Abstract
►▼
Show Figures
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning
[...] Read more.
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Full article

Figure 1
Open AccessArticle
Improved Plasma Lipids, Anti-Inflammatory Activity, and Microbiome Shifts in Overweight Participants: Two Clinical Studies on Oral Supplementation with Algal Sulfated Polysaccharide
Mar. Drugs 2022, 20(8), 500; https://doi.org/10.3390/md20080500 - 02 Aug 2022
Abstract
Seaweed polysaccharides in the diet may influence both inflammation and the gut microbiome. Here we describe two clinical studies with an Ulva sp. 84-derived sulfated polysaccharide—“xylorhamnoglucuronan” (SXRG84)—on metabolic markers, inflammation, and gut flora composition. The first study was a double-blind, randomized placebo-controlled trial
[...] Read more.
Seaweed polysaccharides in the diet may influence both inflammation and the gut microbiome. Here we describe two clinical studies with an Ulva sp. 84-derived sulfated polysaccharide—“xylorhamnoglucuronan” (SXRG84)—on metabolic markers, inflammation, and gut flora composition. The first study was a double-blind, randomized placebo-controlled trial with placebo, and either 2 g/day or 4 g/day of SXRG84 daily for six weeks in 64 overweight or obese participants (median age 55 years, median body mass index (BMI) 29 kg/m2). The second study was a randomized double-blind placebo-controlled crossover trial with 64 participants (median BMI 29 kg/m2, average age 52) on placebo for six weeks and then 2 g/day of SXRG84 treatment for six weeks, or vice versa. In Study 1, the 2 g/day dose exhibited a significant reduction in non-HDL (high-density lipoprotein) cholesterol (−10% or −0.37 mmol/L, p = 0.02) and in the atherogenic index (−50%, p = 0.05), and two-hour insulin (−12% or −4.83 mU/L) showed trends for reduction in overweight participants. CRP (C-reactive protein) was significantly reduced (−27% or −0.78 mg/L, p = 0.03) with the 4 g/day dose in overweight participants. Significant gut flora shifts included increases in Bifidobacteria, Akkermansia, Pseudobutyrivibrio, and Clostridium and a decrease in Bilophila. In Study 2, no significant differences in lipid measures were observed, but inflammatory cytokines were improved. At twelve weeks after the SXRG84 treatment, plasma cytokine concentrations were significantly lower than at six weeks post placebo for IFN-γ (3.4 vs. 7.3 pg/mL), IL-1β (16.2 vs. 23.2 pg/mL), TNF-α (9.3 vs. 12.6 pg/mL), and IL-10 (1.6 vs. 2.1 pg/mL) (p < 0.05). Gut microbiota abundance and composition did not significantly differ between groups (p > 0.05). Together, the studies illustrate improvements in plasma lipids and an anti-inflammatory effect of dietary SXRG84 that is participant specific.
Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 2.0)
►▼
Show Figures

Figure 1
Open AccessArticle
Scale-Up to Pilot of a Non-Axenic Culture of Thraustochytrids Using Digestate from Methanization as Nitrogen Source
by
, , , , , , , , , , , and
Mar. Drugs 2022, 20(8), 499; https://doi.org/10.3390/md20080499 - 02 Aug 2022
Abstract
The production of non-fish based docosahexaenoic acid (DHA) for feed and food has become a critical need in our global context of over-fishing. The industrial-scale production of DHA–rich Thraustochytrids could be an alternative, if costs turned out to be competitive. In order to
[...] Read more.
The production of non-fish based docosahexaenoic acid (DHA) for feed and food has become a critical need in our global context of over-fishing. The industrial-scale production of DHA–rich Thraustochytrids could be an alternative, if costs turned out to be competitive. In order to reduce production costs, this study addresses the feasibility of the non-axenic (non-sterile) cultivation of Aurantiochytrium mangrovei on industrial substrates (as nitrogen and mineral sources and glucose syrup as carbon and energy sources), and its scale-up from laboratory (250 mL) to 500 L cultures. Pilot-scale reactors were airlift cylinders. Batch and fed-batch cultures were tested. Cultures over 38 to 62 h achieved a dry cell weight productivity of 3.3 to 5.5 g.L−1.day−1, and a substrate to biomass yield of up to 0.3. DHA productivity ranged from 10 to 0.18 mg.L−1.day−1. Biomass productivity appears linearly related to oxygen transfer rate. Bacterial contamination of cultures was low enough to avoid impacts on fatty acid composition of the biomass. A specific work on microbial risks assessment (in supplementary files) showed that the biomass can be securely used as feed. However, to date, there is a law void in EU legislation regarding the recycling of nitrogen from digestate from animal waste for microalgae biomass and its usage in animal feed. Overall, the proposed process appears similar to the industrial yeast production process (non-axenic heterotrophic process, dissolved oxygen supply limiting growth, similar cell size). Such similarity could help in further industrial developments.
Full article
(This article belongs to the Special Issue Marine Thraustochytrids: Biology, Chemical Ecology and Biotechnology)
►▼
Show Figures

Figure 1
Open AccessArticle
Spongenolactones A–C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp.
by
, , , , , , and
Mar. Drugs 2022, 20(8), 498; https://doi.org/10.3390/md20080498 - 01 Aug 2022
Abstract
Three new 5,5,6,6,5-pentacyclic spongian diterpenes, spongenolactones A–C (1–3), were isolated from a Red Sea sponge Spongia sp. The structures of the new metabolites were elucidated by extensive spectroscopic analysis and the absolute configurations of 1–3 were determined on
[...] Read more.
Three new 5,5,6,6,5-pentacyclic spongian diterpenes, spongenolactones A–C (1–3), were isolated from a Red Sea sponge Spongia sp. The structures of the new metabolites were elucidated by extensive spectroscopic analysis and the absolute configurations of 1–3 were determined on the basis of comparison of the experimental circular dichroism (CD) and calculated electronic circular dichroism (ECD) spectra. Compounds 1–3 are the first 5,5,6,6,5-pentacyclic spongian diterpenes bearing an β-hydroxy group at C-1. These metabolites were assayed for their cytotoxic, antibacterial, and anti-inflammatory activities. All three compounds were found to exert inhibitory activity against superoxide anion generation in fMLF/CB-stimulated human neutrophils. Furthermore, 1 showed a higher activity against the growth of Staphylococcus aureus in comparison to 2.
Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East)
►▼
Show Figures

Figure 1
Open AccessArticle
Single-Disulfide Conopeptide Czon1107, an Allosteric Antagonist of the Human α3β4 Nicotinic Acetylcholine Receptor
by
, , , , , , , , and
Mar. Drugs 2022, 20(8), 497; https://doi.org/10.3390/md20080497 - 31 Jul 2022
Abstract
Conopeptides are peptides in the venom of marine cone snails that are used for capturing prey or as a defense against predators. A new cysteine-poor conopeptide, Czon1107, has exhibited non-competitive inhibition with an undefined allosteric mechanism in the human (h) α3β4 nicotinic acetylcholine
[...] Read more.
Conopeptides are peptides in the venom of marine cone snails that are used for capturing prey or as a defense against predators. A new cysteine-poor conopeptide, Czon1107, has exhibited non-competitive inhibition with an undefined allosteric mechanism in the human (h) α3β4 nicotinic acetylcholine receptors (nAChRs). In this study, the binding mode of Czon1107 to hα3β4 nAChR was investigated using molecular dynamics simulations coupled with mutagenesis studies of the peptide and electrophysiology studies on heterologous hα3β4 nAChRs. Overall, this study clarifies the structure–activity relationship of Czon1107 and hα3β4 nAChR and provides an important experimental and theoretical basis for the development of new peptide drugs.
Full article
(This article belongs to the Special Issue Conotoxins 2022)
►▼
Show Figures

Figure 1
Open AccessReview
Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis
Mar. Drugs 2022, 20(8), 496; https://doi.org/10.3390/md20080496 - 31 Jul 2022
Abstract
The carotenoids, including lycopene, lutein, astaxanthin, and zeaxanthin belong to the isoprenoids, whose basic structure is made up of eight isoprene units, resulting in a C40 backbone, though some of them are only trace components in Euglena. They are essential to all
[...] Read more.
The carotenoids, including lycopene, lutein, astaxanthin, and zeaxanthin belong to the isoprenoids, whose basic structure is made up of eight isoprene units, resulting in a C40 backbone, though some of them are only trace components in Euglena. They are essential to all photosynthetic organisms due to their superior photoprotective and antioxidant properties. Their dietary functions decrease the risk of breast, cervical, vaginal, and colorectal cancers and cardiovascular and eye diseases. Antioxidant functions of carotenoids are based on mechanisms such as quenching free radicals, mitigating damage from reactive oxidant species, and hindering lipid peroxidation. With the development of carotenoid studies, their distribution, functions, and composition have been identified in microalgae and higher plants. Although bleached or achlorophyllous mutants of Euglena were among the earliest carotenoid-related microalgae under investigation, current knowledge on the composition and biosynthesis of these compounds in Euglena is still elusive. This review aims to overview what is known about carotenoid metabolism in Euglena, focusing on the carotenoid distribution and structure, biosynthesis pathway, and accumulation in Euglena strains and mutants under environmental stresses and different culture conditions. Moreover, we also summarize the potential applications in therapy preventing carcinogenesis, cosmetic industries, food industries, and animal feed.
Full article
(This article belongs to the Special Issue Microalgal Carotenoids)
►▼
Show Figures

Figure 1
Open AccessArticle
A Novel Marine Pyran-Isoindolone Compound Enhances Fibrin Lysis Mediated by Single-Chain Urokinase-Type Plasminogen Activator
by
, , , , , , and
Mar. Drugs 2022, 20(8), 495; https://doi.org/10.3390/md20080495 - 30 Jul 2022
Abstract
►▼
Show Figures
Fungi fibrinolytic compound 1 (FGFC1) is a rare pyran-isoindolone derivative with fibrinolytic activity. The aim of this study was to further determine the effect of FGFC1 on fibrin clots lysis in vitro. We constructed a fibrinolytic system containing single-chain urokinase-type plasminogen activator (scu-PA)
[...] Read more.
Fungi fibrinolytic compound 1 (FGFC1) is a rare pyran-isoindolone derivative with fibrinolytic activity. The aim of this study was to further determine the effect of FGFC1 on fibrin clots lysis in vitro. We constructed a fibrinolytic system containing single-chain urokinase-type plasminogen activator (scu-PA) and plasminogen to measure the fibrinolytic activity of FGFC1 using the chromogenic substrate method. After FITC-fibrin was incubated with increasing concentrations of FGFC1, the changes in the fluorescence intensity and D-dimer in the lysate were measured using a fluorescence microplate reader. The fibrin clot structure induced by FGFC1 was observed and analyzed using a scanning electron microscope and laser confocal microscope. We found that the chromogenic reaction rate of the mixture system increased from (15.9 ± 1.51) × 10−3 min−1 in the control group to (29.7 ± 1.25) × 10−3 min−1 for 12.8 μM FGFC1(p < 0.01). FGFC1 also significantly increased the fluorescence intensity and d-dimer concentration in FITC fibrin lysate. Image analysis showed that FGFC1 significantly reduced the fiber density and increased the fiber diameter and the distance between protofibrils. These results show that FGFC1 can effectively promote fibrin lysis in vitro and may represent a novel candidate agent for thrombolytic therapy.
Full article

Figure 1
Open AccessReview
Antibody-Drug Conjugates Containing Payloads from Marine Origin
by
, , , and
Mar. Drugs 2022, 20(8), 494; https://doi.org/10.3390/md20080494 - 30 Jul 2022
Abstract
Antibody-drug conjugates (ADCs) are an important class of therapeutics for the treatment of cancer. Structurally, an ADC comprises an antibody, which serves as the delivery system, a payload drug that is a potent cytotoxin that kills cancer cells, and a chemical linker that
[...] Read more.
Antibody-drug conjugates (ADCs) are an important class of therapeutics for the treatment of cancer. Structurally, an ADC comprises an antibody, which serves as the delivery system, a payload drug that is a potent cytotoxin that kills cancer cells, and a chemical linker that connects the payload with the antibody. Unlike conventional chemotherapy methods, an ADC couples the selective targeting and pharmacokinetic characteristics related to the antibody with the potent cytotoxicity of the payload. This results in high specificity and potency by reducing off-target toxicities in patients by limiting the exposure of healthy tissues to the cytotoxic drug. As a consequence of these outstanding features, significant research efforts have been devoted to the design, synthesis, and development of ADCs, and several ADCs have been approved for clinical use. The ADC field not only relies upon biology and biochemistry (antibody) but also upon organic chemistry (linker and payload). In the latter, total synthesis of natural and designed cytotoxic compounds, together with the development of novel synthetic strategies, have been key aspects of the consecution of clinical ADCs. In the case of payloads from marine origin, impressive structural architectures and biological properties are observed, thus making them prime targets for chemical synthesis and the development of ADCs. In this review, we explore the molecular and biological diversity of ADCs, with particular emphasis on those containing marine cytotoxic drugs as the payload.
Full article
(This article belongs to the Special Issue In Vitro and In Vivo Approaches to Study Potential Marine Drugs II)
►▼
Show Figures

Figure 1
Open AccessReview
Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges
Mar. Drugs 2022, 20(8), 493; https://doi.org/10.3390/md20080493 - 29 Jul 2022
Abstract
Sleep deficiency is now considered an emerging global epidemic associated with many serious health problems, and a major cause of financial and social burdens. Sleep and mental health are closely connected, further exacerbating the negative impact of sleep deficiency on overall health and
[...] Read more.
Sleep deficiency is now considered an emerging global epidemic associated with many serious health problems, and a major cause of financial and social burdens. Sleep and mental health are closely connected, further exacerbating the negative impact of sleep deficiency on overall health and well-being. A major drawback of conventional treatments is the wide range of undesirable side-effects typically associated with benzodiazepines and antidepressants, which can be more debilitating than the initial disorder. It is therefore valuable to explore the efficiency of other remedies for complementarity and synergism with existing conventional treatments, leading to possible reduction in undesirable side-effects. This review explores the relevance of microalgae bioactives as a sustainable source of valuable phytochemicals that can contribute positively to mood and sleep disorders. Microalgae species producing these compounds are also catalogued, thus creating a useful reference of the state of the art for further exploration of this proposed approach. While we highlight possibilities awaiting investigation, we also identify the associated issues, including minimum dose for therapeutic effect, bioavailability, possible interactions with conventional treatments and the ability to cross the blood brain barrier. We conclude that physical and biological functionalization of microalgae bioactives can have potential in overcoming some of these challenges.
Full article
(This article belongs to the Special Issue Nutraceutical Potential of Microalgae)
►▼
Show Figures

Graphical abstract
Open AccessEditorial
Echinoderms Metabolites: Structure, Functions and Biomedical Perspectives II
Mar. Drugs 2022, 20(8), 492; https://doi.org/10.3390/md20080492 - 29 Jul 2022
Abstract
Echinoderms belong to the phylum Echinodermata (from the Ancient Greek words “echinos” (hedgehog) and “derma” (skin)) [...]
Full article
(This article belongs to the Special Issue Echinoderms Metabolites: Structure, Functions and Biomedical Perspectives II)
Open AccessArticle
Potential for the Production of Carotenoids of Interest in the Polar Diatom Fragilariopsis cylindrus
Mar. Drugs 2022, 20(8), 491; https://doi.org/10.3390/md20080491 - 29 Jul 2022
Abstract
Carotenoid xanthophyll pigments are receiving growing interest in various industrial fields due to their broad and diverse bioactive and health beneficial properties. Fucoxanthin (Fx) and the inter-convertible couple diadinoxanthin–diatoxanthin (Ddx+Dtx) are acknowledged as some of the most promising xanthophylls; they are mainly synthesized
[...] Read more.
Carotenoid xanthophyll pigments are receiving growing interest in various industrial fields due to their broad and diverse bioactive and health beneficial properties. Fucoxanthin (Fx) and the inter-convertible couple diadinoxanthin–diatoxanthin (Ddx+Dtx) are acknowledged as some of the most promising xanthophylls; they are mainly synthesized by diatoms (Bacillariophyta). While temperate strains of diatoms have been widely investigated, recent years showed a growing interest in using polar strains, which are better adapted to the natural growth conditions of Nordic countries. The aim of the present study was to explore the potential of the polar diatom Fragilariopsis cylindrus in producing Fx and Ddx+Dtx by means of the manipulation of the growth light climate (daylength, light intensity and spectrum) and temperature. We further compared its best capacity to the strongest xanthophyll production levels reported for temperate counterparts grown under comparable conditions. In our hands, the best growing conditions for F. cylindrus were a semi-continuous growth at 7 °C and under a 12 h light:12 h dark photoperiod of monochromatic blue light (445 nm) at a PUR of 11.7 μmol photons m−2 s−1. This allowed the highest Fx productivity of 43.80 µg L−1 day−1 and the highest Fx yield of 7.53 µg Wh−1, more than two times higher than under ‘white’ light. For Ddx+Dtx, the highest productivity (4.55 µg L−1 day−1) was reached under the same conditions of ‘white light’ and at 0 °C. Our results show that F. cylindrus, and potentially other polar diatom strains, are very well suited for Fx and Ddx+Dtx production under conditions of low temperature and light intensity, reaching similar productivity levels as model temperate counterparts such as Phaeodactylum tricornutum. The present work supports the possibility of using polar diatoms as an efficient cold and low light-adapted bioresource for xanthophyll pigments, especially usable in Nordic countries.
Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Marine Drugs Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomedicines, Marine Drugs, Molecules, Pharmaceutics, Plants
Advances in Natural Products from Plants and Associated Microbes
Topic Editors: Ki Hyun Kim, Mostafa Rateb, Hossam HassanDeadline: 31 January 2023
Topic in
Chemistry, Marine Drugs, Microbiology Research, Molecules, Water
Marine Microorganisms: Diversity, Bioactivity and Applications
Topic Editors: Massimiliano Fenice, M. Amparo F. FaustinoDeadline: 1 March 2023
Topic in
Biomolecules, Genes, IJMS, Marine Drugs, Sci. Pharm., Molecules, JCM
Bioinformatics in Drug Design and Discovery
Topic Editors: Bing Niu, Pufeng Du, Suren Rao SoorannaDeadline: 31 March 2023
Topic in
Biomolecules, CIMB, IJMS, Marine Drugs, Molecules, Plants
Safety and Toxicological Risks of Medicinal Plants and Natural Products: Mechanistic Insights
Topic Editors: Eduardo Sobarzo-Sánchez, Esra Küpeli AkkolDeadline: 15 April 2023

Conferences
28 August–2 September 2022
The 28th International Society of Heterocyclic Chemistry Congress (ISHC 2022)

Special Issues
Special Issue in
Marine Drugs
Algal Polysaccharides
Guest Editor: Cláudia NunesDeadline: 12 August 2022
Special Issue in
Marine Drugs
Application of Marine Chitin and Chitosan II
Guest Editors: Jessica Amber Jennings, Joshua BushDeadline: 15 August 2022
Special Issue in
Marine Drugs
The Mechanisms of Action of Bioactive Marine Natural Products
Guest Editor: Ana Marta GonçalvesDeadline: 31 August 2022
Special Issue in
Marine Drugs
Marine Anti-inflammatory and Antioxidant Agents 2.0
Guest Editors: Donatella Degl'Innocenti, Marzia VasarriDeadline: 20 September 2022
Topical Collections
Topical Collection in
Marine Drugs
Ocean4Biotech
Collection Editors: Ana Rotter, Susana P Gaudencio, Katja Klun, Marlen I. Vasquez
Topical Collection in
Marine Drugs
New Approaches to Study Marine Microbiome
Collection Editors: Nobuhiro Koyama, Paul D. Boudreau
Topical Collection in
Marine Drugs
Microalgal Active Biomolecules
Collection Editor: Cédric Delattre