Marine Drugs — Open Access Journal
Marine Drugs (ISSN 1660-3397; CODEN: MDARE6) is the leading peer-reviewed open access journal on the research, development, and production of biologically and therapeutically active compounds from the sea. Marine Drugs is published monthly online by MDPI.
- Open Access free for readers, with article processing charges (APC) paid by authors or their institutions.
- High visibility: indexed by the Science Citation Index Expanded (Web of Science), MEDLINE (PubMed), Embase, Scopus, MarinLit and other databases. Full-text available in PubMed Central.
- Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 13 days after submission; acceptance to publication is undertaken in 4 days (median values for papers published in this journal in the second half of 2018).
- Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor: 4.379 (2017) ; 5-Year Impact Factor: 4.186 (2017)
Latest Articles
Open AccessArticle
Astaxanthin Ameliorates Lipopolysaccharide-Induced Neuroinflammation, Oxidative Stress and Memory Dysfunction through Inactivation of the Signal Transducer and Activator of Transcription 3 Pathway
►▼
Figures
by Ji Hye Han, Yong Sun Lee, Jun Hyung Im, Young Wan Ham, Hee Pom Lee, Sang Bae Han and Jin Tae Hong
Mar. Drugs 2019, 17(2), 123; https://doi.org/10.3390/md17020123 (registering DOI) - 18 February 2019
Abstract
Astaxanthin (AXT), a xanthophyll carotenoid compound, has potent antioxidant, anti-inflammatory and neuroprotective properties. Neuroinflammation and oxidative stress are significant in the pathogenesis and development of Alzheimer’s disease (AD). Here, we studied whether AXT could alleviate neuroinflammation, oxidative stress and memory loss in lipopolysaccharide
[...] Read more.
Astaxanthin (AXT), a xanthophyll carotenoid compound, has potent antioxidant, anti-inflammatory and neuroprotective properties. Neuroinflammation and oxidative stress are significant in the pathogenesis and development of Alzheimer’s disease (AD). Here, we studied whether AXT could alleviate neuroinflammation, oxidative stress and memory loss in lipopolysaccharide (LPS) administered mice model. Additionally, we investigated the anti-oxidant activity and the anti-neuroinflammatory response of AXT in LPS-treated BV-2 microglial cells. The AXT administration ameliorated LPS-induced memory loss. This effect was associated with the reduction of LPS-induced expression of inflammatory proteins, as well as the production of reactive oxygen species (ROS), nitric oxide (NO), cytokines and chemokines both in vivo and in vitro. AXT also reduced LPS-induced β-secretase and Aβ1–42 generation through the down-regulation of amyloidogenic proteins both in vivo and in vitro. Furthermore, AXT suppressed the DNA binding activities of the signal transducer and activator of transcription 3 (STAT3). We found that AXT directly bound to the DNA- binding domain (DBD) and linker domain (LD) domains of STAT3 using docking studies. The oxidative stress and inflammatory responses were not downregulated in BV-2 cells transfected with DBD-null STAT3 and LD-null STAT3. These results indicated AXT inhibits LPS-induced oxidant activity, neuroinflammatory response and amyloidogenesis via the blocking of STAT3 activity through direct binding.
Full article

Figure 1
Open AccessArticle
Anti-Proliferation Activity of a Decapeptide from Perinereies aibuhitensis toward Human Lung Cancer H1299 Cells
by Shuoqi Jiang, Yinglu Jia, Yunping Tang, Die Zheng, Xingbiao Han, Fangmiao Yu, Yan Chen, Fangfang Huang, Zuisu Yang and Guofang Ding
Mar. Drugs 2019, 17(2), 122; https://doi.org/10.3390/md17020122 (registering DOI) - 18 February 2019
Abstract
Perinereis aibuhitensis peptide (PAP) is a decapeptide (Ile-Glu-Pro-Gly-Thr-Val-Gly-Met-Met-Phe, IEPGTVGMMF) with anticancer activity that was purified from an enzymatic hydrolysate of Perinereis aibuhitensis. In the present study, the anticancer effect of PAP on H1299 cell proliferation was investigated. Our results showed that PAP
[...] Read more.
Perinereis aibuhitensis peptide (PAP) is a decapeptide (Ile-Glu-Pro-Gly-Thr-Val-Gly-Met-Met-Phe, IEPGTVGMMF) with anticancer activity that was purified from an enzymatic hydrolysate of Perinereis aibuhitensis. In the present study, the anticancer effect of PAP on H1299 cell proliferation was investigated. Our results showed that PAP promoted apoptosis and inhibited the proliferation of H1299 cells in a time- and dose-dependent manner. When the PAP concentration reached 0.92 mM, more than 95% of treated cells died after 72 h of treatment. Changes in cell morphology were further analyzed using an inverted microscope and AO/EB staining and flow cytometry was adopted for detecting apoptosis and cell cycle phase. The results showed that the early and late apoptosis rates of H1299 cells increased significantly after treatment with PAP and the total apoptosis rate was significantly higher than that of the control group. Moreover, after treatment with PAP, the number of cells in the S phase of cells was significantly reduced and the ability for the cells to proliferate was also reduced. H1299 cells were arrested in the G2/M phase and cell cycle progression was inhibited. Furthermore, the results of western blotting showed that nm23-H1 and vascular endothelial growth factor (VEGF) protein levels decreased in a dose-dependent manner, while the pro-apoptotic protein and anti-apoptotic protein ratios and the level of apoptosis-related caspase protein increased in a dose-dependent manner. In conclusion, our results indicated that PAP, as a natural marine bioactive substance, inhibited proliferation and induced apoptosis of human lung cancer H1299 cells. PAP is likely to be exploited as the functional food or adjuvant that may be used for prevention or treatment of human non-small cell lung cancer in the future.
Full article
Open AccessArticle
9-Methylfascaplysin Is a More Potent Aβ Aggregation Inhibitor than the Marine-Derived Alkaloid, Fascaplysin, and Produces Nanomolar Neuroprotective Effects in SH-SY5Y Cells
►▼
Figures
by Qingmei Sun, Fufeng Liu, Jingcheng Sang, Miaoman Lin, Jiale Ma, Xiao Xiao, Sicheng Yan, C. Benjamin Naman, Ning Wang, Shan He, Xiaojun Yan, Wei Cui and Hongze Liang
Mar. Drugs 2019, 17(2), 121; https://doi.org/10.3390/md17020121 (registering DOI) - 18 February 2019
Abstract
β-Amyloid (Aβ) is regarded as an important pathogenic target for Alzheimer’s disease (AD), the most prevalent neurodegenerative disease. Aβ can assemble into oligomers and fibrils, and produce neurotoxicity. Therefore, Aβ aggregation inhibitors may have anti-AD therapeutic efficacies. It was found, here, that the
[...] Read more.
β-Amyloid (Aβ) is regarded as an important pathogenic target for Alzheimer’s disease (AD), the most prevalent neurodegenerative disease. Aβ can assemble into oligomers and fibrils, and produce neurotoxicity. Therefore, Aβ aggregation inhibitors may have anti-AD therapeutic efficacies. It was found, here, that the marine-derived alkaloid, fascaplysin, inhibits Aβ fibrillization in vitro. Moreover, the new analogue, 9-methylfascaplysin, was designed and synthesized from 5-methyltryptamine. Interestingly, 9-methylfascaplysin is a more potent inhibitor of Aβ fibril formation than fascaplysin. Incubation of 9-methylfascaplysin with Aβ directly reduced Aβ oligomer formation. Molecular dynamics simulations revealed that 9-methylfascaplysin might interact with negatively charged residues of Aβ42 with polar binding energy. Hydrogen bonds and π–π interactions between the key amino acid residues of Aβ42 and 9-methylfascaplysin were also suggested. Most importantly, compared with the typical Aβ oligomer, Aβ modified by nanomolar 9-methylfascaplysin produced less neuronal toxicity in SH-SY5Y cells. 9-Methylfascaplysin appears to be one of the most potent marine-derived compounds that produces anti-Aβ neuroprotective effects. Given previous reports that fascaplysin inhibits acetylcholinesterase and induces P-glycoprotein, the current study results suggest that fascaplysin derivatives can be developed as novel anti-AD drugs that possibly act via inhibition of Aβ aggregation along with other target mechanisms.
Full article

Figure 1
Open AccessArticle
Briarenones A‒C, New Briarellin Diterpenoids from the Gorgonian Briareum violaceum
►▼
Figures
Mar. Drugs 2019, 17(2), 120; https://doi.org/10.3390/md17020120 - 17 February 2019
Abstract
Three new eunicellin-derived diterpenoids of briarellin type, briarenones A‒C (1‒3), were isolated from a Formosan gorgonian Briareum violaceum. The chemical structures of the compounds were elucidated on the basis of extensive spectroscopic analyses, including two-dimensional (2D) NMR. The
[...] Read more.
Three new eunicellin-derived diterpenoids of briarellin type, briarenones A‒C (1‒3), were isolated from a Formosan gorgonian Briareum violaceum. The chemical structures of the compounds were elucidated on the basis of extensive spectroscopic analyses, including two-dimensional (2D) NMR. The absolute configuration of 1 was further confirmed by a single crystal X-ray diffraction analysis. The in vitro cytotoxic and anti-inflammatory potentialities of the isolated metabolites were tested against the growth of a limited panel of cancer cell lines and against the production of superoxide anions and elastase release in N-formyl-methionyl-leucyl-phenyl-alanine and cytochalasin B (fMLF/CB)-stimulated human neutrophils, respectively.
Full article

Graphical abstract
Open AccessArticle
Biosynthesis of Nutraceutical Fatty Acids by the Oleaginous Marine Microalgae Phaeodactylum tricornutum Utilizing Hydrolysates from Organosolv-Pretreated Birch and Spruce Biomass
►▼
Figures
Mar. Drugs 2019, 17(2), 119; https://doi.org/10.3390/md17020119 - 15 February 2019
Abstract
Polyunsaturated fatty acids (PUFAs) are essential for human function, however they have to be provided through the diet. As their production from fish oil is environmentally unsustainable, there is demand for new sources of PUFAs. The aim of the present work was to
[...] Read more.
Polyunsaturated fatty acids (PUFAs) are essential for human function, however they have to be provided through the diet. As their production from fish oil is environmentally unsustainable, there is demand for new sources of PUFAs. The aim of the present work was to establish the microalgal platform to produce nutraceutical-value PUFAs from forest biomass. To this end, the growth of Phaeodactylum tricornutum on birch and spruce hydrolysates was compared to autotrophic cultivation and glucose synthetic media. Total lipid generated by P. tricornutum grown mixotrophically on glucose, birch, and spruce hydrolysates was 1.21, 1.26, and 1.29 g/L, respectively. The highest eicosapentaenoic acid (EPA) production (256 mg/L) and productivity (19.69 mg/L/d) were observed on spruce hydrolysates. These values were considerably higher than those obtained from the cultivation without glucose (79.80 mg/L and 6.14 mg/L/d, respectively) and also from the photoautotrophic cultivation (26.86 mg/L and 2.44 mg/L/d, respectively). To the best of our knowledge, this is the first report describing the use of forest biomass as raw material for EPA and docosapentaenoic acid (DHA) production.
Full article

Graphical abstract
Open AccessReview
Collagen of Extracellular Matrix from Marine Invertebrates and Its Medical Applications
►▼
Figures
Mar. Drugs 2019, 17(2), 118; https://doi.org/10.3390/md17020118 - 14 February 2019
Abstract
The extraction and purification of collagen are of great interest due to its biological function and medicinal applications. Although marine invertebrates are abundant in the animal kingdom, our knowledge of their extracellular matrix (ECM), which mainly contains collagen, is lacking. The functions of
[...] Read more.
The extraction and purification of collagen are of great interest due to its biological function and medicinal applications. Although marine invertebrates are abundant in the animal kingdom, our knowledge of their extracellular matrix (ECM), which mainly contains collagen, is lacking. The functions of collagen isolated from marine invertebrates remain an untouched source of the proteinaceous component in the development of groundbreaking pharmaceuticals. This review will give an overview of currently used collagens and their future applications, as well as the methodological issues of collagens from marine invertebrates for potential drug discovery.
Full article

Graphical abstract
Open AccessCommunication
Biocatalysis of Fucodian in Undaria pinnatifida Sporophyll Using Bifidobacterium longum RD47 for Production of Prebiotic Fucosylated Oligosaccharide
►▼
Figures
Mar. Drugs 2019, 17(2), 117; https://doi.org/10.3390/md17020117 - 14 February 2019
Abstract
Fucosylated oligosaccharide (FO) is known to selectively promote the growth of probiotic bacteria and is currently marketed as a functional health food and prebiotic in infant formula. Despite widespread interest in FO among functional food customers, high production costs due to high raw
[...] Read more.
Fucosylated oligosaccharide (FO) is known to selectively promote the growth of probiotic bacteria and is currently marketed as a functional health food and prebiotic in infant formula. Despite widespread interest in FO among functional food customers, high production costs due to high raw material costs, especially those related to fucose, are a significant production issue. Therefore, several actions are required before efficient large-scale operations can occur, including (i) identification of inexpensive raw materials from which fucosylated oligosaccharides may be produced and (ii) development of production methods to which functional food consumers will not object (e.g., no genetically modified organisms (GMOs)). Undaria pinnatifida, commonly called Miyeok in Korea, is a common edible brown seaweed plentiful on the shores of the Korean peninsula. In particular, the sporophyll of Undaria pinnatifida contains significant levels of l-fucose in the form of fucoidan (a marine sulfated polysaccharide). If the l-fucose present in Undaria pinnatifida sporophyll was capable of being separated and recovered, l-fucose molecules could be covalently joined to other monosaccharides via glycosidic linkages, making this FO manufacturing technology of value in the functional food market. In our previous work, β-galactosidase (EC 3.2.2.23) from Bifidobacterium longum RD47 (B. longum RD47) was found to have transglycosylation activity and produce FO using purified l-fucose and lactose as substrates (reference). In this research, crude fucodian hydrolysates were separated and recovered from edible seaweed (i.e., U. pinnatifida sporophyll). The extracted l-fucose was purified via gel permeation and ion exchange chromatographies and the recovered l-fucose was used to synthesize FO. B. longum RD47 successfully transglycosilated and produced FO using l-fucose derived from Undaria pinnatifida and lactose as substrates. To the best of our knowledge, this is the first report of synthesized FO using Bifidobacterium spp.
Full article

Figure 1
Open AccessArticle
Antioxidative Peptides from Proteolytic Hydrolysates of False Abalone (Volutharpa ampullacea perryi): Characterization, Identification, and Molecular Docking
►▼
Figures
Mar. Drugs 2019, 17(2), 116; https://doi.org/10.3390/md17020116 - 13 February 2019
Abstract
Antioxidative peptides were produced from false abalone (Volutharpa ampullacea perryi) using enzymatic hydrolysis. Trypsin produced the most bioactive hydrolysates with the highest scavenging ABTS+• free radicals compared to pepsin, alcalase, neutrase, and flavourzyme. The response surface methodology studies on trypsin
[...] Read more.
Antioxidative peptides were produced from false abalone (Volutharpa ampullacea perryi) using enzymatic hydrolysis. Trypsin produced the most bioactive hydrolysates with the highest scavenging ABTS+• free radicals compared to pepsin, alcalase, neutrase, and flavourzyme. The response surface methodology studies on trypsin hydrolysis indicated that the hydrolysis temperature, time, and pH were interacted with each other (p < 0.05), and the optimal conditions were hydrolysis at 51.8 °C for 4.1 h, pH 7.7 and the maximum predicted hydrolysis degree was 13.18% and ABTS+• scavenging activity of 79.42%. The optimized hydrolysate was subjected to ultrafiltration fractionation, and the fraction with MW < 3 kDa showed the highest ABTS+• scavenging activity. There were 193 peptide sequences identified from this peptide fraction and 133 of them were successfully docked onto human myeloperoxidase (MPO), an enzyme involved in forming reactive oxidants in vivo. The highest scored peptide, no. 39, consists of DTETGVPT. Its structure and molecular interactions with MPO active site were compared with previously characterized peptide hLF1-11. The interactions between peptide no. 39 and MPO include electrostatic charge, hydrogen bonds, and covalent bonds. The antioxidative peptide produced in this research may exert antioxidant activity in vivo due to its potential inhibition effect on MPO.
Full article

Figure 1
Open AccessFeature PaperReview
Chemical Diversity and Biological Activities of Marine Sponges of the Genus Suberea: A Systematic Review
►▼
Figures
by Amr El-Demerdash, Atanas G. Atanasov, Olaf K. Horbanczuk, Mohamed A. Tammam, Mamdouh Abdel-Mogib, John N. A. Hooper, Nazim Sekeroglu, Ali Al-Mourabit and Anake Kijjoa
Mar. Drugs 2019, 17(2), 115; https://doi.org/10.3390/md17020115 - 12 February 2019
Abstract
Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. Currently, more than 30,000 structurally diverse secondary metabolites from marine sources have been isolated, making MNPs a profound, renewable source to investigate novel drug compounds. Marine sponges
[...] Read more.
Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. Currently, more than 30,000 structurally diverse secondary metabolites from marine sources have been isolated, making MNPs a profound, renewable source to investigate novel drug compounds. Marine sponges of the genus Suberea (family: Aplysinellidae) are recognized as producers of bromotyrosine derivatives, which are considered distinct chemotaxonomic markers for the marine sponges belonging to the order Verongida. This class of compounds exhibits structural diversity, ranging from simple monomeric molecules to more complex molecular scaffolds, displaying a myriad of biological and pharmacological potentialities. In this review, a comprehensive literature survey covering the period of 1998–2018, focusing on the chemistry and biological/pharmacological activities of marine natural products from marine spongesof the genus Suberea, with special attention to the biogenesis of the different skeletons of halogenated compounds, is presented.
Full article

Graphical abstract
Open AccessArticle
Desertomycin G, a New Antibiotic with Activity against Mycobacterium tuberculosis and Human Breast Tumor Cell Lines Produced by Streptomyces althioticus MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp.
►▼
Figures
by Alfredo F. Braña, Aida Sarmiento-Vizcaíno, Ignacio Pérez-Victoria, Jesús Martín, Luis Otero, Juan José Palacios-Gutiérrez, Jonathan Fernández, Yamina Mohamedi, Tania Fontanil, Marina Salmón, Santiago Cal, Fernando Reyes, Luis A. García and Gloria Blanco
Mar. Drugs 2019, 17(2), 114; https://doi.org/10.3390/md17020114 - 12 February 2019
Abstract
The isolation and structural elucidation of a structurally new desertomycin, designated as desertomycin G (1), with strong antibiotic activity against several clinically relevant antibiotic resistant pathogens are described herein. This new natural product was obtained from cultures of the marine actinomycete
[...] Read more.
The isolation and structural elucidation of a structurally new desertomycin, designated as desertomycin G (1), with strong antibiotic activity against several clinically relevant antibiotic resistant pathogens are described herein. This new natural product was obtained from cultures of the marine actinomycete Streptomyces althioticus MSM3, isolated from samples of the intertidal seaweed Ulva sp. collected in the Cantabrian Sea (Northeast Atlantic Ocean). Particularly interesting is its strong antibiotic activity against Mycobacterium tuberculosis clinical isolates, resistant to antibiotics in clinical use. To the best of our knowledge, this is the first report on a member of the desertomycin family displaying such activity. Additionally, desertomycin G shows strong antibiotic activities against other relevant Gram-positive clinical pathogens such as Corynebacterium urealyticum, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecium, Enterococcus faecalis, and Clostridium perfringens. Desertomycin G also displays moderate antibiotic activity against relevant Gram-negative clinical pathogens such as Bacteroides fragilis, Haemophilus influenzae and Neisseria meningitidis. In addition, the compound affects viability of tumor cell lines, such as human breast adenocarcinoma (MCF-7) and colon carcinoma (DLD-1), but not normal mammary fibroblasts.
Full article

Graphical abstract
Open AccessArticle
Fourfold Filtered Statistical/Computational Approach for the Identification of Imidazole Compounds as HO-1 Inhibitors from Natural Products
by Giuseppe Floresta, Emanuele Amata, Davide Gentile, Giuseppe Romeo, Agostino Marrazzo, Valeria Pittalà, Loredana Salerno and Antonio Rescifina
Mar. Drugs 2019, 17(2), 113; https://doi.org/10.3390/md17020113 - 12 February 2019
Abstract
Over-regulation of Heme oxygenase 1 (HO-1) has been recently identified in many types of human cancer, and in these cases, poor clinical outcomes are normally reported. Indeed, the inhibition of HO-1 is being considered as an anticancer approach. Imidazole scaffold is normally present
[...] Read more.
Over-regulation of Heme oxygenase 1 (HO-1) has been recently identified in many types of human cancer, and in these cases, poor clinical outcomes are normally reported. Indeed, the inhibition of HO-1 is being considered as an anticancer approach. Imidazole scaffold is normally present in most of the classical HO-1 inhibitors and seems indispensable to the inhibitory activity due to its strong interaction with the Fe(II) of the heme group. In this paper, we searched for new potentially HO-1 inhibitors among three different databases: Marine Natural Products (MNP), ZINC Natural Products (ZNP) and Super Natural II (SN2). 484,527 compounds were retrieved from the databases and filtered through four statistical/computational filters (2D descriptors, 2D-QSAR pharmacophoric model, 3D-QSAR pharmacophoric model, and docking). Different imidazole-based compounds were suggested by our methodology to be potentially active in inhibiting the HO-1, and the results have been rationalized by the bioactivity of the filtered molecules reported in the literature.
Full article
Open AccessArticle
Development of a Mucoadhesive and In Situ Gelling Formulation Based on κ-Carrageenan for Application on Oral Mucosa and Esophagus Walls. I. A Functional In Vitro Characterization
►▼
Figures
by Barbara Vigani, Angela Faccendini, Silvia Rossi, Giuseppina Sandri, Maria Cristina Bonferoni, Matteo Gentile and Franca Ferrari
Mar. Drugs 2019, 17(2), 112; https://doi.org/10.3390/md17020112 - 12 February 2019
Abstract
Oral mucositis and esophagitis represent the most frequent and clinically significant complications of cytoreductive chemotherapy and radiotherapy, which severely compromise the patient quality of life. The local application of polymeric gels could protect the injured tissues, alleviating the most painful symptoms. The present
[...] Read more.
Oral mucositis and esophagitis represent the most frequent and clinically significant complications of cytoreductive chemotherapy and radiotherapy, which severely compromise the patient quality of life. The local application of polymeric gels could protect the injured tissues, alleviating the most painful symptoms. The present work aims at developing in situ gelling formulations for the treatment of oral mucositis and esophagitis. To reach these targets, κ-carrageenan (κ-CG) was selected as a polymer having wound healing properties and able to gelify in the presence of saliva ions, while hydroxypropyl cellulose (HPC) was used to improve the mucoadhesive properties of the formulations. CaCl2 was identified as a salt able to enhance the interaction between κ-CG and saliva ions. Different salt and polymer concentrations were investigated in order to obtain a formulation having the following features: (i) low viscosity at room temperature to facilitate administration, (ii) marked elastic properties at 37 °C, functional to a protective action towards damaged tissues, and (iii) mucoadhesive properties. Prototypes characterized by different κ-CG, HPC, and CaCl2 concentrations were subjected to a thorough rheological characterization and to in vitro mucoadhesion and washability tests. The overall results pointed out the ability of the developed formulations to produce a gel able to interact with saliva ions and to adhere to the biological substrates.
Full article

Figure 1
Open AccessArticle
A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides
►▼
Figures
by Jorge Antunes, Sandra Pereira, Tiago Ribeiro, Jeffrey E. Plowman, Ancy Thomas, Stefan Clerens, Alexandre Campos, Vitor Vasconcelos and Joana R. Almeida
Mar. Drugs 2019, 17(2), 111; https://doi.org/10.3390/md17020111 - 12 February 2019
Abstract
The cyclic peptides portoamides produced by the cyanobacterium Phormidium sp. LEGE 05292 were previously isolated and their ability to condition microcommunities by allelopathic effect was described. These interesting bioactive properties are, however, still underexplored as their biotechnological applications may be vast. This study
[...] Read more.
The cyclic peptides portoamides produced by the cyanobacterium Phormidium sp. LEGE 05292 were previously isolated and their ability to condition microcommunities by allelopathic effect was described. These interesting bioactive properties are, however, still underexplored as their biotechnological applications may be vast. This study aims to investigate the antifouling potential of portoamides, given that a challenge in the search for new environmentally friendly antifouling products is to find non-toxic natural alternatives with the ability to prevent colonization of different biofouling species, from bacteria to macroinvertebrates. A multi-bioassay approach was applied to assess portoamides antifouling properties, marine ecotoxicity and molecular mode of action. Results showed high effectiveness in the prevention of mussel larvae settlement (EC50 = 3.16 µM), and also bioactivity towards growth and biofilm disruption of marine biofouling bacterial strains, while not showing toxicity towards both target and non-target species. Antifouling molecular targets in mussel larvae include energy metabolism modifications (failure in proton-transporting ATPases activity), structural alterations of the gills and protein and gene regulatory mechanisms. Overall, portoamides reveal a broad-spectrum bioactivity towards diverse biofouling species, including a non-toxic and reversible effect towards mussel larvae, showing potential to be incorporated as an active ingredient in antifouling coatings.
Full article

Figure 1
Open AccessArticle
In Silico Identification and Experimental Validation of (−)-Muqubilin A, a Marine Norterpene Peroxide, as PPARα/γ-RXRα Agonist and RARα Positive Allosteric Modulator
►▼
Figures
by Enrico D’Aniello, Fabio Arturo Iannotti, Lauren G. Falkenberg, Andrea Martella, Alessandra Gentile, Fabrizia De Maio, Maria Letizia Ciavatta, Margherita Gavagnin, Joshua S. Waxman, Vincenzo Di Marzo, Pietro Amodeo and Rosa Maria Vitale
Mar. Drugs 2019, 17(2), 110; https://doi.org/10.3390/md17020110 - 12 February 2019
Abstract
The nuclear receptors (NRs) RARα, RXRα, PPARα, and PPARγ represent promising pharmacological targets for the treatment of neurodegenerative diseases. In the search for molecules able to simultaneously target all the above-mentioned NRs, we screened an in-house developed molecular database using a ligand-based approach,
[...] Read more.
The nuclear receptors (NRs) RARα, RXRα, PPARα, and PPARγ represent promising pharmacological targets for the treatment of neurodegenerative diseases. In the search for molecules able to simultaneously target all the above-mentioned NRs, we screened an in-house developed molecular database using a ligand-based approach, identifying (−)-Muqubilin (Muq), a cyclic peroxide norterpene from a marine sponge, as a potential hit. The ability of this compound to stably and effectively bind these NRs was assessed by molecular docking and molecular dynamics simulations. Muq recapitulated all the main interactions of a canonical full agonist for RXRα and both PPARα and PPARγ, whereas the binding mode toward RARα showed peculiar features potentially impairing its activity as full agonist. Luciferase assays confirmed that Muq acts as a full agonist for RXRα, PPARα, and PPARγ with an activity in the low- to sub-micromolar range. On the other hand, in the case of RAR, a very weak agonist activity was observed in the micromolar range. Quite surprisingly, we found that Muq is a positive allosteric modulator for RARα, as both luciferase assays and in vivo analysis using a zebrafish transgenic retinoic acid (RA) reporter line showed that co-administration of Muq with RA produced a potent synergistic enhancement of RARα activation and RA signaling.
Full article

Graphical abstract
Open AccessArticle
5-O-Acetyl-Renieramycin T from Blue Sponge Xestospongia sp. Induces Lung Cancer Stem Cell Apoptosis
Mar. Drugs 2019, 17(2), 109; https://doi.org/10.3390/md17020109 - 11 February 2019
Abstract
Lung cancer is one of the most significant cancers as it accounts for almost 1 in 5 cancer deaths worldwide, with an increasing incident rate. Management of the cancer has been shown to frequently fail due to the ability of the cancer cells
[...] Read more.
Lung cancer is one of the most significant cancers as it accounts for almost 1 in 5 cancer deaths worldwide, with an increasing incident rate. Management of the cancer has been shown to frequently fail due to the ability of the cancer cells to resist therapy as well as metastasis. Recent evidence has suggested that the poor response to the current treatment drugs and the ability to undergo metastasis are driven by cancer stem cells (CSCs) within the tumor. The discovery of novel compounds able to suppress CSCs and sensitize the chemotherapeutic response could be beneficial to the improvement of clinical outcomes. Herein, we report for the first time that 5-O-acetyl-renieramycin T isolated from the blue sponge Xestospongia sp. mediated lung cancer cell death via the induction of p53-dependent apoptosis. Importantly, 5-O-acetyl-renieramycin T induced the death of CSCs as represented by the CSC markers CD44 and CD133, while the stem cell transcription factor Nanog was also found to be dramatically decreased in 5-O-acetyl-renieramycin T-treated cells. We also found that such a CSC suppression was due to the ability of the compound to deplete the protein kinase B (AKT) signal. Furthermore, 5-O-acetyl-renieramycin T was able to significantly sensitize cisplatin-mediated apoptosis in the lung cancer cells. Together, the present research findings indicate that this promising compound from the marine sponge is a potential candidate for anti-cancer approaches.
Full article
Open AccessArticle
Eckol as a Potential Therapeutic against Neurodegenerative Diseases Targeting Dopamine D3/D4 Receptors
Mar. Drugs 2019, 17(2), 108; https://doi.org/10.3390/md17020108 - 10 February 2019
Abstract
The G protein-coupled receptor (GPCR) family of proteins comprises signaling proteins that mediate cellular responses to various hormones and neurotransmitters, and serves as a prime target for drug discovery. Towards our goal of discovering secondary metabolites from natural sources that can function as
[...] Read more.
The G protein-coupled receptor (GPCR) family of proteins comprises signaling proteins that mediate cellular responses to various hormones and neurotransmitters, and serves as a prime target for drug discovery. Towards our goal of discovering secondary metabolites from natural sources that can function as neuronal drugs, we evaluated the modulatory effect of eckol on various GPCRs via cell-based functional assays. In addition, we conducted in silico predictions to obtain molecular insights into the functional effects of eckol. Functional assays revealed that eckol had a concentration-dependent agonist effect on dopamine D3 and D4 receptors. The half maximal effective concentration (EC50) of eckol for the dopamine D3 and D4 receptors was 48.62 ± 3.21 and 42.55 ± 2.54 µM, respectively, while the EC50 values of dopamine as a reference agonist for these two receptors were 2.9 and 3.3 nM, respectively. In silico studies revealed that a low binding energy in addition to hydrophilic, hydrophobic, π–alkyl, and π–π T-shaped interactions are potential mechanisms by which eckol binds to the dopamine receptors to exert its agonist effects. Molecular dynamics (MD) simulation revealed that Phe346 of the dopamine receptors is important for binding of eckol, similar to eticlopride and dopamine. Our results collectively suggest that eckol is a potential D3/D4 agonist for the management of neurodegenerative diseases, such as Parkinson’s disease.
Full article
Open AccessArticle
Biomolecular Composition and Revenue Explained by Interactions between Extrinsic Factors and Endogenous Rhythms of Saccharina latissima
by Xueqian Zhang and Marianne Thomsen
Mar. Drugs 2019, 17(2), 107; https://doi.org/10.3390/md17020107 - 10 February 2019
Abstract
This review provides a systematic overview of the spatial and temporal variations in the content of biomolecular constituents of Saccharina latissima on the basis of 34 currently-available scientific studies containing primary measurements. We demonstrate the potential revenue of seaweed production and biorefinery systems
[...] Read more.
This review provides a systematic overview of the spatial and temporal variations in the content of biomolecular constituents of Saccharina latissima on the basis of 34 currently-available scientific studies containing primary measurements. We demonstrate the potential revenue of seaweed production and biorefinery systems by compiling a product portfolio of high-value extract products. An investigation into the endogenous rhythms and extrinsic factors that impact the biomolecular composition of S. latissima is presented, and key performance factors for optimizing seaweed production are identified. Besides the provisioning ecosystem service, we highlight the contribution of green-engineered seaweed production systems to the mitigation of the ongoing and historical anthropogenic disturbances of the climate balance and nutrient flows. We conclude that there are risks of mismanagement, and we stress the importance and necessity of creating an adaptive ecosystem-based management framework within a triple-helix partnership for balancing the utilization of ecosystem services and long-term resilience of aquatic environment.
Full article
Open AccessArticle
Solvolysis Artifacts: Leucettazoles as Cryptic Macrocyclic Alkaloid Dimers from a Southern Australian Marine Sponge, Leucetta sp.
by Pritesh Prasad, Angela A. Salim, Shamsunnahar Khushi, Zeinab G. Khalil, Michelle Quezada and Robert J. Capon
Mar. Drugs 2019, 17(2), 106; https://doi.org/10.3390/md17020106 - 9 February 2019
Abstract
Keywords: ethanolysis; solvolysis; artifact; leucettazoles; leucettazines; macrocyclic alkaloids; Leucetta; Australian sponge; GNPS.
Full article
Open AccessArticle
In Vitro Immunostimulating Activity of Sulfated Polysaccharides from Caulerpa cupressoides Var. Flabellata
►▼
Figures
by Jefferson da Silva Barbosa, Mariana Santana Santos Pereira Costa, Luciana Fentanes Moura de Melo, Mayara Jane Campos de Medeiros, Daniel de Lima Pontes, Katia Castanho Scortecci and Hugo Alexandre Oliveira Rocha
Mar. Drugs 2019, 17(2), 105; https://doi.org/10.3390/md17020105 - 9 February 2019
Abstract
Green seaweeds are rich sources of sulfated polysaccharides (SPs) with potential biomedical and nutraceutical applications. The aim of this work was to evaluate the immunostimulatory activity of SPs from the seaweed, Caulerpa cupressoides var. flabellata on murine RAW 264.7 macrophages. SPs were evaluated
[...] Read more.
Green seaweeds are rich sources of sulfated polysaccharides (SPs) with potential biomedical and nutraceutical applications. The aim of this work was to evaluate the immunostimulatory activity of SPs from the seaweed, Caulerpa cupressoides var. flabellata on murine RAW 264.7 macrophages. SPs were evaluated for their ability to modify cell viability and to stimulate the production of inflammatory mediators, such as nitric oxide (NO), intracellular reactive oxygen species (ROS), and cytokines. Additionally, their effect on inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) gene expression was investigated. The results showed that SPs were not cytotoxic and were able to increase in the production of NO, ROS and the cytokines, tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). It was also observed that treatment with SPs increased iNOS and COX-2 gene expression. Together, these results indicate that C. cupressoides var. flabellata SPs have strong immunostimulatory activity, with potential biomedical applications.
Full article

Figure 1
Open AccessArticle
Inhibitory Effects of Sodium Alginate on Hepatic Steatosis in Mice Induced by a Methionine- and Choline-deficient Diet
by Shoji Kawauchi, Sayo Horibe, Naoto Sasaki, Toshihito Tanahashi, Shigeto Mizuno, Tsuneo Hamaguchi and Yoshiyuki Rikitake
Mar. Drugs 2019, 17(2), 104; https://doi.org/10.3390/md17020104 - 9 February 2019
Abstract
Nonalcoholic steatohepatitis (NASH) progresses from nonalcoholic fatty liver disease (NAFLD); however, efficacious drugs for NASH treatment are lacking. Sodium alginate (SA), a soluble dietary fiber extracted from brown algae, could protect the small intestine from enterobacterial invasion. NASH pathogenesis has been suggested to
[...] Read more.
Nonalcoholic steatohepatitis (NASH) progresses from nonalcoholic fatty liver disease (NAFLD); however, efficacious drugs for NASH treatment are lacking. Sodium alginate (SA), a soluble dietary fiber extracted from brown algae, could protect the small intestine from enterobacterial invasion. NASH pathogenesis has been suggested to be associated with enterobacterial invasion, so we examined the effect of SA on methionine- and choline-deficient (MCD) diet-induced steatohepatitis in mice (the most widely-used model of NASH). The mice (n = 31) were divided into three groups (mice fed with regular chow, MCD diet, and MCD diet premixed with 5% SA) for 4 and 8 weeks. The MCD diet increased lipid accumulation and inflammation in the liver, the NAFLD Activity Score and hepatic mRNA expression of tumor necrosis factor- and collagen 11, and induced macrophage infiltration. Villus shortening, disruption of zonula occludens-1 localization and depletion of mucus production were observed in the small intestine of the MCD-group mice. SA administration improved lipid accumulation and inflammation in the liver, and impaired barrier function in the small intestine. Collectively, these results suggest that SA is useful for NASH treatment because it can prevent hepatic inflammation and fatty degeneration by maintaining intestinal barrier function.
Full article

News
Conferences
Special Issues
Special Issue in
Marine Drugs
Natural Products from Marine Actinomycetes
Guest Editors: Dong-Chan Oh, Sang-Jip NamDeadline: 28 February 2019
Special Issue in
Marine Drugs
Marine Metabolites and Metal Ion Chelation
Guest Editor: Carlos JimenezDeadline: 15 March 2019
Special Issue in
Marine Drugs
Marine Natural Products and Obesity
Guest Editors: Ralph Urbatzka, Vítor VasconcelosDeadline: 29 March 2019
Special Issue in
Marine Drugs
Compounds from Cyanobacteria II
Guest Editor: Michele R. PrinsepDeadline: 31 March 2019
Topical Collections
Topical Collection in
Marine Drugs
Bioactive Compounds from Marine Plankton
Collection Editor: Georg Pohnert
Topical Collection in
Marine Drugs
TASCMAR
Collection Editors: Anne Bialecki, Jamal Ouazzani, Ioannis Trougakos
Topical Collection in
Marine Drugs
Marine Natural Product Artifacts: Valuing An Unnatural Window into New Chemical Space
Collection Editor: Robert Capon
Topical Collection in
Marine Drugs
Bioactive Compounds from Marine Invertebrates
Collection Editor: Kirsten BenkendorffJobs in Research
Mar. Drugs
EISSN 1660-3397
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert