Research and Analysis of Pressure-Maintaining Trapping Instrument for Macro-Organisms in Hadal Trenches
Abstract
:1. Introduction
2. Material and Methods
2.1. Structure of the PMTI
2.2. Work Process
2.3. Control System
3. Analysis of the Piston Movement Resistance
3.1. The Resistance of O-Ring
3.2. Basic Assumptions
3.3. Orthogonal Test
3.4. Constitutive Model of Superelastic Materials
3.5. Finite Element Model
3.6. Results of Orthogonal Test
4. Experiments
4.1. High Pressure Tests
4.2. Frictional Force Measurement Test
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
W | Strain energy density of superelastic material |
C10, C01 | Material coefficients of rubber |
I1, I2 | The first and second strain tensor invariants |
G | The shear modulu |
E | The elastic modulu |
Poisson’s ratio | |
Hr | Rubber hardness |
Frictional force, N | |
d | Diameter of O-ring, mm |
p(x) | Contact stress distribution |
Compression ratio | |
p0 | Maximum contact stress, MPa |
b | Contact width, mm |
F | Axial force of screw, N |
Transmission efficiency of screw | |
T | Torque, Nm |
L | Screw pitch, mm |
References
- Smith, C.; DeLeo, F.; Bernardino, A.F.; Sweetman, A.; Arbizu, P.M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 2008, 23, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Jażdżewska, A.M.; Mamos, T. High species richness of Northwest Pacific deep-sea amphipods revealed through DNA barcoding. Prog. Oceanogr. 2019, 178, 102184. [Google Scholar] [CrossRef]
- O’Hara, T.D.; Williams, A.; Woolley, S.N.; Nau, A.W.; Bax, N.J. Deep-sea temperate-tropical faunal transition across uniform environmental gradients. Deep Sea Res. Part I 2020, 161, 103283. [Google Scholar] [CrossRef]
- Mauchline, J.; Gordon, J.D.M. Diets and bathymetric distributions of the macrourid fish of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 1984, 81, 107–121. [Google Scholar] [CrossRef]
- Lacey, N.C.; Rowden, A.A.; Clark, M.R.; Kilgallen, N.M.; Linley, T.; Mayor, D.J.; Jamieson, A. Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific Trenches. Deep Sea Res. Part I 2016, 111, 121–137. [Google Scholar] [CrossRef]
- Yayanos, A.A. Recovery and Maintenance of Live Amphipods at a Pressure of 580 Bars from an Ocean Depth of 5700 Meters. Science 1978, 200, 1056–1059. [Google Scholar] [CrossRef]
- Drazen, J.C.; Bird, L.E.; Barry, J.P. Development of a hyperbaric trap-respirometer for the capture and maintenance of live deep-sea organisms. Limnol. Oceanogr. Methods 2005, 3, 488–498. [Google Scholar] [CrossRef]
- Shillito, B.; Hamel, G.; Duchi, C.; Cottin, D.; Sarrazin, J.; Sarradin, P.-M.; Ravaux, J.; Gaill, F. Live capture of megafauna from 2300m depth, using a newly designed Pressurized Recovery Device. Deep Sea Res. Part I 2008, 55, 881–889. [Google Scholar] [CrossRef]
- Bailey, D.M.; Jamieson, A.; Bagley, P.; Collins, M.; Priede, I.G. Measurement of in situ oxygen consumption of deep-sea fish using an autonomous lander vehicle. Deep Sea Res. Part I 2002, 49, 1519–1529. [Google Scholar] [CrossRef]
- Koyama, S.; Miwa, T.; Horii, M.; Ishikawa, Y.; Horikoshi, K.; Aizawa, M. Pressure-stat aquarium system designed for capturing and maintaining deep-sea organisms. Deep Sea Res. Part I 2002, 49, 2095–2102. [Google Scholar] [CrossRef]
- Monterey Bay Aquarium Research Institute. Pulses of sinking carbon reaching the deep sea are not captured in global climate models. News Rx Health Sci. 2018, 144. Available online: https://www.sciencedaily.com/releases/2018/12/181203131109.htm (accessed on 3 December 2018).
- Glud, R.N.; Tengberg, A.; Kühl, M.; Hall, P.; Klimant, I.; Holst, G. An in situ instrument for planar O2 Optode measurements at benthic interfaces. Limnol. Oceanogr. 2001, 46, 2073–2080. [Google Scholar] [CrossRef][Green Version]
- Jamieson, A.J.; Linley, T.D.; Craig, J. Baited camera survey of deep-sea demersal fishes of the West African oil provinces off Angola: 1200–2500m depth, East Atlantic Ocean. Mar. Environ. Res. 2017, 129, 347–364. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Macdonald, A.G.; Gilchrist, I. An apparatus for the recovery and study of deep sea plankton at constant temperature and pressure. In Barobiology and the Experimental Biology of the Deep Sea; Brauer, R.W., Ed.; University of North Carolina Press: Chapel Hill, NC, USA, 1972; pp. 394–412. [Google Scholar]
- Bianchi, A.; Garcin, J.; Tholosan, O. A high-pressure serial sampler to measure microbial activity in the deep sea. Deep Sea Res. Part I 1999, 46, 2129–2142. [Google Scholar] [CrossRef]
- Linley, T.D.; Craig, J.; Jamieson, A.J.; Priede, I.G. Bathyal and abyssal demersal bait-attending fauna of the Eastern Mediterranean Sea. Mar. Biol. 2018, 165, 159. [Google Scholar] [CrossRef][Green Version]
- Qin, K.; Zhou, Q.; Zhang, K.; Feng, Y.; Zhang, T.; Zheng, G.; Xia, B.; Liu, B. Non-uniform abrasive particle size effects on friction characteristics of FKM O-ring seals under three-body abrasion. Tribol. Int. 2019, 136, 216–223. [Google Scholar] [CrossRef]
- Wan, Y.; Soh, A.; Shao, Y.; Cui, X.; Tang, Y.; Chua, K.J. Numerical study and correlations for heat and mass transfer coefficients in indirect evaporative coolers with condensation based on orthogonal test and CFD approach. Int. J. Heat Mass Transf. 2020, 153, 119580. [Google Scholar] [CrossRef]
- Nicolin, I.; Nicolin, B.A. Tribological aspects of dynamic seals with O-rings used in aircraft hydraulic equipment. INCAS Bull. 2019, 11, 221–228. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, B.; Kumar, K. Effect of change of material model in Mooney Rivlin hyper-elastic material. Mater. Today Proc. 2020, 26, 2511–2514. [Google Scholar] [CrossRef]
- Bin Du, X.; Zhao, Y.; Lin, F.; Xiao, Z. Parameters Determination of Mooney-Rivlin Model for Rubber Material of Mechanical Elastic Wheel. Appl. Mech. Mater. 2017, 872, 198–203. [Google Scholar]
- Cetin, M.H.; Korkmaz, S. Investigation of the concentration rate and aggregation behaviour of nano-silver added colloidal suspensions on wear behaviour of metallic materials by using ANOVA method. Tribol. Int. 2020, 147, 106273. [Google Scholar] [CrossRef]
- Karaszkiewicz, A. Geometry and contact pressure of an O-ring mounted in a seal groove. Ind. Eng. Chem. Res. 1990, 29, 2134–2137. [Google Scholar] [CrossRef]
No. | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1 |
2 | 2 | 2 | 2 | 1 |
3 | 3 | 3 | 3 | 1 |
4 | 4 | 4 | 4 | 1 |
5 | 4 | 3 | 2 | 2 |
6 | 3 | 2 | 1 | 2 |
7 | 2 | 1 | 4 | 2 |
8 | 1 | 4 | 3 | 2 |
9 | 1 | 3 | 4 | 3 |
10 | 2 | 4 | 1 | 3 |
11 | 3 | 1 | 2 | 3 |
12 | 4 | 2 | 3 | 3 |
13 | 4 | 1 | 3 | 4 |
14 | 3 | 4 | 4 | 4 |
15 | 2 | 3 | 1 | 4 |
16 | 1 | 2 | 2 | 4 |
17 | 2 | 2 | 4 | 4 |
18 | 2 | 4 | 3 | 4 |
19 | 4 | 4 | 2 | 4 |
20 | 4 | 4 | 1 | 4 |
Factor | Average Square | Significance |
---|---|---|
Material hardness | 0.761 | 0.001 |
Relative speed | 0.017 | 0.744 |
Coefficient of friction | 0.248 | 0.022 |
Compression rate | 0.373 | 0.008 |
Factor | Average Square | Significance |
---|---|---|
Material hardness | 0.298 | 0.006 |
Relative speed | 0.014 | 0.690 |
Coefficient of friction | 0.567 | 0.001 |
Compression rate | 0.059 | 0.192 |
No. | Compression Ratio | Contact Lenth (lf/lk) | Difference | Maximum Stress (sf/sk) | Difference |
---|---|---|---|---|---|
1 | 18% | 1.7053/1.7395 | −1.9% | 2.57/2.46 | 4.8% |
6 | 21% | 1.8262/1.9525 | −6.4% | 2.83/2.77 | 2.1% |
7 | 19.5% | 1.723/1.846 | −6.6% | 2.68/2.59 | 3.5% |
19 | 22.5% | 1.912/2.059 | −7.1% | 4.96/4.53 | 9.4% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Chen, J.; Wang, Y.; Fang, J.; Fang, Y. Research and Analysis of Pressure-Maintaining Trapping Instrument for Macro-Organisms in Hadal Trenches. J. Mar. Sci. Eng. 2020, 8, 596. https://doi.org/10.3390/jmse8080596
Wang H, Chen J, Wang Y, Fang J, Fang Y. Research and Analysis of Pressure-Maintaining Trapping Instrument for Macro-Organisms in Hadal Trenches. Journal of Marine Science and Engineering. 2020; 8(8):596. https://doi.org/10.3390/jmse8080596
Chicago/Turabian StyleWang, Hao, Jiawang Chen, Yuhong Wang, Jiasong Fang, and Yuping Fang. 2020. "Research and Analysis of Pressure-Maintaining Trapping Instrument for Macro-Organisms in Hadal Trenches" Journal of Marine Science and Engineering 8, no. 8: 596. https://doi.org/10.3390/jmse8080596