- Article
Estimating Soil Hydraulic Properties Using Random Forest Pedotransfer Functions and SoilGrids Data in Mexico
- Victor M. Rodríguez-Moreno,
- Josué Delgado-Balbuena and
- Nuria A. López-Hernández
- + 2 authors
Field capacity (FC) and permanent wilting point (PWP) thresholds are critical parameters in climate-smart agriculture because they directly relate to soil water availability, which is essential for optimizing water use, improving crop yields, and ensuring resilience against climate variability. Using the continuous mosaic of SoilGrids data, pedotransfer functions based on bulk density, clay content, and sand content were applied to estimate the threshold values of FC and PWP across Mexico utilizing random forest (RF) algorithms. The selection of these parameters was based on their positive contribution to the model’s prediction: bulk density (0.51), clay content (0.21), and sand content (0.16). Soil organic carbon (SOC) contributed negatively; this negative importance score warrants careful interpretation. The 30–60 cm depth was chosen based on the assumption that it is reasonably uniform across other depths and lies below the highly variable surface horizon, which is strongly influenced by management practices and organic matter dynamics. Here we address key technical and scientific critiques regarding the use of SoilGrids for generating FC and PWP data. Additionally, the relevant role of FC and PWP thresholds in the context of climate-smart agriculture is highlighted, from the calculation of available soil water to their role in achieving sustainable development goals.
19 January 2026






