- Article
Effect of Climatic Aridity on Above-Ground Biomass, Modulated by Forest Fragmentation and Biodiversity in Ghana
- Elisha Njomaba,
- Ben Emunah Aikins and
- Peter Surový
Forests play a vital role in the global carbon cycle but face growing anthropogenic pressures, with climate change and forest fragmentation among the most critical. In West Africa, particularly in Ghana, the interaction between increasing aridity and forest fragmentation remains underexplored, despite its significance for forest biomass dynamics and carbon storage processes. This study examined how spatial variation in climatic aridity (Aridity Index, AI) affects above-ground biomass (AGB) in Ghana’s ecological zones, both directly and indirectly through forest fragmentation and biodiversity, using structural equation modeling (SEM) and generalized additive models (GAMs). Results from this study show that AGB declines along the aridity gradient, with humid zones supporting the highest biomass and semi-arid zones the lowest. The SEM analysis revealed that areas with a lower aridity index (drier conditions) had significantly lower AGB, indicating that arid conditions are associated with lower forest biomass. Fragmentation patterns align with this relationship, while biodiversity (as measured by species richness) showed weak associations, likely reflecting both ecological and data limitations. GAMs highlighted nonlinear fragmentation effects: mean patch area (AREA_MN) was the strongest predictor, showing a unimodal relationship with biomass, whereas number of patches (NP), edge density (ED), and landscape shape index (LSI) reduced AGB. Overall, these findings demonstrate that aridity and spatial configuration jointly control biomass, with fragmentation acting as a key mediator of this relationship. Dry and transitional forests emerge as particularly vulnerable, emphasizing the need for management strategies that maintain large, connected forest patches and integrate restoration into climate adaptation policies.
7 January 2026



