You are currently viewing a new version of our website. To view the old version click .

Earth

Earth is an international, peer-reviewed, open access journal on earth science published bimonthly online by MDPI.

Quartile Ranking JCR - Q2 (Geosciences, Multidisciplinary | Environmental Sciences)

All Articles (411)

The Iraqi coastline in the northern Persian Gulf is highly vulnerable to the impacts of future sea level rise. This study introduces a novel approach in the Arc Geographic Information System (ArcGIS) for inundation risk of the 58 km Iraqi coast of the northern Persian Gulf through a combination of multi-data sources, machine-learning predictions, and hydrological connectivity by Landsat. The Prophet/Neural Prophet time-series framework was used to extrapolate future sea level rise with 11 satellite altimetry missions that span 1993–2023. The coastline was obtained by using the Landsat-8 Operational Land Imager (OLI) imagery based on the Normalised Difference Water Index (NDWI), and topography was obtained by using the ALOS World 3D 30 m DEM. Global Land Use and Land Cover (LULC) projections (2020–2100) and population projections (2020–2100) were used as future inundation values. Two scenarios were compared, one based on an altimeter-based projection of sea level rise (SLR) and the other based on the National Aeronautics and Space Administration (NASA) high-emission scenario, Representative Concentration Pathway 8.5 (RCP8.5). It is found that, by the IPCC AR6 end-of-century projection horizon (relative to 1995–2014), 154,000 people under the altimeter case and 181,000 people under RCP8.5 will have a risk of being inundated. The highest flooded area is the barren area (25,523–46,489 hectares), then the urban land (5303–5743 hectares), and finally the cropland land (434–561 hectares). Critical infrastructure includes 275–406 km of road, 71–99 km of electricity lines, and 73–82 km of pipelines. The study provides the first hydrologically verified Digital Elevation Model (DEM)-refined inundation maps of Iraq that offer a baseline, in the form of a comprehensive and quantitative base, to the coastal adaptation and climate resilience planning.

8 January 2026

Location of the study area along the Iraqi coastline of the northern Persian Gulf.

Forests play a vital role in the global carbon cycle but face growing anthropogenic pressures, with climate change and forest fragmentation among the most critical. In West Africa, particularly in Ghana, the interaction between increasing aridity and forest fragmentation remains underexplored, despite its significance for forest biomass dynamics and carbon storage processes. This study examined how spatial variation in climatic aridity (Aridity Index, AI) affects above-ground biomass (AGB) in Ghana’s ecological zones, both directly and indirectly through forest fragmentation and biodiversity, using structural equation modeling (SEM) and generalized additive models (GAMs). Results from this study show that AGB declines along the aridity gradient, with humid zones supporting the highest biomass and semi-arid zones the lowest. The SEM analysis revealed that areas with a lower aridity index (drier conditions) had significantly lower AGB, indicating that arid conditions are associated with lower forest biomass. Fragmentation patterns align with this relationship, while biodiversity (as measured by species richness) showed weak associations, likely reflecting both ecological and data limitations. GAMs highlighted nonlinear fragmentation effects: mean patch area (AREA_MN) was the strongest predictor, showing a unimodal relationship with biomass, whereas number of patches (NP), edge density (ED), and landscape shape index (LSI) reduced AGB. Overall, these findings demonstrate that aridity and spatial configuration jointly control biomass, with fragmentation acting as a key mediator of this relationship. Dry and transitional forests emerge as particularly vulnerable, emphasizing the need for management strategies that maintain large, connected forest patches and integrate restoration into climate adaptation policies.

7 January 2026

Map of the study area showing the spatial distribution of vegetation data points obtained from the GBIF database across Ghana. The map outlines Ghana’s national boundary (red dashed line) and regional administrative boundaries (black lines).

Many rural communities are struggling to understand the changing climate and how to mitigate and adapt to its negative effects. “Climate literacy” (i.e., an understanding of the climate system, how human actions influence it, and how it affects society and the Earth) may be a necessary precursor to climate action (i.e., steps that help to mitigate or adapt to climate change). For rural communities in the Brazilian Amazon, where access to formal education is limited, grasping abstract concepts like greenhouse gas emissions can be particularly challenging. We asked: Is climate literacy a necessary precursor to climate action? We conducted 22 semi-structured interviews with forest extractivists living within the Chico Mendes Extractive Reserve in the state of Acre, Brazil. We found that forest extractivists are experiencing the impacts of climate change but lack an understanding of its causes and forms of mitigation and are unaware of ways to adapt to it. Improved educational opportunities could support both climate literacy and, in turn, climate action.

7 January 2026

Governance structure of the Chico Mendes Extractive Reserve, Acre, Brazil. Portuguese acronyms and terms are in italics.

Lake Batur, located within a volcanic caldera in Bali, Indonesia, is subjected to anthropogenic pressures related to agriculture, aquaculture, tourism, and religious activities, which may affect its water quality and ecology condition. This study investigates the physicochemical properties of lake water and diatom assemblages preserved in lake sediments to provide insight into environmental conditions in this volcanic alkaline ecosystem. Water quality parameters, including pH, temperature, electrical conductivity (EC), and total dissolved solids (TDS), were measured. Vertical profiles of temperature and conductivity revealed stable stratification, with minimal variation below 20 m water depth. Elevated nitrogen concentrations, including nitrate (NO3), nitrite (NO2), and ammonium (NH4+), were observed, particularly in the southern basin, suggesting localized nutrient enrichment. Scanning electron microscopy (SEM) analysis of lake sediment samples identified ten diatom genera, including Ulnaria, Denticula, and Discostella, which are commonly associated with nutrient-enriched freshwater environments. Overall, the results indicate that Lake Batur exhibits conditions consistent with early-stage eutrophication in localized areas, highlighting the importance of continuous monitoring and targeted management strategies to protect the ecological integrity of this volcanic lake system.

3 January 2026

(a–c) Current conditions of Lake Batur surface waters. (d) Bathymetric map of Lake Batur showing sampling locations. Yellow circles indicate surface sediment sampling points (S); green rhombuses represent surface water sampling points and physicochemical measurements (W); black “+” sign indicates locations of temperature and conductivity depth profiling (TC).

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Earth - ISSN 2673-4834