Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities
Abstract
:1. Introduction
2. New MNPs from the Beibu Gulf
2.1. Terpenoids
2.1.1. Sesquiterpenoids
2.1.2. Diterpenoids
2.1.3. Triterpenoids and Steroids
2.1.4. Meroterpenoids
2.2. Polyketides
2.2.1. Fatty Acids and Linear Molecules
2.2.2. Phenols, Diphenyl Ethers, and Benzophenones
2.2.3. Benzofuranones
2.2.4. Quinones and Xanthones
2.2.5. Macrolides
2.2.6. Miscellaneous
2.3. Nitrogen-Containing Compounds
2.3.1. Alkaloids
2.3.2. Peptides
2.3.3. Amides and Miscellaneous
2.4. Glucosides
3. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MNPs | Marine natural products |
MIC | Minimum Inhibiting Concentration |
MBC | Minimum Bactericidal Concentration |
NF-κB | Nuclear Factor Kappa B |
LPS | Lipopolysaccharide |
TNBC | Triple-Negative Breast Cancer |
References
- Li, J.W.H.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009, 325, 161–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar. Drugs 2014, 12, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.Y.; Li, H.J.; Li, Q.Y.; Wu, Y.C. Application of marine natural products in drug research. Bioorg. Med. Chem. Lett. 2021, 35, 116058. [Google Scholar] [CrossRef]
- Hanif, N.; Murni, A.; Tanaka, C.; Tanaka, J. Marine natural products from indonesian waters. Mar. Drugs 2019, 17, 364. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.F.; Wang, T.; Cai, Y.S.; He, W.F.; Sun, P.; Li, Y.F.; Huang, Q.; Taglialatela-Scafati, O.; Wang, H.Y.; Guo, Y.W. Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors. Eur. J. Med. Chem. 2014, 79, 290–297. [Google Scholar] [CrossRef]
- Hao, X.; Li, S.; Ni, J.; Wang, G.; Li, F.; Li, Q.; Chen, S.; Shu, J.; Gan, M. Acremopeptaibols A–F, 16-residue peptaibols from the sponge-derived Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. J. Nat. Prod. 2021, 84, 2990–3000. [Google Scholar] [CrossRef]
- Wei, M.Y.; Wang, C.Y.; Liu, Q.A.; Shao, C.L.; She, Z.G.; Lin, Y.C. Five Sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from a Gorgonian Dichotella gemmacea. Mar. Drugs 2010, 8, 941–949. [Google Scholar] [CrossRef]
- Li, D.; Xu, Y.; Shao, C.L.; Yang, R.Y.; Zheng, C.J.; Chen, Y.Y.; Fu, X.M.; Qian, P.Y.; She, Z.G.; Voogd, N.J.d.; et al. Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar. Drugs 2012, 10, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, D.; Cheng, Z.B.; Proksch, P.; Lin, W.H. Cytotoxic trichothecene-type sesquiterpenes from the sponge-derived fungus Stachybotrys chartarum with tyrosine kinase inhibition. RSC Adv. 2017, 7, 7259–7267. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.M.; Huang, C.H.; Wu, Q.L.; Pang, J.Y.; Lin, Y.C. A new sesquiterpene from the mangrove endophytic fungus Aspergillus terreus (No. GX7-3B). Nat. Prod. Res. 2013, 27, 1882–1887. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Fan, W.; Guo, H.; Huang, C.; Yan, Z.; Long, Y. Two new secondary metabolites from the mangrove endophytic fungus Pleosporales sp. SK7. Nat. Prod. Res. 2019, 34, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Shao, C.L.; Chen, M.; Niu, Z.G.; Zhao, D.L.; Wang, C.Y. Merosesquiterpenoids and ten-membered macrolides from a soft coral-derived Lophiostoma sp. fungus. Chem. Biodivers. 2015, 12, 1407–1414. [Google Scholar] [CrossRef]
- Xue, L.; Li, P.L.; Liang, Z.; Tang, X.L.; Li, G.Q. Sesquiterpenoids and steroids from gorgonian Echinogorgia sassapo reticulate. Biochem. Syst. Ecol. 2014, 57, 48–51. [Google Scholar] [CrossRef]
- Luo, X.C.; Wu, R.C.; Han, X.; Tang, X.L.; Wang, Q.; Li, P.L.; Li, G.Q. Guaiane sesquiterpenes from the gorgonian Echinogorgia flora collected in the South China Sea. RSC Adv. 2022, 12, 2662–2667. [Google Scholar] [CrossRef]
- Cai, Y.S.; Yao, L.G.; Di Pascale, A.; Irace, C.; Mollo, E.; Taglialatela-Scafati, O.; Guo, Y.W. Polyoxygenated diterpenoids of the eunicellin-type from the Chinese soft coral Cladiella krempfi. Tetrahedron 2013, 69, 2214–2219. [Google Scholar] [CrossRef]
- Ma, L.F.; Chen, M.J.; Liang, D.E.; Shi, L.M.; Ying, Y.M.; Shan, W.G.; Li, G.Q.; Zhan, Z.J. Streptomyces albogriseolus SY67903 produces eunicellin diterpenoids structurally similar to terpenes of the gorgonian Muricella sibogae, the bacterial source. J. Nat. Prod. 2020, 83, 1641–1645. [Google Scholar] [CrossRef]
- Li, T.T.; Tang, X.L.; Chen, C.L.; Zhang, X.W.; Wu, R.C.; Zhu, H.Y.; Li, P.L.; Li, G.Q. New eunicellin diterpenes and 9,10-secosteroids from the gorgonian Muricella sibogae. Helv. Chim. Acta 2013, 96, 1188–1196. [Google Scholar] [CrossRef]
- Ru, T.; Li, H.; Tang, W.; Cai, Y.S.; Wang, H.; Guo, Y.W. Further new eunicellin-based diterpenoids from the Guangxi Weizhou soft coral Cladiella krempfi. Fitoterapia 2018, 131, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Ciavatta, M.L.; Manzo, E.; Mollo, E.; Mattia, C.A.; Tedesco, C.; Irace, C.; Guo, Y.W.; Li, X.B.; Cimino, G.; Gavagnin, M. Tritoniopsins A–D, cladiellane-based diterpenes from the South China Sea nudibranch Tritoniopsis elegans and its prey Cladiella krempfi. J. Nat. Prod. 2011, 74, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.H.; He, B.J.; Chen, Y.N.; Ke, K.; Lin, L.; Long, B.; Huang, R.M. Two new diterpenoids from the Beibu Gulf gorgonian Anthogorgia caerulea. Z. Naturforsch. B. 2014, 69, 116–120. [Google Scholar] [CrossRef]
- Chen, D.W.; Liu, D.; Shen, S.; Cheng, W.; Lin, W.H. Terpenoids from a Chinese gorgonian Anthogorgia sp. and their antifouling activities. Chin. J. Chem. 2012, 30, 1459–1463. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Tang, W.; Yao, L.G.; Liang, L.F.; Guo, Y.W. Further polyoxygenated cembranoids from south China sea soft coral Sarcophyton ehrenbergi. Bioorg. Chem. 2020, 101, 103993. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Zhang, Q.; Yang, M.; Gu, Y.C.; Liang, L.F.; Tang, W.; Guo, Y.W. Rare cembranoids from Chinese soft coral Sarcophyton ehrenbergi: Structural and stereochemical studies. J. Org. Chem. 2019, 84, 5091–5098. [Google Scholar] [CrossRef]
- Li, S.W.; Ye, F.; Zhu, Z.D.; Huang, H.; Mao, S.C.; Guo, Y.W. Cembrane-type diterpenoids from the South China Sea soft coral Sarcophyton mililatensis. Acta Pharm. Sin. B. 2018, 8, 944–955. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Liu, D.; Van Ofwegen, L.; Proksch, P.; Lin, W.H. Capnosane-type cembranoids from the soft coral Sarcophyton trocheliophorum with antibacterial effects. Tetrahedron 2014, 70, 8703–8713. [Google Scholar] [CrossRef]
- Hou, B.L.; Liu, S.S.; Huo, R.Y.; Li, Y.Q.; Ren, J.W.; Wang, W.Z.; Wei, T.; Jiang, X.J.; Yin, W.B.; Liu, H.W.; et al. New diterpenoids and isocoumarin derivatives from the mangrove-derived fungus Hypoxylon sp. Mar. Drugs 2021, 19, 362. [Google Scholar] [CrossRef]
- Ji, N.Y.; Li, X.M.; Cui, C.M.; Wang, B.G. Terpenes and polybromoindoles from the marine red alga Laurencia decumbens (Rhodomelaceae). Helv. Chim. Acta. 2007, 90, 1731–1736. [Google Scholar] [CrossRef]
- Li, X.L.; Li, S.W.; Yao, L.G.; Mollo, E.; Gavagnin, M.; Guo, Y.W. The chemical and chemo-ecological studies on Weizhou nudibranch Glossodoris atromarginata. Magn. Reson. Chem. 2021, 59, 554–560. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.W.; Yao, L.G.; Wu, B.; Guo, Y.W. Three new capnosane-type diterpenoids from the South China Sea soft coral Lobophytum sp. Fitoterapia 2019, 133, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Liu, J.; Yu, S.J.; Proksch, P.; Gu, J.; Lin, W.H. TNF-alpha inhibitory diterpenoids from the Chinese mangrove plant Excoecaria agallocha L. Phytochemistry 2010, 71, 2124–2131. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.Y.; Li, X.M.; Xie, H.; Ding, J.; Li, K.; Ding, L.P.; Wang, B.G. Highly oxygenated triterpenoids from the marine red alga Laurencia mariannensis (Rhodomelaceae). Helv. Chim. Acta. 2008, 91, 1940–1946. [Google Scholar] [CrossRef]
- Lan, W.J.; Lin, C.W.; Su, J.Y.; Zeng, L.M. Triterpenoids from the sponge Stelletta sp. collected from the South China Sea. Chem. J. Chin. Univ. 2005, 26, 2270–2272. [Google Scholar]
- Cao, F.; Shao, C.L.; Wang, Y.; Xu, K.X.; Qi, X.; Wang, C.Y. Polyhydroxylated sterols from the South China Sea Gorgonian Verrucella umbraculum. Helv. Chim. Acta. 2014, 97, 900–908. [Google Scholar] [CrossRef]
- Gong, K.K.; Tang, X.L.; Zhang, G.; Cheng, C.L.; Zhang, X.W.; Li, P.L.; Li, G.Q. Polyhydroxylated steroids from the South China Sea soft coral Sarcophyton sp. and their cytotoxic and antiviral activities. Mar. Drugs 2013, 11, 4788–4798. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.X.; Tang, X.L.; van Ofwegen, L.; Xue, L.; Song, W.J.; Li, P.L.; Li, G.Q. Cyclopentenone derivatives and polyhydroxylated steroids from the soft coral Sinularia acuta. Chem. Biodivers 2015, 12, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shao, C.L.; Qi, X.; Li, X.B.; Li, J.; Sun, L.L.; Wang, C.Y. Polyoxygenated sterols from the South China Sea soft coral Sinularia sp. Mar. Drugs 2012, 10, 1422–1432. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Tang, H.; Wang, P.; Gong, W.; Xue, M.; Zhang, H.W.; Liu, T.F.; Liu, B.S.; Yi, Y.H.; Zhang, W. Bioactive polyoxygenated steroids from the South China Sea soft coral, Sarcophyton sp. Mar. Drugs 2013, 11, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.L.; Guan, F.F.; Cao, F.; Jia, Y.L.; Wang, C.Y. A new antiviral pregnane from a gorgonian-derived Cladosporium sp. fungus. Nat. Prod. Res. 2018, 32, 1260–1266. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Shao, C.L.; Li, Z.Y.; Han, L.; Cao, F.; Wang, C.Y. Bioactive pregnane steroids from a South China Sea gorgonian Carijoa sp. Molecules 2013, 18, 3458–3466. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Shao, C.L.; Chen, M.; Zhang, M.Q.; Xu, K.X.; Meng, H.; Wang, C.Y. Antiviral C-25 epimers of 26-acetoxy steroids from the South China Sea gorgonian Echinogorgia rebekka. J. Nat. Prod. 2014, 77, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Shao, C.L.; Chen, M.; Qi, J.; Wang, Y.; Fang, Y.C.; Wang, C.Y. Bioactive 9,11-secosteroids from gorgonian Subergorgia suberosa collected from the South China Sea. Chem. Biodivers. 2014, 11, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Tang, X.L.; Liu, B.S.; Li, P.L.; Li, G.Q. Characteristic steroids from the South China Sea gorgonian Muricella sibogae and their cytotoxicities. Chem. Biodivers. 2016, 13, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Han, G.Y.; Sun, D.Y.; Liang, L.F.; Yao, L.G.; Chen, K.X.; Guo, Y.W. Spongian diterpenes from Chinese marine sponge Spongia officinalis. Fitoterapia 2018, 127, 159–165. [Google Scholar] [CrossRef]
- Zhang, J.P.; Yuan, B.C.; Liu, D.; Gao, S.; Proksch, P.; Lin, W.H. Brasilianoids A-F, New meroterpenoids from the sponge-associated fungus Penicillium brasilianum. Front. Chem. 2018, 6, 314. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.P.; Wu, Y.F.; Yuan, B.C.; Liu, D.; Zhu, K.; Huang, J.; Proksch, P.; Lin, W.H. DMOA-based meroterpenoids with diverse scaffolds from the sponge-associated fungus Penicillium brasilianum. Tetrahedron 2019, 75, 2193–2205. [Google Scholar] [CrossRef]
- Song, Y.Z.; Qiao, L.T.; Wang, J.J.; Zeng, H.M.; She, Z.G.; Miao, C.D.; Hong, K.; Gu, Y.C.; Liu, L.; Lan, Y.C. Two new meroter-penes from the mangrove endophytic fungus Aspergillus sp. 085241B. Helv. Chim. Acta. 2011, 94, 1875–1880. [Google Scholar] [CrossRef]
- Chen, D.W.; Yu, S.J.; Van Ofwegen, L.; Proksch, P.; Lin, W.H. Anthogorgienes A–O, new guaiazulene-derived terpenoids from a Chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities. J. Agric. Food Chem. 2012, 60, 112–123. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Cen, S.; Proksch, P.; Lin, W.H. Isoindolinone-type alkaloids from the sponge-derived fungus Stachybotrys chartarum. Tetrahedron 2014, 70, 7010–7015. [Google Scholar] [CrossRef]
- Li, Y.; Wu, C.M.; Liu, D.; Proksch, P.; Guo, P.; Lin, W.H. Chartarlactams A–P, phenylspirodrimanes from the sponge-associated fungus Stachybotrys chartarum with antihyperlipidemic activities. J. Nat. Prod. 2014, 77, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, Y.; Guo, X.C.; Ji, W.; Lin, W.H. Chartarlactams Q-T, dimeric phenylspirodrimanes with antibacterial and antiviral activities. Chem. Biodivers. 2020, 17, e2000170. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.W.; Cai, G.D.; Guo, Y.F.; Gao, C.H.; Huang, W.F.; Zhang, Z.H.; Lu, H.M.; Liu, K.; Chen, J.H.; Xiong, X.F.; et al. Exploring marine-derived ascochlorins as novel human dihydroorotate dehydrogenase inhibitors for treatment of triple-negative breast cancer. J. Med. Chem. 2021, 64, 13918–13932. [Google Scholar] [CrossRef]
- Gao, S.S.; Li, X.M.; Du, F.Y.; Li, C.S.; Proksch, P.; Wang, B.G. Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar. Drugs 2011, 9, 59–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.F.; Liang, L.F.; Cai, Y.S.; Gao, L.X.; Li, Y.F.; Li, J.; Liu, H.L.; Guo, Y.W. Brominated polyunsaturated lipids with protein tyrosine phosphatase-1B inhibitory activity from Chinese marine sponge Xestospongia testudinaria. J. Asian Nat. Prod. Res. 2015, 17, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Liu, D.; Deng, Z.; de Voogd, N.J.; Proksch, P.; Lin, W. Brominated polyunsaturated lipids and their stereochemistry from the Chinese marine sponge Xestospongia testudinaria. Tetrahedron 2011, 67, 58–68. [Google Scholar] [CrossRef]
- Ju, K.L.; Feng, M.T.; Lin, K.; Liu, A.H.; Feng, L.H.; Guo, Y.W.; Mao, S.C.; Wang, B. Furanosesterterpenes from the Guangxi sponge Biemna fortis Topsent. Biochem. Syst. Ecol. 2018, 80, 70–72. [Google Scholar] [CrossRef]
- Lin, K.; Yang, P.; Yang, H.; Liu, A.H.; Yao, L.G.; Guo, Y.W.; Mao, S.C. Lysophospholipids from the Guangxi Sponge Spirastrella purpurea. Lipids 2015, 50, 697–703. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Zhu, G.; Zhu, W. Fatty acid derivatives from the halotolerant fungus Cladosporium cladosporioides. Magn. Reson. Chem. 2018, 56, 18–24. [Google Scholar] [CrossRef]
- Shang, S.S.; Long, S.J. Brugnanin, a new syn-2,3-dihydrobenzofuran neolignan dioate from the mangrove Bruguiera gymnorrhiza. Chem. Nat. Compd. 2008, 44, 186–189. [Google Scholar] [CrossRef]
- Zhao, C.; Gu, Q.; Xu, W.G.; Xing, G.S.; Jin, D.J.; Xu, R.; Li, H.; Duan, H.Q.; Zhou, J.; Tang, S.A. Three new polyunsaturated lipids from a Guangxi marine sponge Haliclona sp. J. Asian Nat. Prod. Res. 2015, 17, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.L.; Chen, S.H.; Long, Y.H.; Li, C.Y.; Huang, X.S.; She, Z.G. Depsidones from talaromyces stipitatus SK-4, an endophytic fungus of the mangrove plant Acanthus ilicifolius. Phytochem. Lett. 2017, 20, 196–199. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Li, Z.C.; Huang, B.Y.; Liu, K.; Peng, S.; Liu, X.M.; Gao, C.H.; Liu, Y.H.; Tan, Y.H.; Luo, X.W. Anti-osteoclastogenic and antibacterial effects of chlorinated polyketides from the Beibu Gulf coral-derived fungus Aspergillus unguis GXIMD 02505. Mar. Drugs 2022, 20, 178. [Google Scholar]
- Chen, M.; Han, L.; Shao, C.L.; She, Z.G.; Wang, C.Y. Bioactive diphenyl ether derivatives from a gorgonian-derived fungus Talaromyces sp. Chem. Biodivers. 2015, 12, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Qi, J.; Shao, C.L.; Zhao, D.L.; Hou, X.M.; Wang, C.Y. Bioactive diphenyl ethers and isocoumarin derivatives from a gorgonian-derived fungus Phoma sp. (TA07-1). Mar. Drugs 2017, 15, 146. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, W.C.; Zou, G.; Chen, S.Y.; Pang, J.Y.; She, Z.G. Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia 2019, 139, 104369. [Google Scholar] [CrossRef]
- Du, X.W.; Liu, D.; Huang, J.; Zhang, C.J.; Proksch, P.; Lin, W.H. Polyketide derivatives from the sponge associated fungus Aspergillus europaeus with antioxidant and NO inhibitory activities. Fitoterapia 2018, 130, 190–197. [Google Scholar] [CrossRef]
- Lei, H.; Niu, H.; Song, C.; Fu, X.J.; Luo, Y.; Chen, S.W.; Zhang, D. Chlorinated benzophenone derivatives as chemotaxonomic markers for the genus of Pestalotiopsis. Biochem. Syst. Ecol. 2020, 91, 104072. [Google Scholar] [CrossRef]
- Liu, Z.M.; Qiu, P.; Li, J.; Chen, G.Y.; Chen, Y.; Liu, H.J.; She, Z.G. Anti-inflammatory polyketides from the mangrove-derived fungus Ascomycota sp. SK2YWS-L. Tetrahedron 2018, 74, 746–751. [Google Scholar] [CrossRef]
- Pan, J.H.; Deng, J.J.; Chen, Y.G.; Gao, J.P.; Lin, Y.C.; She, Z.G.; Gu, Y.C. New lactone and xanthone derivatives produced by a mangrove endophytic fungus Phoma sp. SK3RW1M from the South China Sea. Helv. Chim. Acta 2010, 93, 1369–1374. [Google Scholar] [CrossRef]
- Qin, X.Y.; Huang, J.G.; Zhou, D.X.; Zhang, W.X.; Zhang, Y.J.; Li, J.; Yang, R.Y.; Huang, X.S. Polyketide derivatives, guhypoxylonols A-D from a mangrove endophytic fungus Aspergillus sp. GXNU-Y45 that inhibit nitric oxide production. Mar. Drugs 2022, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.G.; Pan, J.H.; Xu, F.; Liu, F.; Yang, J.X.; Huang, C.H.; Xu, C.L.; Lu, Y.H.; Cai, X.L.; She, Z.G.; et al. A new indene derivative from the marine fungus Phomopsis SP. (No. GX7-4A). Chem. Nat. Compd. 2010, 46, 230–232. [Google Scholar] [CrossRef]
- Cui, H.; Liu, Y.N.; Ding, M.; Zhang, Z.R.; Liu, H.T.; Huang, X.S.; She, Z.G. New pyranonaphthazarin and 2-naphthoic acid derivatives from the mangrove endophytic fungus Leptosphaerulina sp. SKS032. Phytochem. Lett. 2017, 20, 214–217. [Google Scholar] [CrossRef]
- Cui, H.; Liu, Y.; Li, T.; Zhang, Z.; Ding, M.; Long, Y.; She, Z. 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus versicolor SYSU-SKS. Fitoterapia 2018, 124, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Kong, F.D.; Wang, Y.F.; Wang, Y.; Liu, P.P.; Zuo, G.Y.; Zhu, W.M. Antibiotic metabolites from the coral-associated actinomycete Streptomyces sp. OUCMDZ. Chin. J. Chem. 2013, 31, 100–104. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, C.P.; Cao, P.; Liu, Y.H.; Gao, C.H.; Yi, X.X. Sonneradon a extends lifespan of Caenorhabditis elegans by modulating mitochondrial and IIS signaling pathways. Mar. Drugs 2022, 20, 59. [Google Scholar] [CrossRef]
- Lu, H.M.; Tan, Y.H.; Zhang, Y.T.; Li, Z.C.; Chen, J.Y.; Gao, C.H.; Liu, Y.H.; Luo, X.W. Osteoclastogenesis inhibitory phenolic derivatives produced by the Beibu Gulf coral-associated fungus Acremonium sclerotigenum GXIMD. Fitoterapia 2022, 159, 105201. [Google Scholar] [CrossRef]
- Yi, X.X.; Jiang, S.; Qin, M.; Liu, K.; Cao, P.; Chen, S.M.; Deng, J.G.; Gao, C.H. Compounds from the fruits of mangrove Sonneratia apetala: Isolation, molecular docking and antiaging effects using a Caenorhabditis elegans model. Bioorg. Chem. 2020, 99, 103813. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.M.; Liu, H.J.; Pan, Y.H.; Li, J.; Liu, L.; She, Z.G. Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus Ascomycota sp. CYSK. Mar. Drugs 2018, 16, 54. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Wu, Y.N.; Zhai, R.; Liu, Z.M.; Huang, X.S.; She, Z.G. Altenusin derivatives from mangrove endophytic fungus Alternaria sp. SK6YW3L. RSC Adv. 2016, 6, 72127–72132. [Google Scholar] [CrossRef]
- Qi, J.; Shao, C.L.; Li, Z.Y.; Gan, L.S.; Fu, X.M.; Bian, W.T.; Zhao, H.Y.; Wang, C.Y. Isocoumarin derivatives and benzofurans from a sponge-derived Penicillium sp. fungus. J. Nat. Prod. 2013, 76, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lei, X.X.; Shao, S.; Zhou, X.F.; Li, Y.Q.; Yang, B. Azaphilones and meroterpenoids from the soft coral-derived fungus Penicillium glabrumglmu glmu003. Chem. Biodivers. 2021, 18, e2100663. [Google Scholar]
- Cui, H.; Ding, M.; Huang, D.; Zhang, Z.R.; Liu, H.T.; Huang, H.B.; She, Z.G. Chroman-4-one and pyrano [4,3-b] chromenone derivatives from the mangrove endophytic fungus Diaporthe phaseolorum SKS. RSC Adv. 2017, 7, 20128–20134. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.N.; Lu, H.M.; Gao, C.H.; Guo, L.; Zhan, Z.Y.; Wang, J.J.; Liu, Y.H.; Xiang, S.T.; Wang, J.; Luo, X.W. Cytotoxic benzopyranone and xanthone derivatives from a coral symbiotic fungus Cladosporium halotolerans GXIMD 02502. Nat. Prod. Res. 2021, 35, 5596–5603. [Google Scholar] [CrossRef]
- Liu, H.J.; Yan, C.; Li, C.Q.; You, T.T.; She, Z.G. Naphthoquinone derivatives with anti-inflammatory activity from mangrove-derived endophytic fungus Talaromyces sp. SK-S009. Molecules 2020, 25, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Zhang, H.A.; Liu, Y.N.; Gu, Q.; Xu, J.; Huang, X.S.; She, Z.G. Ethylnaphthoquinone derivatives as inhibitors of indoleamine-2, 3-dioxygenase from the mangrove endophytic fungus Neofusicoccum austral SYSU-SKS. Fitoterapia 2018, 125, 281–285. [Google Scholar] [CrossRef]
- Xu, W.F.; Hou, X.M.; Yang, K.L.; Cao, F.; Yang, R.Y.; Wang, C.Y.; Shao, C.L. Nigrodiquinone, A. A hydroanthraquinone dimer containing a rare C-9–C-7′ linkage from a zoanthid-derived Nigrospora sp. fungus. Mar. Drugs 2016, 14, 51. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.L.; Wei, M.Y.; Shao, C.L.; Fu, X.M.; Guo, Z.Y.; Xu, R.F.; Zheng, C.J.; She, Z.G.; Lin, Y.C.; Wang, C.Y. Antibacterial anthraquinone derivatives from a sea anemone-derived fungus Nigrospora sp. J. Nat. Prod. 2012, 75, 935–941. [Google Scholar] [CrossRef]
- Zheng, C.J.; Shao, C.L.; Guo, Z.Y.; Chen, J.F.; Deng, D.S.; Yang, K.L.; Chen, Y.Y.; Fu, X.M.; She, Z.G.; Lin, Y.C.; et al. Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. J. Nat. Prod. 2012, 75, 189–197. [Google Scholar] [CrossRef]
- Deng, C.M.; Liu, S.X.; Huang, C.H.; Pang, J.Y.; Lin, Y.C. Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No. GX7-3B) from the South China Sea. Mar. Drugs 2013, 11, 2616–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, G.P.; Li, J.; Li, H.X.; Long, Y.H.; Lin, S.E.; Lu, Y.J.; He, L.; Lin, Y.C.; Liu, L.; She, Z.G. Alterporriol-type dimers from the mangrove endophytic fungus, Alternaria sp. (SK11), and their MptpB inhibitions. Mar. Drugs 2014, 12, 2953–2969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, J.L.; Chen, Y.; Ye, Y.X.; Lin, X.P.; Yang, B.; Xiao, J.; Liu, Y.H.; Zhou, X.F. New carboxamides and a new polyketide from the sponge-derived fungus Arthrinium sp. SCSIO 41421. Mar. Drugs 2022, 20, 475. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Chen, S.H.; Qiu, P.; Tan, C.B.; Long, Y.H.; Lu, Y.J.; She, Z.G. (+)- and (−)-Ascomlactone A: A pair of novel dimeric polyketides from a mangrove endophytic fungus Ascomycota sp. SK2YWS-L. Org. Biomol. Chem. 2017, 15, 10276–10280. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.X.; Qiu, S.X.; She, Z.G.; Lin, Y.C. A new xanthone derivative from the marine fungus Phomopsis sp. (No. SK7RN3G1). Chem. Nat. Compd. 2013, 49, 246–248. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Ling, S.; Fang, Y.C.; Zhu, T.J.; Gu, Q.Q.; Zhu, W.M. Isolation, structure elucidation, and antimycobacterial properties of dimeric naphtho-γ-pyrones from the marine-derived fungus Aspergillus carbonarius. Chem. Biodivers. 2008, 5, 93–100. [Google Scholar] [CrossRef]
- Gao, C.H.; Chen, X.Q.; Yu, L.; Jiang, L.; Pan, D.J.; Jiang, S.; Gan, Y.M.; Liu, Y.H.; Yi, X.X. New 24-membered macrolactins isolated from marine bacteria Bacillus siamensis as potent fungal inhibitors against sugarcane smut. J. Agric. Food Chem. 2021, 69, 4392–4401. [Google Scholar] [CrossRef]
- Shao, C.L.; Wu, H.X.; Wang, C.Y.; Liu, Q.A.; Xu, Y.; Wei, M.Y.; Qian, P.Y.; Gu, Y.C.; Zheng, C.J.; She, Z.G.; et al. Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J. Nat. Prod. 2011, 74, 629–633. [Google Scholar] [CrossRef]
- Gao, C.H.; Wang, Y.B.; Chen, Y.N.; He, B.J.; Zhang, R.C.; Xu, M.B.; Huang, R.M. Two new avermectin derivatives from the Beibu Gulf gorgonian Anthogorgia caerulea. Chem. Biodivers. 2014, 11, 812–818. [Google Scholar] [CrossRef]
- Yan, D.M.; Gao, C.H.; Yi, X.X.; Xie, W.P.; Xu, M.B.; Huang, R.M. Two new secondary metabolites from the fruits of mangrove Avicennia marina. Z. Naturforsch. B 2015, 70, 691–694. [Google Scholar] [CrossRef]
- Ji, N.Y.; Li, X.M.; Li, K.; Wang, B.G. Laurendecumallenes A–B and laurendecumenynes A–B, halogenated nonterpenoid C15-acetogenins from the marine red alga Laurencia decumbens. J. Nat. Prod. 2007, 70, 1499–1502. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.S.; Yang, B.; Sun, X.F.; Xia, G.P.; Liu, Y.Y.; Ma, L.; She, Z.G. A New polyketide from the mangrove endophytic fungus Penicillium sp. sk14JW2P. Helv. Chim. Acta 2014, 97, 664–668. [Google Scholar] [CrossRef]
- Li, X.L.; Ru, T.; Navarro-Vázquez, A.; Lindemann, P.; Nazaré, M.; Li, X.W.; Guo, Y.W.; Sun, H. Weizhouochrones: Gorgonian-derived symmetric dimers and their structure elucidation using anisotropic NMR combined with DP4+ probability and CASE-3D. J. Nat. Prod. 2022, 85, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Liu, M.Q.; Wu, H.X.; Wang, Q.Z.; Li, W.; Huang, S.S.; Feng, J. A new isomer and other metabolites isolated from Alternaria alternata. Chem. Nat. Compd. 2021, 57, 844–847. [Google Scholar] [CrossRef]
- Zhang, H.B.; Saurav, K.; Yu, Z.Q.; Mándi, A.; Kurtán, T.; Li, J.; Tian, X.P.; Zhang, Q.B.; Zhang, W.J.; Zhang, C.S. α-Pyrones with diverse hydroxy substitutions from three marine-derived Nocardiopsis strains. J. Nat. Prod. 2016, 79, 1610–1618. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhu, T.J.; Fang, Y.C.; Liu, H.B.; Gu, Q.Q.; Zhu, W.M. Carbonarones A and B, new bioactive gamma-pyrone and α-pyridone derivatives from the marine-derived fungus Aspergillus carbonarius. J. Antibiot. 2007, 60, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.L.; Cao, F.; Wang, C.Y.; Yang, L.J.; Shi, T.; Wang, K.L.; Shao, C.L.; Wang, C.Y. Alternatone A, an unusual perylenequinone-related compound from a Soft-Coral-Derived Strain of the fungus Alternaria alternata. J. Nat. Prod. 2019, 82, 3201–3204. [Google Scholar] [CrossRef]
- Zheng, J.J.; Shao, C.L.; Chen, M.; Gan, L.S.; Fang, Y.C.; Wang, X.H.; Wang, C.Y. Ochracenoids A and B, guaiazulene-based analogues from gorgonian Anthogorgia ochracea collected from the South China Sea. Mar. Drugs 2014, 12, 1569–1579. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Y.; Ma, Z.L.; Wu, J.S.; Shao, C.L.; Yao, G.S.; Wang, C.Y. Induction of secondary metabolite biosynthesis by deleting the histone deacetylase HdaA in the marine-derived fungus Aspergillus terreus RA2905. J. Fungi 2022, 8, 1024. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, Z.Y.; Lei, F.H.; Tan, X.C.; Jiang, M.G.; Li, H.; Li, X.Y. A new polyketide from marine-derived Streptomyces sp. MDW-06. China J. Chin. Mater. Med. 2019, 44, 2090–2095. [Google Scholar]
- Shao, C.L.; Xu, R.F.; Wei, M.Y.; She, Z.G.; Wang, C.Y. Structure and absolute configuration of fumiquinazoline L, an alkaloid from a gorgonian-derived Scopulariopsis sp. fungus. J. Nat. Prod. 2013, 76, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Z.M.; Huang, Y.; Liu, L.; He, J.G.; Wang, L.; Yuan, J.; She, Z.G. Ascomylactams A–C, cytotoxic 12- or 13-membered-ring macrocyclic alkaloids isolated from the mangrove endophytic fungus Didymella sp. cysk-4, and structure revisions of phomapyrrolidones A and C. J. Nat. Prod. 2019, 82, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.L.; Jiang, H.M.; Xiao, Z.E.; Cao, W.H.; Yan, T.; Liu, Z.M.; Lin, S.E.; Long, Y.H.; She, Z.G. (−)- and (+)-Asperginulin A, a pair of indole diketopiperazine alkaloid dimers with a 6/5/4/5/6 pentacyclic skeleton from the mangrove endophytic fungus Aspergillus sp. SK-28. Org. Lett. 2019, 21, 9633–9636. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.X.; Lin, S.M.; Wang, Z.Z.; Fu, P.; Wang, C.; Zhu, W.M. Cytotoxic indolocarbazoles from a marine-derived Streptomyces sp. OUCMDZ-Front. Microbiol. 2022, 13, 957473. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, H.Y.; Li, W.S.; Zhu, X.W.; Ding, W.J.; Li, C.Y. Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum. Mar. Drugs 2016, 14, 172. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.J.; Shao, C.L.; Wu, L.Y.; Chen, M.; Wang, K.L.; Zhao, D.L.; Sun, X.P.; Chen, G.Y.; Wang, C.Y. Bioactive phenylalanine derivatives and cytochalasins from the soft coral-derived fungus, Aspergillus elegans. Mar. Drugs. 2013, 11, 2054–2068. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.H.; Lin, L.; Long, B.; Chen, Y.N.; He, B.J.; Sun, H.Y.; Huang, R.M. A new diketopiperazine from the gorgonian coral Menella kanisa. Nat. Prod. Res. 2014, 28, 473–476. [Google Scholar] [CrossRef]
- Li, F.; Guo, W.Q.; Wu, L.; Zhu, T.J.; Gu, Q.Q.; Li, D.H.; Che, Q. Saroclazines A-C, thio-diketopiperazines from mangrove-derived fungi Sarocladium kiliense HDN11-84. Arch. Pharm. Res. 2018, 41, 30–34. [Google Scholar]
- Wu, J.S.; Shi, X.H.; Yao, G.S.; Shao, C.L.; Fu, X.M.; Zhang, X.L.; Guan, H.S.; Wang, C.Y. New thiodiketopiperazine and 3,4-dihydroisocoumarin derivatives from the marine-derived fungus Aspergillus terreus. Mar. Drugs 2020, 18, 132. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.Y.; Yang, X.M.; Li, F.; Yi, X.X.; Yu, L.; Gao, C.H.; Huang, R.M. A new diketopiperazine of Nocardiopsis alba isolated from Anthogorgia caerulea. Chem. Nat. Compd. 2017, 53, 338–340. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Qu, C.H.; Lu, J.; Cheng, G.; Gao, C.H. A new antiviral alkaloid from hypocotyl of Bruguiera gymnorrhiza. Guihaia 2016, 36, 236–239. [Google Scholar]
- Sun, J.Z.; Yao, L.G.; Chen, K.S.; Liu, H.L.; Xin, G.R.; Guo, Y.W. New polyunsaturated amino ketones from a Guangxi sponge Haliclona sp. Helv. Chim. Acta 2010, 93, 1199–1203. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, G.; Jin, J.; Liu, T.; Ma, X.; Zhang, Z.; Geng, T.; Song, J.; Ma, X.; Zhang, Y.; et al. Discovery and biosynthesis of pepticinnamins G–M featuring three enzymes-catalyzed nonproteinogenic amino acid formation. J. Org. Chem. 2020, 85, 8673–8682. [Google Scholar] [CrossRef]
- Hou, X.M.; Zhang, Y.H.; Hai, Y.; Zheng, J.Y.; Gu, Y.C.; Wang, C.Y.; Shao, C.L. Aspersymmetide A, a new centrosymmetric cyclohexapeptide from the marine-derived fungus Aspergillus versicolor. Mar. Drugs 2017, 15, 363. [Google Scholar] [CrossRef] [Green Version]
- Long, J.Y.; Chen, Y.Q.; Chen, W.H.; Wang, J.F.; Zhou, X.F.; Yang, B.; Liu, Y.H. Cyclic peptides from the soft coral-derived fungus Aspergillus sclerotiorum SCSIO 41031. Mar. Drugs 2021, 19, 701. [Google Scholar]
- Lan, W.J.; Yu, S.J.; Zeng, L.M.; Liang, Y.J.; Yang, X.F. Structure identification for two new ceramides from the sponge Sigmadocia sp. J. Instrumental Anal. 2005, 24, 36–38. [Google Scholar]
- Lan, W.J.; Yao, J.H.; Su, J.Y.; Zeng, L.M. Two new marine ceramides. Zhongshan Daxue Xuebao Ziran Kexueban 2004, 43, 115–117. [Google Scholar]
- Yang, H.; Yu, L.; Li, F.; Yi, X.X.; Li, J.Y.; Gao, C.H. A new antifouling naphthalene derivative from gorgonian coral Menella kanisa. Chem. Nat. Compd. 2018, 54, 368–369. [Google Scholar] [CrossRef]
- Cao, F.; Yang, Q.; Shao, C.L.; Kong, C.J.; Zheng, J.J.; Liu, Y.F.; Wang, C.Y. Bioactive 7-oxabicyclic[6.3.0]lactam and 12-membered macrolides from a gorgonian-derived Cladosporium sp. fungus. Mar. Drugs. 2015, 13, 4171–4178. [Google Scholar] [CrossRef]
- Chen, G.; Tian, L.; Wu, H.H.; Bai, J.; Lu, X.; Xu, Y.; Pei, Y.H. Secondary metabolites from fungus Nigrospora sp. J. Asian Nat. Prod. Res. 2012, 14, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.R.; Li, P.L.; Tang, X.L.; Qi, X.; Li, G.Q. Cytotoxic tetraprenylated alkaloids from the South China Sea gorgonian Euplexaura robusta. Chem. Biodivers. 2012, 9, 2218–2224. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Luo, W.C.; Zhou, H.Y.; Shi, Y.F.; Gao, C.H.; Huang, R.M. Isolation of toxic compounds from wild Phaeocystis globosa. Chin. Chem. Lett. 2016, 27, 247–250. [Google Scholar] [CrossRef]
- Gao, C.H.; Yi, X.X.; Xie, W.P.; Chen, Y.N.; Xu, M.B.; Su, Z.W.; Yu, L.; Huang, R.M. New antioxidative secondary metabolites from the fruits of a Beibu Gulf mangrove, Avicennia marina. Mar. Drugs 2014, 12, 4353–4360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, W.J.; Lin, C.W.; Su, J.Y.; Zeng, L.M. Two steroidal glycosides from the soft coral Cladiella krempfi. Chem. J. Chin. Univ. 2003, 24, 2019–2021. [Google Scholar]
- Liu, H.W.; Li, J.K.; Zhang, D.W.; Zhang, J.C.; Zhang, X.; Song, X.H.; Xia, Y.; Wang, N.L.; Yao, X.S.; Cai, G.P. Isolation of a new glycoside from starfish, Asterias amurensis Lutken, and its stimulation activity on the proliferation of the UMR106 cell. Nat. Prod. Res. 2010, 24, 294–299. [Google Scholar] [CrossRef]
- Yang, X.W.; Dai, Z.; Wang, B.; Liu, Y.P.; Zhao, X.D.; Luo, X.D. Antitumor triterpenoid saponin from the fruits of Avicennia marina. Nat. Prod. Bioprospect. 2018, 8, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.E.; Shen, M.R.; Yi, X.X.; Yang, Y.; Gao, C.H. A new 8-hydroxyquercetagetin glycoside from the hypocotyls of mangrove Bruguiera gymnorrhiza. Chem. Nat. Compd. 2017, 53, 33–35. [Google Scholar] [CrossRef]
- Yi, X.X.; Chen, Y.; Xie, W.P.; Xu, M.B.; Chen, Y.N.; Gao, C.H.; Huang, R.M. Four new jacaranone analogs from the fruits of a Beibu Gulf mangrove Avicennia marina. Mar. Drugs 2014, 12, 2515–2525. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.X.; Deng, J.G.; Gao, C.H.; Hou, X.T.; Li, F.; Wang, Z.P.; Hao, E.W.; Xie, Y.; Du, Z.C.; Huang, H.X.; et al. Four new cyclohexylideneacetonitrile derivatives from the hypocotyl of mangrove (Bruguiera gymnorrhiza). Molecules 2015, 20, 14565–14575. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Xu, K.X.; Xue, Y.; Cao, F.; Yang, L.J.; Hou, X.M.; Wang, C.Y.; Shao, C.L. Sordarin diterpene glycosides with an unusual 1,3-dioxolan-4-one ring from the zoanthid-derived fungus Curvularia hawaiiensis TA26-15. J. Nat. Prod. 2019, 82, 2477–2482. [Google Scholar]
- Wang, J.M.; Pang, X.Y.; Chen, C.M.; Gao, C.H.; Zhou, X.F.; Liu, Y.H. Chemistry, biosynthesis, and biological activity of halogenated compounds produced by marine microorganisms. Chin. J. Chem. 2022, 40, 1729–1750. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Qin, Y.; Lin, M.; Song, Y.; Lu, H.; Xu, X.; Liu, Y.; Zhou, X.; Gao, C.; Luo, X. Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Mar. Drugs 2023, 21, 63. https://doi.org/10.3390/md21020063
Wang J, Qin Y, Lin M, Song Y, Lu H, Xu X, Liu Y, Zhou X, Gao C, Luo X. Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Marine Drugs. 2023; 21(2):63. https://doi.org/10.3390/md21020063
Chicago/Turabian StyleWang, Jiamin, Yuning Qin, Miaoping Lin, Yingying Song, Humu Lu, Xinya Xu, Yonghong Liu, Xuefeng Zhou, Chenghai Gao, and Xiaowei Luo. 2023. "Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities" Marine Drugs 21, no. 2: 63. https://doi.org/10.3390/md21020063
APA StyleWang, J., Qin, Y., Lin, M., Song, Y., Lu, H., Xu, X., Liu, Y., Zhou, X., Gao, C., & Luo, X. (2023). Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Marine Drugs, 21(2), 63. https://doi.org/10.3390/md21020063