Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = DnCNN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4765 KB  
Article
Physics-Informed SDAE-Based Denoising Model for High-Impedance Fault Detection
by Jianxin Lin, Xuchang Wang and Huaiyuan Wang
Processes 2025, 13(11), 3673; https://doi.org/10.3390/pr13113673 - 13 Nov 2025
Viewed by 291
Abstract
The accurate detection of high-impedance faults (HIFs) in distribution systems is fundamentally dependent on the extraction of weak fault signatures. However, these features are often obscured by complex and high-level noise present in current transformer (CT) measurement data. To address this challenge, an [...] Read more.
The accurate detection of high-impedance faults (HIFs) in distribution systems is fundamentally dependent on the extraction of weak fault signatures. However, these features are often obscured by complex and high-level noise present in current transformer (CT) measurement data. To address this challenge, an energy-proportion-guided channel-wise attention stacked denoising autoencoder (EPGCA-SDAE) model is proposed. In this model, wavelet decomposition is employed to transform the signal into informative frequency band components. A channel attention mechanism is utilized to adaptively assign weights to each component, thereby enhancing model interpretability. Furthermore, a physics-informed prior, based on energy distribution, is introduced to guide the loss function and regulate the attention learning process. Extensive simulations using both synthetic and real-world 10kV distribution network data are conducted. The superiority of the EPGCA-SDAE over traditional wavelet-based methods, stacked denoising autoencoders (SDAE), denoising convolutional neural network (DnCNN), and Transformer-based networks across various noise conditions is demonstrated. The lowest average mean squared error (MSE) is achieved by the proposed model (simulated: 50.60×105p.u.; real: 76.45×105p.u.), along with enhanced noise robustness, generalization capability, and physical interpretability. These results verify the method’s feasibility within the tested 10 kV distribution system, providing a reliable data recovery framework for fault diagnosis in noise-contaminated distribution network environments. Full article
(This article belongs to the Special Issue Process Safety Technology for Nuclear Reactors and Power Plants)
Show Figures

Figure 1

11 pages, 3678 KB  
Article
Plug-and-Play Self-Supervised Denoising for Pulmonary Perfusion MRI
by Changyu Sun, Yu Wang, Cody Thornburgh, Ai-Ling Lin, Kun Qing, John P. Mugler and Talissa A. Altes
Bioengineering 2025, 12(7), 724; https://doi.org/10.3390/bioengineering12070724 - 1 Jul 2025
Viewed by 1190
Abstract
Pulmonary dynamic contrast-enhanced (DCE) MRI is clinically useful for assessing pulmonary perfusion, but its signal-to-noise ratio (SNR) is limited. A self-supervised learning network-based plug-and-play (PnP) denoising model was developed to improve the image quality of pulmonary perfusion MRI. A dataset of patients with [...] Read more.
Pulmonary dynamic contrast-enhanced (DCE) MRI is clinically useful for assessing pulmonary perfusion, but its signal-to-noise ratio (SNR) is limited. A self-supervised learning network-based plug-and-play (PnP) denoising model was developed to improve the image quality of pulmonary perfusion MRI. A dataset of patients with suspected pulmonary diseases was used. Asymmetric pixel-shuffle downsampling blind-spot network (AP-BSN) training inputs were two-dimensional background-subtracted perfusion images without clean ground truth. The AP-BSN is incorporated into a PnP model (PnP-BSN) for balancing noise control and image fidelity. Model performance was evaluated by SNR, sharpness, and overall image quality from two radiologists. The fractal dimension and k-means segmentation of the pulmonary perfusion images were calculated for comparing denoising performance. The model was trained on 29 patients and tested on 8 patients. The performance of PnP-BSN was compared to denoising convolutional neural network (DnCNN) and a Gaussian filter. PnP-BSN showed the highest reader scores in terms of SNR, sharpness, and overall image quality as scored by two radiologists. The expert scoring results for DnCNN, Gaussian, and PnP-BSN were 2.25 ± 0.65, 2.44 ± 0.73, and 3.56 ± 0.73 for SNR; 2.62 ± 0.52, 2.62 ± 0.52, and 3.38 ± 0.64 for sharpness; and 2.16 ± 0.33, 2.34 ± 0.42, and 3.53 ± 0.51 for overall image quality (p < 0.05 for all). PnP-BSN outperformed DnCNN and a Gaussian filter for denoising pulmonary perfusion MRI, which led to improved quantitative fractal analysis. Full article
Show Figures

Figure 1

31 pages, 853 KB  
Article
Adversarial Sample Generation Method Based on Frequency Domain Transformation and Channel Awareness
by Yalin Gao, Dongwei Xu, Huiyan Zhu and Qi Xuan
Sensors 2025, 25(12), 3779; https://doi.org/10.3390/s25123779 - 17 Jun 2025
Viewed by 1051
Abstract
In OFDM wireless communication systems, low-resolution channel characteristics and noise interference pose significant challenges to accurate channel estimation. To solve these problems, we propose a super-resolution denoising residual network (SDRNet), which combines the advantages of the super-resolution convolutional neural network (SRCNN) and the [...] Read more.
In OFDM wireless communication systems, low-resolution channel characteristics and noise interference pose significant challenges to accurate channel estimation. To solve these problems, we propose a super-resolution denoising residual network (SDRNet), which combines the advantages of the super-resolution convolutional neural network (SRCNN) and the denoising convolutional neural network (DnCNN) to construct a pilot-based OFDM signal model, train SDRNet using OFDM pilot data containing Gaussian noise, and optimize its feature enhancement ability in frequency-selective fading channels. To further explore the role of channel estimation in communication security, we propose a frequency-domain adversarial attack method based on SDRNet output. This method first converts the time-domain signal to the frequency domain by using the Fourier transform and then applies Gaussian noise and selective masking. By integrating the channel gradient information, the adversarial perturbation we generated significantly improves the attack success rate compared with the non-channel awareness method. The experimental results show that SDRNet is superior to traditional algorithms (such as the least square method, minimum mean square error estimation, etc.) in both mean square error and bit error rate. Furthermore, the adversarial samples optimized through channel awareness frequency-domain masking exhibit stronger attack performance, confirming that accurate channel estimation can not only enhance communication reliability but also provide key guidance for adversarial perturbation. The experimental results show that under the same noise conditions, the MSE of SDRNet is significantly lower than that of LS and MMSE. The bit error rate is lower than 0.01 when the signal-to-noise ratio is 10 dB, which is significantly better than the traditional algorithm. The attack success rate of the proposed adversarial attack method reached 79.9%, which was 16.3% higher than that of the non-channel aware method, verifying the key role of accurate channel estimation in enhancing the effectiveness of the attack. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

14 pages, 2575 KB  
Article
Speckle Noise Removal in OCT Images via Wavelet Transform and DnCNN
by Fangfang Li, Qizhou Wu, Bei Jia and Zhicheng Yang
Appl. Sci. 2025, 15(12), 6557; https://doi.org/10.3390/app15126557 - 11 Jun 2025
Cited by 2 | Viewed by 2183
Abstract
(1) Background: Due to its imaging principle, OCT generates images laden with significant speckle noise. The quality of OCT images is a crucial factor influencing diagnostic effectiveness, highlighting the importance of OCT image denoising. (2) Methods: The OCT image undergoes a Discrete Wavelet [...] Read more.
(1) Background: Due to its imaging principle, OCT generates images laden with significant speckle noise. The quality of OCT images is a crucial factor influencing diagnostic effectiveness, highlighting the importance of OCT image denoising. (2) Methods: The OCT image undergoes a Discrete Wavelet Transform (DWT) to decompose it into multiple scales, isolating high-frequency wavelet coefficients that encapsulate fine texture details. These high-frequency coefficients are further processed using a Shift-Invariant Wavelet Transform (SWT) to generate an additional set of coefficients, ensuring an enhanced feature preservation and reduced artifacts. Both the original DWT high-frequency coefficients and their SWT-transformed counterparts are independently denoised using a Deep Neural Convolutional Network (DnCNN). This dual-pathway approach leverages the complementary strengths of both transform domains to suppress noise effectively. The denoised outputs from the two pathways are fused using a correlation-based strategy. This step ensures the optimal integration of texture features by weighting the contributions of each pathway according to their correlation with the original image, preserving critical diagnostic information. Finally, the Inverse Wavelet Transform is applied to the fused coefficients to reconstruct the denoised OCT image in the spatial domain. This reconstruction step maintains structural integrity and enhances diagnostic clarity by preserving essential spatial features. (3) Results: The MSE, PSNR, and SSIM indices of the proposed algorithm in this paper were 4.9052, 44.8603, and 0.9514, respectively, achieving commendable results compared to other algorithms. The Sobel, Prewitt, and Canny operators were utilized for edge detection on images, which validated the enhancement effect of the proposed algorithm on image edges. (4) Conclusions: The proposed algorithm in this paper exhibits an exceptional performance in noise suppression and detail preservation, demonstrating its potential application in OCT image denoising. Future research can further explore the adaptability and optimization directions of this algorithm in complex noise environments, aiming to provide more theoretical support and practical evidence for enhancing OCT image quality. Full article
Show Figures

Figure 1

27 pages, 9653 KB  
Article
DNS over HTTPS Tunneling Detection System Based on Selected Features via Ant Colony Optimization
by Hardi Sabah Talabani, Zrar Khalid Abdul and Hardi Mohammed Mohammed Saleh
Future Internet 2025, 17(5), 211; https://doi.org/10.3390/fi17050211 - 7 May 2025
Cited by 1 | Viewed by 2490
Abstract
DNS over HTTPS (DoH) is an advanced version of the traditional DNS protocol that prevents eavesdropping and man-in-the-middle attacks by encrypting queries and responses. However, it introduces new challenges such as encrypted traffic communication, masking malicious activity, tunneling attacks, and complicating intrusion detection [...] Read more.
DNS over HTTPS (DoH) is an advanced version of the traditional DNS protocol that prevents eavesdropping and man-in-the-middle attacks by encrypting queries and responses. However, it introduces new challenges such as encrypted traffic communication, masking malicious activity, tunneling attacks, and complicating intrusion detection system (IDS) packet inspection. In contrast, unencrypted packets in the traditional Non-DoH version remain vulnerable to eavesdropping, privacy breaches, and spoofing. To address these challenges, an optimized dual-path feature selection approach is designed to select the most efficient packet features for binary class (DoH-Normal, DoH-Malicious) and multiclass (Non-DoH, DoH-Normal, DoH-Malicious) classification. Ant Colony Optimization (ACO) is integrated with machine learning algorithms such as XGBoost, K-Nearest Neighbors (KNN), Random Forest (RF), and Convolutional Neural Networks (CNNs) using CIRA-CIC-DoHBrw-2020 as the benchmark dataset. Experimental results show that the proposed model selects the most effective features for both scenarios, achieving the highest detection and outperforming previous studies in IDS. The highest accuracy obtained for binary and multiclass classifications was 0.9999 and 0.9955, respectively. The optimized feature set contributed significantly to reducing computational costs and processing time across all utilized classifiers. The results provide a robust, fast, and accurate solution to challenges associated with encrypted DNS packets. Full article
Show Figures

Figure 1

18 pages, 1986 KB  
Article
Underwater Time Delay Estimation Based on Meta-DnCNN with Frequency-Sliding Generalized Cross-Correlation
by Meiqi Ji, Xuerong Cui, Juan Li, Lei Li and Bin Jiang
J. Mar. Sci. Eng. 2025, 13(5), 919; https://doi.org/10.3390/jmse13050919 - 7 May 2025
Cited by 1 | Viewed by 2918
Abstract
In underwater signal processing, accurate time delay estimation (TDE) is of crucial importance for ensuring the reliability of data transmission. However, the complex propagation of sound waves and strong noise interference in the underwater environment make this task extremely challenging. Especially under the [...] Read more.
In underwater signal processing, accurate time delay estimation (TDE) is of crucial importance for ensuring the reliability of data transmission. However, the complex propagation of sound waves and strong noise interference in the underwater environment make this task extremely challenging. Especially under the condition of low signal-to-noise ratio (SNR), the existing methods based on cross-correlation and deep learning struggle to meet requirements. Aiming at this core issue, this paper proposed an innovative solution. Firstly, a multi-sub-window reconstruction is performed on the frequency-sliding generalized colorboxpinkcross-correlation (FS-GCC) matrix between signals to capture the time delay characteristics from different frequency bands and conduct the enhancement and extraction of features. Then, the grayscale image corresponding to the generated FS-GCC matrix is used, and the multi-level noise features are extracted by the multi-layer convolution of denoising convolutional neural network (DnCNN), effectively suppressing the noise and improving the estimation accuracy. Finally, the model-agnostic meta-learning (MAML) framework is introduced. Through training tasks under various SNR conditions, the model is enabled to possess the ability to quickly adapt to new environments, and it can achieve the desired estimation accuracy even when the number of underwater training samples is limited. Simulation validation was conducted under the NOF and NCS underwater acoustic channels, and results demonstrate that our proposed approach exhibits lower estimation errors and greater stability compared with existing methods under the same conditions. This method enhances the practicality and robustness of the model in complex underwater environments, providing strong support for the efficient and stable operation of underwater sensor networks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 2957 KB  
Article
A 1D Cascaded Denoising and Classification Framework for Micro-Doppler-Based Radar Target Recognition
by Beili Ma and Baixiao Chen
Remote Sens. 2025, 17(9), 1515; https://doi.org/10.3390/rs17091515 - 24 Apr 2025
Cited by 2 | Viewed by 1752
Abstract
Micro-Doppler signatures play a crucial role in capturing target features for the radar classification task, and the time–frequency distribution method is widely used to represent micro-Doppler signatures in many applications including human activities, ground moving target identification, and different types of drones distinguishing. [...] Read more.
Micro-Doppler signatures play a crucial role in capturing target features for the radar classification task, and the time–frequency distribution method is widely used to represent micro-Doppler signatures in many applications including human activities, ground moving target identification, and different types of drones distinguishing. However, most existing studies that utilize radar micro-Doppler spectrograms often require extended observation times to effectively represent the cyclostationarity and periodic modulation of radar signals to achieve promising classification results. In addition, the presence of noise in real-world environments poses challenges by generating weak micro-Doppler features and a low signal-to-noise ratio (SNR), leading to a significant decline in classification accuracy. In this paper, we present a novel one-dimensional (1D) denoising and classification cascaded framework designed for low-resolution radar targets using a micro-Doppler spectrum. This framework provides an effective signal-based solution for feature extraction and recognition from the single-frame micro-Doppler spectrum in a conventional pulsed radar system, which boasts high real-time efficiency and low computation requirements under conditions of low resolution and a short dwell time. Specifically, the proposed framework is implemented using two cascaded subnetworks: Firstly, for radar micro-Doppler spectrum denoising, we propose an improved 1D DnCNN subnetwork to enhance noisy or weak micro-Doppler signatures. Secondly, an AlexNet subnetwork is cascaded for the classification task, and the joint loss is calculated to update the denoising subnetwork and assist with optimal classification performance. We have conducted a comprehensive set of experiments using six types of targets with a ground surveillance radar system to demonstrate the denoising and classification performance of the proposed cascaded framework, which shows significant improvement over separate training of denoising and classification models. Full article
Show Figures

Figure 1

35 pages, 6560 KB  
Article
Adversarial Content–Noise Complementary Learning Model for Image Denoising and Tumor Detection in Low-Quality Medical Images
by Teresa Abuya, Richard Rimiru and George Okeyo
Signals 2025, 6(2), 17; https://doi.org/10.3390/signals6020017 - 3 Apr 2025
Viewed by 2222
Abstract
Medical imaging is crucial for disease diagnosis, but noise in CT and MRI scans can obscure critical details, making accurate diagnosis challenging. Traditional denoising methods and deep learning techniques often produce overly smooth images that lack vital diagnostic information. GAN-based approaches also struggle [...] Read more.
Medical imaging is crucial for disease diagnosis, but noise in CT and MRI scans can obscure critical details, making accurate diagnosis challenging. Traditional denoising methods and deep learning techniques often produce overly smooth images that lack vital diagnostic information. GAN-based approaches also struggle to balance noise removal and content preservation. Existing research has not explored tumor detection after image denoising; instead, it has concentrated on content and noise learning. To address these challenges, this study proposes the Adversarial Content–Noise Complementary Learning (ACNCL) model, which enhances image denoising and tumor detection. Unlike conventional methods focusing solely on content or noise learning, ACNCL simultaneously learns both through dual predictors, ensuring the complementary reconstruction of high-quality images. The model integrates multiple denoising techniques (DnCNN, U-Net, DenseNet, CA-AGF, and DWT) within a GAN framework, using PatchGAN as a local discriminator to preserve fine image textures. The ACNCL separates anatomical details and noise into distinct pathways, ensuring stable noise reduction while maintaining structural integrity. Evaluated on CT and MRI datasets, ACNCL demonstrated exceptional performance compared to traditional models both qualitatively and quantitatively. It exhibited strong generalization across datasets, improving medical image clarity and enabling earlier tumor detection. These findings highlight ACNCL’s potential to enhance diagnostic accuracy and support improved clinical decision-making. Full article
(This article belongs to the Special Issue Recent Development of Signal Detection and Processing)
Show Figures

Figure 1

18 pages, 1483 KB  
Article
Recovering Image Quality in Low-Dose Pediatric Renal Scintigraphy Using Deep Learning
by Marta Arsénio, Ricardo Vigário and Ana M. Mota
J. Imaging 2025, 11(3), 88; https://doi.org/10.3390/jimaging11030088 - 19 Mar 2025
Cited by 2 | Viewed by 1069
Abstract
The objective of this study is to propose an advanced image enhancement strategy to address the challenge of reducing radiation doses in pediatric renal scintigraphy. Data from a public dynamic renal scintigraphy database were used. Based on noisier images, four denoising neural networks [...] Read more.
The objective of this study is to propose an advanced image enhancement strategy to address the challenge of reducing radiation doses in pediatric renal scintigraphy. Data from a public dynamic renal scintigraphy database were used. Based on noisier images, four denoising neural networks (DnCNN, UDnCNN, DUDnCNN, and AttnGAN) were evaluated. To evaluate the quality of the noise reduction, with minimal detail loss, the kidney signal-to-noise ratio (SNR) and multiscale structural similarity (MS-SSIM) were used. Although all the networks reduced noise, UDnCNN achieved the best balance between SNR and MS-SSIM, leading to the most notable improvements in image quality. In clinical practice, 100% of the acquired data are summed to produce the final image. To simulate the dose reduction, we summed only 50%, simulating a proportional decrease in radiation. The proposed deep-learning approach for image enhancement ensured that half of all the frames acquired may yield results that are comparable to those of the complete dataset, suggesting that it is feasible to reduce patients’ exposure to radiation. This study demonstrates that the neural networks evaluated can markedly improve the renal scintigraphic image quality, facilitating high-quality imaging with lower radiation doses, which will benefit the pediatric population considerably. Full article
(This article belongs to the Special Issue Advances in Medical Imaging and Machine Learning)
Show Figures

Figure 1

23 pages, 3308 KB  
Article
Military Training Aircraft Structural Health Monitoring Leveraging an Innovative Biologically Inspired Feedback Mechanism for Neural Networks
by Tarek Berghout
Machines 2025, 13(3), 179; https://doi.org/10.3390/machines13030179 - 24 Feb 2025
Cited by 6 | Viewed by 1990
Abstract
Structural health monitoring (SHM) is crucial for ensuring the safety and longevity of military training aircraft, which face demanding conditions such as high maneuverability, variable loads, and extreme environments, leading to structural fatigue. Traditional methods, such as modal analysis, often struggle to handle [...] Read more.
Structural health monitoring (SHM) is crucial for ensuring the safety and longevity of military training aircraft, which face demanding conditions such as high maneuverability, variable loads, and extreme environments, leading to structural fatigue. Traditional methods, such as modal analysis, often struggle to handle the multivariate complexity of operational conditions and data variability. Recently, deep learning has emerged as a promising alternative to overcome these limitations. However, deep learning models typically operate in a unidirectional manner, where feedback to the inputs is often neglected. In contrast, biological neurons utilize feedback mechanisms to refine and adapt their responses in natural ecosystems, enabling adaptive learning and error correction. In this context, this study proposes an innovative Convolutional Neural Network with Reversed Mapping (CNN-RM) approach to SHM, which incorporates feedback loops and self-correcting mechanisms. Before feeding the data into CNN-RM, the dataset complexity is reduced through time-series-to-images Continuous Wavelet Transform (CWT), followed by a denoising CNN (DnCNN) to mitigate complex behavior under various conditions. For application, this study utilizes a massive dataset collected from multivariate sensors installed on a decommissioned military training aircraft previously used by the British Royal Air Force and now housed in a laboratory environment. The results revealed that the overall mean of classification metrics for the CNN is 0.9673 (training) and 0.9422 (testing), while for CNN-MR, it is 0.9764 (training) and 0.9515 (testing), showing an improvement of 0.94% in training and 1.00% in testing. These results highlight significant advancements in SHM, recommending the consideration of such learning mechanisms in neural learning models. Full article
(This article belongs to the Special Issue Data-Driven Fault Diagnosis for Machines and Systems)
Show Figures

Figure 1

11 pages, 591 KB  
Article
Research on Seismic Signal Denoising Model Based on DnCNN Network
by Li Duan, Jianxian Cai, Li Wang and Yan Shi
Appl. Sci. 2025, 15(4), 2083; https://doi.org/10.3390/app15042083 - 17 Feb 2025
Cited by 4 | Viewed by 2191
Abstract
Addressing the noise in seismic signals, a prevalent challenge within seismic signal processing, has been the focus of extensive research. Conventional algorithms for seismic signal denoising often fall short due to their reliance on manually determined feature functions and threshold parameters. These limitations [...] Read more.
Addressing the noise in seismic signals, a prevalent challenge within seismic signal processing, has been the focus of extensive research. Conventional algorithms for seismic signal denoising often fall short due to their reliance on manually determined feature functions and threshold parameters. These limitations hinder effective noise removal, resulting in suboptimal signal-to-noise ratios (SNRs) and post-denoising waveform distortion. To address these shortcomings, this study introduces a novel denoising approach leveraging a DnCNN network. The DnCNN framework, which integrates batch normalization with residual learning, is adept at swiftly identifying and eliminating noise from seismic signals through its residual learning capabilities. To assess the efficacy of this DnCNN-based model, it was rigorously tested against a curated test set and benchmarked against other denoising techniques, including wavelet thresholding, empirical mode decomposition, and convolutional auto-encoders. The findings demonstrate that the DnCNN model not only significantly enhances the SNR and correlation coefficient of the processed seismic signals but also achieves superior noise reduction performance. Full article
Show Figures

Figure 1

18 pages, 563 KB  
Article
MTL-DoHTA: Multi-Task Learning-Based DNS over HTTPS Traffic Analysis for Enhanced Network Security
by Woong Kyo Jung and Byung Il Kwak
Sensors 2025, 25(4), 993; https://doi.org/10.3390/s25040993 - 7 Feb 2025
Cited by 2 | Viewed by 2190
Abstract
The adoption of DNS over HTTPS (DoH) has significantly enhanced user privacy and security by encrypting DNS queries. However, it also presents new challenges for detecting malicious activities, such as DNS tunneling, within encrypted traffic. In this study, we propose MTL-DoHTA, a multi-task [...] Read more.
The adoption of DNS over HTTPS (DoH) has significantly enhanced user privacy and security by encrypting DNS queries. However, it also presents new challenges for detecting malicious activities, such as DNS tunneling, within encrypted traffic. In this study, we propose MTL-DoHTA, a multi-task learning-based framework designed to analyze DoH traffic and classify it into three tasks: (1) DoH vs. non-DoH traffic, (2) benign vs. malicious DoH traffic, and (3) the identification of DNS tunneling tools (e.g., dns2tcp, dnscat2, iodine). Leveraging statistical features derived from network traffic and a 2D-CNN architecture enhanced with GradNorm and attention mechanisms, MTL-DoHTA achieves a macro-averaging F1-score of 0.9905 on the CIRA-CIC-DoHBrw-2020 dataset. Furthermore, the model effectively handles class imbalance and mitigates overfitting using downsampling techniques while maintaining high classification performance. The proposed framework can serve as a reliable tool for monitoring and securing sensor-based network systems against sophisticated threats, while also demonstrating its potential to enhance multi-tasking capabilities in resource-constrained sensor environments. Full article
Show Figures

Figure 1

29 pages, 8224 KB  
Article
Detection of Domain Name Server Amplification Distributed Reflection Denial of Service Attacks Using Convolutional Neural Network-Based Image Deep Learning
by Hoon Shin, Jaeyeong Jeong, Kyumin Cho, Jaeil Lee, Ohjin Kwon and Dongkyoo Shin
Electronics 2025, 14(1), 76; https://doi.org/10.3390/electronics14010076 - 27 Dec 2024
Viewed by 2711
Abstract
Domain Name Server (DNS) amplification Distributed Reflection Denial of Service (DRDoS) attacks are a Distributed Denial of Service (DDoS) attack technique in which multiple IT systems forge the original IP of the target system, send a request to the DNS server, and then [...] Read more.
Domain Name Server (DNS) amplification Distributed Reflection Denial of Service (DRDoS) attacks are a Distributed Denial of Service (DDoS) attack technique in which multiple IT systems forge the original IP of the target system, send a request to the DNS server, and then send a large number of response packets to the target system. In this attack, it is difficult to identify the attacker because of its ability to deceive the source, and unlike TCP-based DDoS attacks, it usually uses the UDP protocol, which has a fast communication speed and amplifies network traffic by simple manipulating options, making it one of the most widely used DDoS techniques. In this study, we propose a simple convolutional neural network (CNN) model that is designed to detect DNS amplification DRDoS attack traffic and has hyperparameters adjusted through experiments. As a result of evaluating the accuracy of the proposed CNN model for detecting DNS amplification DRDoS attacks, the average accuracy of the experiment was 0.9995, which was significantly better than several machine learning (ML) models in terms of performance. It also showed good performance compared to other deep learning (DL) models, and, in particular, it was confirmed that this simple CNN had the fastest time in terms of execution compared to other deep learning models by experimentation. Full article
(This article belongs to the Special Issue Machine Learning and Cybersecurity—Trends and Future Challenges)
Show Figures

Figure 1

18 pages, 11355 KB  
Article
Denoising Phase-Unwrapped Images in Laser Imaging via Statistical Analysis and DnCNN
by Yibo Xie, Jin Cheng, Shun Zhou, Qing Fan, Yue Jia, Jingjin Xiao and Weiguo Liu
Micromachines 2024, 15(11), 1372; https://doi.org/10.3390/mi15111372 - 14 Nov 2024
Viewed by 1464
Abstract
Three-dimensional imaging plays a crucial role at the micro-scale in fields such as precision manufacturing and materials science. However, image noise significantly impacts the accuracy of point cloud reconstruction, making image denoising techniques a widely discussed topic. Statistical analysis of laser imaging noise [...] Read more.
Three-dimensional imaging plays a crucial role at the micro-scale in fields such as precision manufacturing and materials science. However, image noise significantly impacts the accuracy of point cloud reconstruction, making image denoising techniques a widely discussed topic. Statistical analysis of laser imaging noise has led to the conclusion that logarithmically transformed noise follows a Gumbel distribution. A corresponding neural network training set was developed to address the challenges of difficult data collection and the scarcity of phase-unwrapped image datasets. Building on this foundation, a phase-unwrapped image denoising method based on the Denoising Convolutional Neural Network (DnCNN) is proposed. This method aims to achieve three-dimensional filtering by performing two-dimensional image denoising. Experimental results show a significant reduction in the Cloud-to-Mesh Distance (C2M) statistics of the corresponding point clouds before and after planar filtering. Specifically, the statistic at 97.5% of the 2σ principle decreases from 0.8782 mm to 0.3384 mm, highlighting the effectiveness of the filtering algorithm in improving the planar fit. Moreover, the DnCNN method exhibits exceptional denoising performance when applied to real-world target data, such as plaster statues with complex depth variations and PCBs made from different materials, thereby enhancing accuracy and reliability in point cloud reconstruction. This study provides valuable insights into phase-unwrapped image noise suppression in laser imaging, particularly in micro-scale applications where precision is critical. Full article
Show Figures

Figure 1

18 pages, 16179 KB  
Article
Construction Environment Noise Suppression of Ground-Penetrating Radar Signals Based on an RG-DMSA Neural Network
by Qing Wang, Yisheng Chen, Yupeng Shen and Meng Li
Electronics 2024, 13(14), 2843; https://doi.org/10.3390/electronics13142843 - 19 Jul 2024
Cited by 4 | Viewed by 1479
Abstract
Ground-penetrating radar (GPR) is often used to detect targets in a construction environment. Due to the different construction environments, the noise exhibits different characteristics on the GPR signal. When the noise is widely distributed on the GPR signal, and its spectrum and the [...] Read more.
Ground-penetrating radar (GPR) is often used to detect targets in a construction environment. Due to the different construction environments, the noise exhibits different characteristics on the GPR signal. When the noise is widely distributed on the GPR signal, and its spectrum and the spectrum of the active signal are aliased, it is difficult to separate and suppress the noise by traditional filtering methods. In this paper, we propose a deep learning GPR image noise suppression method based on a recursive guided and dual multi-scale self-attention mechanism neural network (RG-DMSA-NN), which uses a recursive guidance module and a dual multi-scale self-attention mechanism module to improve the feature extraction ability of the image and enhance the robustness and generalization ability in image noise suppression. Through the application of noise suppression on the synthesized test data and the GPR data actually collected by the Macao Science and Technology Museum, the advantages of this method over the traditional filtering, DnCNN and UNet noise suppression methods are demonstrated. Full article
Show Figures

Figure 1

Back to TopTop