Journal Description
Inventions
Inventions
is an international, scientific, peer-reviewed, open access journal published bimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), Inspec, and other databases.
- Journal Rank: CiteScore - Q1 (General Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.7 days after submission; acceptance to publication is undertaken in 3.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Use of IDeS Method to Design an Innovative HYICE Sportscar
Inventions 2023, 8(3), 75; https://doi.org/10.3390/inventions8030075 (registering DOI) - 26 May 2023
Abstract
In the contemporary automobile scene, environmental effect abatement is being increasingly sought; this demands a full rethinking of the entire system and entails more than just the reduction in exhaust pollutant emissions. Currently, the most popular approach is the electrification of automobiles, which
[...] Read more.
In the contemporary automobile scene, environmental effect abatement is being increasingly sought; this demands a full rethinking of the entire system and entails more than just the reduction in exhaust pollutant emissions. Currently, the most popular approach is the electrification of automobiles, which significantly reduces pollution in major urban areas while simultaneously posing a new set of problems. The two types of zero-emission vehicles that are now being developed the most are hydrogen fuel cells and battery electric cars, but another option is the Hydrogen Internal Combustion Engine (HYICE) engine, which is highly advantageous in terms of pollutants, aside from Nitrogen Oxides (NOx), which can be considerably decreased. The purpose of this study is to develop a novel vehicle design that transports this type of technology into a sporting context while striving for considerable environmental benefits and integrating them into a society where the love of automobiles still has a strong following. The cutting-edge Industrial Design Structure (IDeS) methodology is used in this work, and a sample structure was created to demonstrate how the problems and technical limitations represented can be solved. The steps of the methodology are followed to shape the final product, with careful consideration given to the design of the styling component through the use of the Stylistic Design Engineering (SDE) method. With the ultimate goal of achieving sustainable driving pleasure, the study looks into whether recyclable materials can be used for the body and whether extremely light materials can be used for the chassis.
Full article
(This article belongs to the Collection Feature Innovation Papers)
►
Show Figures
Open AccessArticle
Investigations on Using Intelligent Learning Techniques for Anomaly Detection and Diagnosis in Sensors Signals in Li-Ion Battery—Case Study
Inventions 2023, 8(3), 74; https://doi.org/10.3390/inventions8030074 - 22 May 2023
Abstract
This research paper aims to design and implement an intelligent least short time memory (LSTM) deep learning classification technique to detect possible anomalies in measurements dataset within a particular Li-ion battery type. For the state of charge (SOC) and battery faults estimation, a
[...] Read more.
This research paper aims to design and implement an intelligent least short time memory (LSTM) deep learning classification technique to detect possible anomalies in measurements dataset within a particular Li-ion battery type. For the state of charge (SOC) and battery faults estimation, a Joint State and Parameter Extended Kalman Filter (JEKF) estimator is developed. The SOC accuracy performance is excellent, with less than 0.5% error during steady-state, compared to the 2% error reported in the literature. For the design and implementation of JEKF SOC and parameter estimation is chosen a preset Li-ion battery Simulink Simscape generic model. It is also helpful to generate the healthy and faulty measurement dataset to design and implement the proposed intelligent LSTM classifier deep learning technique. The generic Li-ion battery model is wisely selected for the “proof concept” purpose, model validation, and algorithms’ robustness, accuracy, and effectiveness. Compared to the traditional EKF fault diagnosis and isolation (FDI), a model-based estimation strategy, the proposed classification LSTM technique is an intelligent data-driven-based deep learning algorithm of high accuracy (around 80%) and loss performance close to zero. Therefore, this feature makes data collection of dataset measurements directly from Li-ion battery sensors possible, which is beneficial for generating online fault scenarios. Additionally, the LSTM deep learning technique can remarkably classify all detected anomalies with high accuracy, independent of battery model accuracy, uncertainties, and unmodeled dynamics. Also, high-performance accuracy root mean square error (RMSE) of 0.0588 (voltage fault), approximately (healthy) and 8.87 × (current fault) for deep learning shallow neural network (DLSNN) reveals an obvious superiority of both compared to the traditional FDI estimation strategies.
Full article
(This article belongs to the Special Issue Advanced Technologies and Artificial Intelligence for Sustainable and Intelligent Transportation Systems)
►▼
Show Figures

Figure 1
Open AccessEditorial
Editorial Note for the Special Issue: Perspectives and Challenges in Doctoral Research—Selected Papers from the 10th Edition of the Scientific Conference of the Doctoral Schools from the “Dunărea de Jos”
by
and
Inventions 2023, 8(3), 73; https://doi.org/10.3390/inventions8030073 - 17 May 2023
Abstract
This editorial note is dedicated to the 10th Scientific Conference which was held on June 2022 in Galati, Romania, and was organized by the Council of Doctoral Schools of the “Dunărea de Jos” University of Galati (SCDS-UDJG) [...]
Full article
Open AccessArticle
Quantum Power Electronics: From Theory to Implementation
Inventions 2023, 8(3), 72; https://doi.org/10.3390/inventions8030072 - 16 May 2023
Abstract
While impressive progress has been already achieved in wide-bandgap (WBG) semiconductors such as 4H-SiC and GaN technologies, the lack of intelligent methodologies to control the gate drivers has prevented exploitation of the maximum potential of semiconductor chips from obtaining the desired device operations.
[...] Read more.
While impressive progress has been already achieved in wide-bandgap (WBG) semiconductors such as 4H-SiC and GaN technologies, the lack of intelligent methodologies to control the gate drivers has prevented exploitation of the maximum potential of semiconductor chips from obtaining the desired device operations. Thus, a potent ongoing trend is to design a fast gate driver switching scheme to upgrade the performance of electronic equipment at the system level. To address this issue, this work proposed a novel intelligent scheme for the control of gate driver switching using the concept of quantum computation in machine learning. In particular, the quantum principle was incorporated into deep reinforcement learning (DRL) to address the hardware limitations of conventional computers and the growing amount of data sets. Taking potential benefit of the quantum theory, the DRL algorithm influenced by quantum specifications (referred to as QDRL) not only ameliorates the performance of the native algorithm on traditional computers but also enhances the progress of relevant research fields like quantum computing and machine learning. To test the practicability and usefulness of QDRL, a dc/dc parallel boost converter feeding constant power loads (CPLs) was chosen as the case study, and several power hardware-in-the-loop (PHiL) experiments and comparative analysis were performed.
Full article
(This article belongs to the Collection Feature Innovation Papers)
►▼
Show Figures

Figure 1
Open AccessArticle
Experimental Study Results Processing Method for the Marine Diesel Engines Vibration Activity Caused by the Cylinder-Piston Group Operations
Inventions 2023, 8(3), 71; https://doi.org/10.3390/inventions8030071 - 12 May 2023
Abstract
The article discusses the method and results of processing statistical data from an experimental study of vibrations in marine diesel engines caused by the operation of cylinder-piston groups. The results of the application of a ranking method for identifying factors that influence vibration
[...] Read more.
The article discusses the method and results of processing statistical data from an experimental study of vibrations in marine diesel engines caused by the operation of cylinder-piston groups. The results of the application of a ranking method for identifying factors that influence vibration in marine diesel engines are presented to determine the most significant ones. A series of experiments were conducted according to special plans to actively implement the random balance method. This helped to establish the correctness of selecting the most significant factors from a variety of factors that influence the process under study. The article presents a mathematical model that enables the calculation of current values and prediction of changes in the most significant indicators, with the clearance between the piston and the cylinder liner being the most important.
Full article
(This article belongs to the Topic Ship Dynamics, Stability and Safety)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization Study of CO2 Gas Absorption with NaOH Absorbent Continuous System in Raschig Ring Packing Column Using Box–Behnken Design
Inventions 2023, 8(3), 70; https://doi.org/10.3390/inventions8030070 - 09 May 2023
Abstract
Increasing CO2 gas emissions results in climate change by increasing air temperature and worsening environmental problems. It is necessary to control CO2 gas in the air to overcome this. This research aims to optimize the absorption of CO2 gas in
[...] Read more.
Increasing CO2 gas emissions results in climate change by increasing air temperature and worsening environmental problems. It is necessary to control CO2 gas in the air to overcome this. This research aims to optimize the absorption of CO2 gas in the air with 0.1 M NaOH absorbent in the column of the Raschig ring stuffing material using the response surface methodology (RSM). This research was conducted using a continuous system of three independent variables by varying the contact time (10–80 min), the flow rate of NaOH absorbent (2–5 L/min), and the flow rate of CO2 gas (1–5 L/min). The response variables in this study were the absorption rate (L/min) and mass transfer coefficient, while the air flow rate was constant at 20 L/min. Air and CO2 gas mix before absorption occurs and flow into the Raschig ring packing column so that contact occurs with the NaOH absorbent. Mass transfer of CO2 gas occurs into the NaOH absorbent, resulting in absorption. The results showed that the effect of contact time (min), the flow rate of NaOH absorbent (L/min), and CO2 gas flow rate individually and the interaction on CO2 absorption rate and mass transfer coefficient were very significant at a p-value of 0.05. Chemical absorption of CO2 also occurred due to the reaction between CO2 and OH- to form CO32− and HCO3−, so the pH decreased, and the reaction was a function of pH. Optimization using Design Expert 13 RSM Box–Behnken Design (BBD) yielded optimal conditions at an absorption time of 80 min, NaOH absorbent flow rate of 5 L/min, CO2 gas flow rate of 5 L/min, absorption rate of CO2 gas of 3.97 L/min, and CO2 gas mass transfer coefficient of 1.443 mol/min m2 atm, with the desirability of 0.999 (≈100%).
Full article
(This article belongs to the Section Inventions and innovation in Energy and Thermal/Fluidic Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Development of a 3D Printed New Metering Mechanism for a Multi-Crop Seed Broadcasting System Using an Autonomous Small-Scale Vehicle
Inventions 2023, 8(3), 69; https://doi.org/10.3390/inventions8030069 - 09 May 2023
Abstract
Developing countries in Asia widely use manual seed broadcasting methods due to a lack of appropriate seeding machinery. The agricultural sector is currently facing labor shortages and high labor costs, especially seasonal labor shortages for broadcasting and transplanting operations. However, the primary constraint
[...] Read more.
Developing countries in Asia widely use manual seed broadcasting methods due to a lack of appropriate seeding machinery. The agricultural sector is currently facing labor shortages and high labor costs, especially seasonal labor shortages for broadcasting and transplanting operations. However, the primary constraint in adopting existing broadcasting seeders for small-scale farmers in developing countries is the high initial purchase costs. Therefore, developing locally commercial accessible technology for small-scale farmers is an urgent requirement. In this regard, attempt was taken to develop a new low-cost 3D printed seeder that can be used for multi-crop seed broadcasting operations when integrated with an autonomous terrain vehicle. A new seed metering mechanism was proposed for seed broadcasting that can be controlled electronically from the autonomous terrain vehicle. Positional sensors based on the real time kinematics—global navigation satellite system (RTK-GNSS) were used to record positional information. The best observation was noted at a vehicle operational speed of 0.351 ms−1 and had a coefficient of variation (CV) referring to the distribution uniformity of seeds of 19% for green peas, 22% for cowpeas, and 25% for chickpeas. The developed seeder could spread multi-crop seeds and adjust the seed rates electronically at the different ranges of rotational speeds. Therefore, the use of 3D printed fabricated prototype seed broadcasting units with small-scale autonomous vehicles can be implemented to help in labor supplements and perform the broadcasting of different seeds.
Full article
(This article belongs to the Collection Feature Innovation Papers)
►▼
Show Figures

Figure 1
Open AccessArticle
The Phasor Diagram of a Superconducting Synchronous Electrical Machine
Inventions 2023, 8(3), 68; https://doi.org/10.3390/inventions8030068 - 08 May 2023
Abstract
This paper describes a universal method proposed by the author for the evaluative analytical calculation of the main parameters of synchronous electrical machines, including superconducting ones. Traditional methods for analytical calculation of parameters to build a phasor diagram of electrical machines require a
[...] Read more.
This paper describes a universal method proposed by the author for the evaluative analytical calculation of the main parameters of synchronous electrical machines, including superconducting ones. Traditional methods for analytical calculation of parameters to build a phasor diagram of electrical machines require a calculation of all dimensions of the active zone, tooth-slot zone and frontal parts of armature windings. All sizes and local states of magnetic circuit saturation are necessary for the calculation of magnetic conductivities. Traditional analytical methods use, among other things, empirical formulas and non-physical coefficients and allow one to calculate only standard machines with classic tooth-slot zones and armature winding types. As a result of drawing a phasor diagram using traditional methods, the angle between the electromotive force and voltage is calculated, which is the machine’s internal parameter and has no major significance for users. The application of modern computer programs for simulation requires a preliminary analytical calculation in order to obtain all dimensions of the three-dimensional model. FEM simulation programs are expensive, require expensive high-performance computers and highly paid skilled personnel. Fast analytical techniques are also required to assess the correctness of the obtained automatic computer simulation results. The proposed analytical method makes it possible to quickly obtain all the main parameters of a newly designed machine (including superconducting ones and those of non-traditional design) without a detailed calculation of the dimensions of the tooth-slot zone and armature end-windings. The characteristic values of load angles are set according to the results of simple calculations, and the desired values, obtained via plotting, represent the inductive resistances of armature winding and inductive voltage drop across it. Results of practical significance, calculated from the voltage diagram, are as follows: the inductor’s magnetomotive force necessary to maintain the nominal load voltage value, regardless of the magnitude (including double overload) and type of the connected load, or the main dimensions of the active zone.
Full article
(This article belongs to the Special Issue Recent Advances and New Trends in Signal Processing)
►▼
Show Figures

Figure 1
Open AccessArticle
Knee Angle Generation with Walking Speed Adaptation Ability for a Powered Transfemoral Prosthetic Leg Prototype
Inventions 2023, 8(3), 67; https://doi.org/10.3390/inventions8030067 - 06 May 2023
Abstract
This paper presents a microcontroller-based solution for generating real-time normal walking knee angle of a powered transfemoral prosthetic leg prototype. The proposed control algorithm was used to determine the prosthetic knee angle by utilizing seven hip angle movement features generated from only the
[...] Read more.
This paper presents a microcontroller-based solution for generating real-time normal walking knee angle of a powered transfemoral prosthetic leg prototype. The proposed control algorithm was used to determine the prosthetic knee angle by utilizing seven hip angle movement features generated from only the inertia measurement unit (IMU) deployed on the prosthetic socket on the thigh of the same side. Then, a proportional–integral–derivative (PID) controller is developed to control the motor to reach the desired knee angle in real time. Furthermore, a novel parallel four-bar linkage-based master–slave validation framework combining a motion capture system was introduced to evaluate the performance of the knee angle generation on a speed-adjustable treadmill with able-bodied subjects. In the framework evaluation, 3 different walking speeds were applied to the treadmill to validate different speed adaptation capabilities of the prosthetic leg control system, precisely 50 cm/s, 60 cm/s, and 70 cm/s. Through the proposed 4-bar linkage framework, the prosthesis’s movement can simulate able-bodied subjects well with maximum RMSE never exceeding 0.27° in the swing flexion phase, 4.4° to 5.8° in the stance phase, and 1.953° to 13.466° in the swing extension phase. The treadmill results showed that the prosthetic leg is able to perform a normal walking gait following different walking speeds of the subject. Finally, a corridor walking experiment with a bypass adapter was successfully performed to examine the feasibility of real prosthetic walking situations.
Full article
(This article belongs to the Collection Feature Innovation Papers)
►▼
Show Figures

Figure 1
Open AccessArticle
Calculating the Surface Layer Thickness and Surface Energy of Aircraft Materials
Inventions 2023, 8(3), 66; https://doi.org/10.3390/inventions8030066 - 28 Apr 2023
Abstract
The surface layer determines the physical properties of aviation materials and, based on these properties, the calculation of surface energy anisotropy can be implemented. Moreover, the value of the surface energy determines the service time and the destruction of aircraft structures surface layer,
[...] Read more.
The surface layer determines the physical properties of aviation materials and, based on these properties, the calculation of surface energy anisotropy can be implemented. Moreover, the value of the surface energy determines the service time and the destruction of aircraft structures surface layer, while the surface layer thickness determines the distance at which this process usually takes place. In this work, a new atomically smooth crystal empirical model is built without considering the surface roughness. This model can be used to theoretically predict the surface energy anisotropy and surface layer thickness of metals and other compounds, in particular the aviation materials. The work shows that the surface layer of an atomically smooth metal, like other compounds, consists of two nanostructured layers: d(I) and d(II). Having sufficient accuracy, the proposed model would allow the prediction of aviation materials performance properties without the need for ultrahigh vacuum or other complicated theoretical methods to analyze the surfaces of nanosystem atomic structures.
Full article
(This article belongs to the Collection Feature Innovation Papers)
►▼
Show Figures

Figure 1
Open AccessArticle
Modelling of Climate Change’s Impact on Prunus armeniaca L.’s Flowering Time
by
, , , , , , and
Inventions 2023, 8(3), 65; https://doi.org/10.3390/inventions8030065 - 28 Apr 2023
Abstract
This study presents the results of the development of numerical models for predicting the timing of apricot flowering, including using experimental data on the emergence of plants from a state of deep dormancy. The best results of approximation of the process of accumulation
[...] Read more.
This study presents the results of the development of numerical models for predicting the timing of apricot flowering, including using experimental data on the emergence of plants from a state of deep dormancy. The best results of approximation of the process of accumulation of the necessary cooling in the autumn–winter period were obtained using the sigmoidal function. Models that take into account the combined effect of temperature and photoperiod on the processes of spring development showed a high accuracy of the process of accumulation of thermal units. Based on the results of testing, two models were selected with an accuracy of 3.0 days for the start of flowering and the absence of a systematic bias, which can be considered a good quality assessment These models describe well the interannual variability of apricot flowering dates and can be used to predict these dates. The discrepancy is no more than 2–4 days in 87–89% of cases. Estimates of the timing of flowering and the end of deep dormancy are very important for increasing the profitability of fruit production in the South of Russia without incurring additional costs, by minimizing the risks associated with irrational crop placement and the selection of varieties without taking into account the specifics of climate change. When constructing a system of protective measures and dates of treatments, it is also necessary to take into account the calendar dates of the shift in the development of plants.
Full article
(This article belongs to the Section Inventions and innovation in Design, Modeling and Computing Methods)
►▼
Show Figures

Figure 1
Open AccessArticle
Designed on 0.18 μm CMOS Process Small Size Broadband Millimeter Wave Chip Antenna
Inventions 2023, 8(3), 64; https://doi.org/10.3390/inventions8030064 - 25 Apr 2023
Abstract
This paper proposes a small-size broadband triangular monopole chip antenna for millimeter wave band applications. Process using 0.18 μm CMOS process and antenna design using Met-al_6. Triangular patch design and feed line length analysis to achieve a better reflection coefficient and also dig
[...] Read more.
This paper proposes a small-size broadband triangular monopole chip antenna for millimeter wave band applications. Process using 0.18 μm CMOS process and antenna design using Met-al_6. Triangular patch design and feed line length analysis to achieve a better reflection coefficient and also dig three circular slots at the grounding point to achieve better impedance matching. The operating frequency of the chip antenna is 62–100 GHz below the reflection coefficient −10 dB standard, with a fractional bandwidth of 54%. The maximum gain is −0.4 dBi at 64 GHz. The efficiency is 40.9%. The overall chip size is 1.2 × 1.2 (mm2). After measurement and verification, the proposed antenna reflection coefficient is similar to the simulation trend and has better resonance. The chip antenna frequency range proposed in this article covers the 5G NR FR2 frequency band. The proposed chip antenna can be applied in related fields such as the Internet of Things, Industry 4.0, and biomedical electronics.
Full article
(This article belongs to the Special Issue Recent Advances in Visible Light Communication and Optical Wireless Information Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Research on the Design of Virtual Reality Online Education Information Presentation Based on Multi-Sensory Cognition
Inventions 2023, 8(2), 63; https://doi.org/10.3390/inventions8020063 - 20 Apr 2023
Abstract
The popularity of the online teaching model increased during the COVID-19, and virtual reality online education is now firmly established as a future trend in educational growth. Human–computer interaction and collaboration between virtual models and physical entities, as well as virtual multi-sensory cognition,
[...] Read more.
The popularity of the online teaching model increased during the COVID-19, and virtual reality online education is now firmly established as a future trend in educational growth. Human–computer interaction and collaboration between virtual models and physical entities, as well as virtual multi-sensory cognition, have become the focus of research in the field of online education. In this paper, we analyze the mapping form of teaching information and cue information on users’ cognition through an experimental system and investigate the effects of the presentation form of online virtual teaching information, the length of the material, users’ memory of the information, and the presentation form of information cues on users’ cognitive performance. The experimental results show that different instructional information and cue presentation designs have significant effects on users’ learning performance, with relatively longer instructional content being more effective and users being more likely to mechanically remember the learning materials. By studying the impact of multi-sensory information presentation on users’ cognition, the output design of instructional information can be optimized, cognitive resources can be reasonably allocated, and learning effectiveness can be ensured, which is of great significance for virtual education research in digital twins.
Full article
(This article belongs to the Special Issue From Sensing Technology Towards Digital Twin in Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
The Optimal Daily Dispatch of Ice-Storage Air-Conditioning Systems
by
and
Inventions 2023, 8(2), 62; https://doi.org/10.3390/inventions8020062 - 17 Apr 2023
Abstract
In this paper, the Ant-based Radial Basis Function Network (ARBFN) is proposed to determine the optimal daily dispatch of ice-storage air-conditioning systems. ARBFN is a novel algorithm that is integrated into the Ant Colony Optimization and Radial Basis Function Network. ARBFN is used
[...] Read more.
In this paper, the Ant-based Radial Basis Function Network (ARBFN) is proposed to determine the optimal daily dispatch of ice-storage air-conditioning systems. ARBFN is a novel algorithm that is integrated into the Ant Colony Optimization and Radial Basis Function Network. ARBFN is used to construct the function of the cost and operation for each chiller and ice-storage tank and is used to simulate the polynomial function of the cooling load and the cost of power consumption. The best learning rate in the training process is adjusted in ARBFN to improve the accuracy of constructing models for chillers and ice-storage tanks. The electricity savings are thus 4.130% on a summer day and 7.381% on a non-summer day. The results have shown that ARBFN can more accurately calculate the actual power consumption and cooling capability of each chiller and ice-storage tank. Lastly, ACO is used to calculate the daily dispatch of the ice-storage air-conditioning system. The results demonstrated the optimization of energy savings and efficiency for the operation of the ice-storage air-conditioning system.
Full article
(This article belongs to the Special Issue Automatic Control and System Theory and Advanced Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Overcoming Chip Shortages: Low-Cost Open-Source Parametric 3-D Printable Solderless SOIC to DIP Breakout Adapters
Inventions 2023, 8(2), 61; https://doi.org/10.3390/inventions8020061 - 10 Apr 2023
Abstract
The COVID-19 pandemic exposed the vulnerability of global supply chains of many products. One area that requires improved supply chain resilience and that is of particular importance to electronic designers is the shortage of basic dual in-line package (DIP) electronic components commonly used
[...] Read more.
The COVID-19 pandemic exposed the vulnerability of global supply chains of many products. One area that requires improved supply chain resilience and that is of particular importance to electronic designers is the shortage of basic dual in-line package (DIP) electronic components commonly used for prototyping. This anecdotal observation was investigated as a case study of using additive manufacturing to enforce contact between premade, off-the-shelf conductors to allow for electrical continuity between two arbitrary points by examining data relating to the stock quantity of electronic components, extracted from Digi-Key Electronics. This study applies this concept using an open hardware approach for the design, testing, and use of a simple, parametric, 3-D printable invention that allows for small outline integrated circuit (SOIC) components to be used in DIP package circuits (i.e., breadboards, protoboards, etc.). The additive manufacture breakout board (AMBB) design was developed using two different open-source modelers, OpenSCAD and FreeCAD, to provide reliable and consistent electrical contact between the component and the rest of the circuit and was demonstrated with reusable 8-SOIC to DIP breakout adapters. The three-part design was optimized for manufacturing with RepRap-class fused filament 3-D printers, making the AMBB a prime candidate for use in distributed manufacturing models. The AMBB offers increased flexibility during circuit prototyping by allowing arbitrary connections between the component and prototyping interface as well as superior organization through the ability to color-code different component types. The cost of the AMBB is CAD $0.066/unit, which is a 94% saving compared to conventional PCB-based breakout boards. Use of the AMBB device can provide electronics designers with an increased selection of components for through-hole use by more than a factor of seven. Future development of AMBB devices to allow for low-cost conversion between arbitrary package types provides a path towards more accessible and inclusive electronics design as well as faster prototyping and technical innovation.
Full article
(This article belongs to the Special Issue Innovations in 3D Printing 3.0)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of Semi-Circular Double-Skin Facades in Auditoriums in Winter Conditions
Inventions 2023, 8(2), 60; https://doi.org/10.3390/inventions8020060 - 30 Mar 2023
Abstract
The DSF (double-skin facade) system is an important element in building design and is used in adjacent spaces to control the inlet solar radiation, heat the air, reduce energy consumption, decrease the acoustics levels, and produce photovoltaic energy, among other improvements. The DSF
[...] Read more.
The DSF (double-skin facade) system is an important element in building design and is used in adjacent spaces to control the inlet solar radiation, heat the air, reduce energy consumption, decrease the acoustics levels, and produce photovoltaic energy, among other improvements. The DSF system can, for example, be used in winter conditions to heat the air, which is then transported to non-adjacent spaces to improve the thermal comfort level and the indoor air quality that the occupants are subjected to. Smooth DSF systems, which are a focus in the literature, are subjected to higher solar radiation levels at a specific hour of the day. The semi-circular DSF system used in this work, which was built from a group of smooth DSF systems with different orientations, guarantees the reception of the highest incident solar radiation throughout the entire day. This work presents a numerical study of a new DSF system, called the semi-circular DSF. The DSF system consists of a set of 25 smooth DSFs with different orientations, each one consisting of an outer glazed surface and an inner surface provided by the outer facade of the auditorium, both separated by an air channel. In this work, the influence of the radius of the semi-circular DSF system and the opening angle of the DSF system on the thermal response of the auditorium was analysed. Thus, six auditoriums were considered: two sets of three auditoriums with radii of 5 m and 15 m, with each of the auditoriums having a different DSF opening angle (45°, 90°, and 180°). It was found that the greater the radius of the semi-circular DSF and the opening angle of the DSF system, the greater the area of its glazed surface and, consequently, the greater the availability of solar heating power. Therefore, during the occupation period, only the set of auditoriums with the largest semi-circular DSF radius managed to present acceptable levels of thermal comfort, which were verified from mid-morning until late afternoon. As for the opening angle of the DSF system, the influence was not very significant, although slight improvements in thermal comfort were noted when the value of this angle was reduced (see Case F as an example) due to the corresponding decrease in the volume of indoor air to be heated. In all auditoriums (see Case A to Case F), it was verified that the indoor air quality was acceptable for the occupants, so the airflow rate was adequately promoted by the ventilation system.
Full article
(This article belongs to the Collection Feature Innovation Papers)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization of Extraction Parameters of Anthocyanin Compounds and Antioxidant Properties from Red Grape (Băbească neagră) Peels
by
, , , , , and
Inventions 2023, 8(2), 59; https://doi.org/10.3390/inventions8020059 - 27 Mar 2023
Cited by 1
Abstract
Using a Central Composite Design, the extraction of bioactive compounds from red grape Băbească neagră peels was optimized by applying a conventional solvent extraction. On the anthocyanin content, total phenolic content, and antioxidant activity (using the DPPH method), the effects of extraction factors,
[...] Read more.
Using a Central Composite Design, the extraction of bioactive compounds from red grape Băbească neagră peels was optimized by applying a conventional solvent extraction. On the anthocyanin content, total phenolic content, and antioxidant activity (using the DPPH method), the effects of extraction factors, including ethanol and citric acid concentrations, extraction temperature, and duration, were investigated. For each of the investigated parameters, a quadratic model was suggested. The maximum and minimum variables investigated in the coded form of the experimental plan are the concentrations of citric acid (0.10–2.64%), ethanol (38.06–96.93%), operating temperature (13.06–71.90 °C), and extraction time (11.36–78.63 min). The optimal mixture for recovering the most significant amount of polyphenol content and antioxidant activity was 85% ethanol, 0.85% citric acid, 52.14 min, and 57 °C. Based on the experimental approach, the anthocyanin content ranged from 1.71 to 2.74 mg C3G/g DW, the total phenolic content ranged from 24.67 to 43.97 mg/g, and the antioxidant activity ranged from 15.95 to 20.98 mM TE/g DW. Overall, it should be stressed that establishing operating factors to maximize model responses can improve the extraction process and the obtaining of red grape peel value-added extracts for creating functional food products.
Full article
(This article belongs to the Special Issue Perspectives and Challenges in Doctoral Research—Selected Papers from the 10th Edition of the Scientific Conference of the Doctoral Schools of “Dunărea de Jos” University of Galati (SCDS-UDJG))
►▼
Show Figures

Figure 1
Open AccessArticle
CFD Investigation for Sonar Dome with Bulbous Bow Effect
Inventions 2023, 8(2), 58; https://doi.org/10.3390/inventions8020058 - 23 Mar 2023
Abstract
The objective of this study is to design a hull-mounted sonar dome of a ship using OpenFOAM with a bulbous bow effect at cruise speed in calm water. Verification and validation for the original sonar dome simulation are conducted. Next, the 1.44 million
[...] Read more.
The objective of this study is to design a hull-mounted sonar dome of a ship using OpenFOAM with a bulbous bow effect at cruise speed in calm water. Verification and validation for the original sonar dome simulation are conducted. Next, the 1.44 million grid size is selected to study different dome lengths. By protruding the dome forward 7.5% of the ship’s length, the optimal 17% resistance reduction is achieved and is mainly caused by the pressure resistance decrease. The optimal sonar dome not only functions in the same way as a bulbous bow, but the viscous flow behaviors are also improved. The protrusion corresponding to 90 deg phase lag reduces the bow wave amplitude. The flow acceleration outside the boundary layer and ship wake velocity are higher coinciding with the much lower total resistance. A smaller flow separation and thinner boundary layer are also observed behind the sonar dome because its back slope is less steep. The high pressure covers a smaller area around the bow, and the smaller bow wave crest does not hit the ship’s flare to form high pressure. Consequently, the lower high pressure on the dome front and higher low pressure on the dome back result in the decreases in pressure resistance. The vortical structures are also improved.
Full article
(This article belongs to the Special Issue Recent Advances in Fluid Mechanics and Transport Phenomena)
►▼
Show Figures

Figure 1
Open AccessArticle
Classification of Tree Species in the Process of Timber-Harvesting Operations Using Machine-Learning Methods
by
, , , , , and
Inventions 2023, 8(2), 57; https://doi.org/10.3390/inventions8020057 - 22 Mar 2023
Abstract
This article presents the constraining factors that limit the increase in the efficiency of logging production by modern multi-operation machines operating on the Scandinavian cut-to-length technology in the felling phase, namely the selection and registration of wood species. The factors for creating a
[...] Read more.
This article presents the constraining factors that limit the increase in the efficiency of logging production by modern multi-operation machines operating on the Scandinavian cut-to-length technology in the felling phase, namely the selection and registration of wood species. The factors for creating a complete architecture of a fully connected neural network (NN) are given. The dependence of the prediction accuracy of a fully connected NN on a test sample on the size of the training dataset, and an image of the dependence of the prediction accuracy on the number of trees in the random forest method for image classification is shown. For a fully connected NN, a sufficient number of images and a test sample size were established for training, using tree-trunk breed-class labels as target values. A selected list of trees was given, with the size of the training sample of images presenting a problem for the classification of tree trunks using the random forest method. The aim was the discovery of the optimal number of trees necessary to achieve prediction accuracy.
Full article
(This article belongs to the Special Issue Computational Intelligence in Agriculture and Natural Resources)
►▼
Show Figures

Figure 1
Open AccessArticle
Machine Learning Systems Detecting Illicit Drugs Based on Their ATR-FTIR Spectra
Inventions 2023, 8(2), 56; https://doi.org/10.3390/inventions8020056 - 13 Mar 2023
Cited by 1
Abstract
We present a comparative study aiming to determine the most efficient multivariate model screening for the main drugs of abuse based on their ATR-FTIR spectra. A preliminary statistical analysis of selected spectra data extracted from the public SWGDRUG IR Library was first performed.
[...] Read more.
We present a comparative study aiming to determine the most efficient multivariate model screening for the main drugs of abuse based on their ATR-FTIR spectra. A preliminary statistical analysis of selected spectra data extracted from the public SWGDRUG IR Library was first performed. The results corroborated those of an exploratory analysis that was based on several dimensionality reduction methods, i.e., Principal Component Analysis (PCA), Independent Component Analysis (ICA), and autoencoders. Then, several machine learning methods, i.e., Support Vector Machines (SVM), eXtreme Gradient Boosting (XGB), Random Forest, Gradient Boosting, and K-Nearest Neighbors (KNN), were used to assign the drug class membership. In order to account for the stochastic nature of these machine learning methods, both models were evaluated 10 times on a randomly distributed subset of the whole SWGDRUG IR Library, and the results were compared in detail. Finally, their performance in assigning the class identity of three classes of drugs of abuse, i.e., hallucinogenic (2C-x, DOx, and NBOMe) amphetamines, cannabinoids, and opioids, were compared based on confusion matrices and various classification parameters, such as balanced accuracy, sensitivity, and specificity. The advantages of each of the illicit drug-detecting systems and their potential as forensic screening tools used in field scenarios are also discussed.
Full article
(This article belongs to the Special Issue Perspectives and Challenges in Doctoral Research—Selected Papers from the 10th Edition of the Scientific Conference of the Doctoral Schools of “Dunărea de Jos” University of Galati (SCDS-UDJG))
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Inventions, Laws, Sustainability, Technologies
Emerging Technologies, Law and Policies
Topic Editors: Esther Salmerón-Manzano, Francisco Manzano AgugliaroDeadline: 30 September 2023
Topic in
Energies, JMSE, Processes, Inventions
Marine Renewable Energy, 2nd Volume
Topic Editors: Eugen Rusu, Kostas Belibassakis, George LavidasDeadline: 30 November 2023
Topic in
Applied Sciences, Inventions, JMSE, Oceans, Remote Sensing, Sensors
Ship Dynamics, Stability and Safety
Topic Editors: Zaojian Zou, Weilin LuoDeadline: 20 December 2023
Topic in
AI, Drones, Inventions, MAKE, Remote Sensing, Sensors
Advances, Innovations and Applications of UAV Technology for Remote Sensing
Topic Editors: Syed Agha Hassnain Mohsan, Pascal Lorenz, Khaled Rabie, Muhammad Asghar Khan, Muhammad ShafiqDeadline: 29 February 2024
Conferences
Special Issues
Special Issue in
Inventions
Recent Advances in Visible Light Communication and Optical Wireless Information Systems
Guest Editor: Jupeng DingDeadline: 30 September 2023
Special Issue in
Inventions
Connected Vehicles and Charging Infrastructure: Innovations and Security
Guest Editors: Guillermo Francia III, Tarek Youssef, Hakki Erhan SevilDeadline: 15 October 2023
Special Issue in
Inventions
Recent Advances in Fluid Mechanics and Transport Phenomena
Guest Editor: Shyy Woei ChangDeadline: 31 October 2023
Special Issue in
Inventions
Advanced Technologies and Artificial Intelligence for Sustainable and Intelligent Transportation Systems
Guest Editors: Kwok Tai Chui, Brij B. GuptaDeadline: 15 November 2023

